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RESEARCH ARTICLE Open Access

Inhibition of SHP2 in basal-like and triple-negative
breast cells induces basal-to-luminal transition,
hormone dependency, and sensitivity to
anti-hormone treatment
Hua Zhao and Yehenew M Agazie*

Abstract

Background: The Src homology phosphotyrosyl phosphatase 2 (SHP2) is a positive effector of cell growth and
survival signaling as well transformation induced by multiple tyrosine kinase oncogenes. Since the basal-like and
triple-negative breast cancer (BTBC) is characterized by dysregulation of multiple tyrosine kinase oncogenes, we
wanted to determine the importance of SHP2 in BTBC cell lines.

Methods: Short hairpin RNA-based and dominant-negative expression-based SHP2 inhibition techniques were used
to interrogate the functional importance of SHP2 in BTBC cell biology. In addition, cell viability and proliferation
assays were used to determine hormone dependency for growth and sensitivity to anti-estrogen treatment.

Results: We show that inhibition of SHP2 in BTBC cells induces luminal-like epithelial morphology while suppressing the
mesenchymal and invasive property. We have termed this process as basal-to-luminal transition (BLT). The occurrence of
BLT was confirmed by the loss of the basal marker alpha smooth muscle actin and the acquisition of the luminal marker
cytokeratin 18 (CK18) expression. Furthermore, the occurrence of BLT led to estrogen receptor alpha (ERα) expression,
hormone dependency, and sensitivity to tamoxifen treatment.

Conclusions: Our data show that inhibition of SHP2 induces BLT, ERα expression, dependency on estrogen for growth, and
sensitivity to anti-hormone therapy. Therefore, inhibition of SHP2 may provide a therapeutic benefit in basal-like and
triple-negative breast cancer.
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Background
The recent decline in breast cancer death rate is attrib-
uted, at least in part, to availability of targeted therapies
such as Herceptin against HER2-positive and tamoxifen
against estrogen receptor-positive breast cancers [1].
Unfortunately, no such treatment options exist for the
basal-like and/or triple-negative breast cancer (BTBC). As
a result, BTBC causes disproportionately high mortalities
in women [2], mainly in African-American women and in
younger women of all ethnicities. The term basal-like was
derived from the expression profile of basal cytokeratins
(CK5/6, CK14 and CK17) by BTBC tumors, proteins

expressed by the basal cells of the normal breast, the myoe-
pithelial cells [1,3]. But, recent reports suggest that BTBC
may also originate from pluripotent luminal cells [4]. An-
other characteristic feature of BTBC tumors is the elevated
expression of the epidermal growth factor receptor (EGFR)
and multiple other receptor tyrosine kinases (RTKs), in-
cluding the MET, the FGFR, and the IGF-1R [5-8].
The Src homology phosphotyrosyl phosphatase 2 (SHP2)

is an essential transducer of mitogenic and cell survival
signaling downstream of multiple RTKs, including those
dysregulated in BTBC [9-11]. In addition, SHP2 is import-
ant for cell transformation induced by oncogenic RTKs
and v-Src [12-15]. It was thus reasonable to determine the
importance of SHP2 in BTBC cell lines in which multiple
RTKs are known to be dysregulated. SHP2 is composed of
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two Src homology 2 domains in the N-terminal and a PTP
domain in the C-terminal regions [16,17]. The SH2 do-
mains allow interaction with phosphotyrosine while the
PTP domain dephosphorylates target substrates. In a rest-
ing state or in the absence of tyrosine kinase signaling,
SHP2 assumes a closed inactive confirmation due to intra-
molecular interaction between the N-terminal SH2 and the
PTP domains. The binding of the SH2 domains to phos-
photyrosine disrupts the intramolecular interaction, lead-
ing to an open and active confirmation. Hence, increased
tyrosine kinase signaling induced by dysregulated RTKs in
BTBC can lead to increased SHP2 activity and augmented
downstream signaling. In this report, we show that inhib-
ition of SHP2 in BTBC cells reverses the mesenchymal
phenotype, abolishes invasiveness, induces basal-to-luminal
transition (BLT), and confers hormone dependency and
sensitivity to anti-hormone (tamoxifen) treatment.

Methods
Cells, cell culture and reagents
The MDA-MB231 and the MDA-MB468 breast cancer cell
lines and the MCF-10A cells were purchased from ATCC.
These cells were grown as described previously [18,19]. The
anti-β-actin monoclonal antibody (A5441) was from Sigma-
Aldrich, the anti-Snail antibody (SN9H2) was from Cell
Signaling, the anti-EGFR antibody (610017) was from BD
Biosciences, the anti CK18 antibody (M7010) was from
DAKO, the anti-smooth muscle actin (MA1-26017) and the
anti-estrogen receptor alpha (MA1-310) antibodies were
from Thermo Scientific, and the anti-MMP2 (MAB3308)
and the anti-MMP9 (AB13458) antibodies were from
Millipore. The anti-SHP2 (SC-7384), the anti-vimentin (SC-
32322), the anti-progesterone receptor (SC-538), and the
anti-fibronectin (SC-18825) antibodies were from Santa Cruz
Biotechnology. Anti-mouse and anti-rabbit secondary anti-
bodies conjugated with horseradish peroxidase were pur-
chased from Jackson Immuno-Research Laboratories.

Inhibition of SHP2 by shRNA and by dominant-negative
expression
Two independent shRNA sequences (double-stranded
deoxyoligonucleotides) previously shown to be specific
for SHP2 [18,20,21] were used for silencing of SHP2 in
the MDA-MB231 and MDA-MB468 cells. A short hair-
pin RNA against luciferase was used as a control as also
described previously [18].

Preparation of cell lysates and immunostaining analyses
Cell lysates were prepared in a buffer containing 20 mM
Tris-HCl, pH7.2, 150 mM NaCl, 50 mM NaF, 1 mM EDTA,
10% glycerol, 1% triton-X-100, 1 mM sodium orthovanadate
and a protease inhibitor cocktail. For total cell lysate analysis,
proteins were separated using a standard polyacrylamide gel
electrophoresis, transferred onto nitrocellulose membranes,

blocked in 3% bovine serum albumin, stained with pri-
mary antibodies overnight at 4°C, washed three times with
TBST (Tris-buffered saline containing 0.1% Tween-20)
and incubated with secondary antibodies for 1 hour at
room temperature. Finally, stained bands were detected by
the chemiluminescence method.

2D monolayer wounding and 3D laminin-rich basement
membrane (LRBM) culture
For monolayer wounding assay, cells were grown in
DMEM containing 10% FBS and scratched with a pipet tip
to create a gap. The ability of the cells to migrate and fill
the space was monitored under a microscope. Pictures
were collected under an IX-71 Olympus microscope using
the 5 × objective immediately after wounding and every
12 hours thereafter.
For 3D invasion assay, a modified version of the laminin-

rich basement membrane (LRBM) culture, sometimes re-
ferred to as 3D matrigel assay, was used. The basic protocol
has been previously reported [22]. Four-well chamber slides
(Falcon) were overlaid with 80 μl of growth factor reduced
LRBM medium (BD Biosciences) containing 10 μg/ml DQ
collagen and allowed to solidify for 1 hour at 37°C. Approxi-
mately 103 cells suspended in regular growth medium were
seeded per well and protease activity was determined under
a fluorescent microscope after 24 hours of incubation. Light
and fluorescent pictures were collected under Olympus IX71
microscope with attached CCD camera. Fluorescent intensity
measurement of collagen degradation was performed using
the Olympus Microsuite software.
For protease expression and secretion studies, the same

LRBM culture system, lacking the DQ collagen, was used.
In addition, cells were serum starved overnight (fed with
serum-free DMEM) before harvesting the conditioned
medium. Corresponding total cell lysates were used for
determining intracellular protein levels.
To determine the effect of SHP2 inhibition on differ-

entiation of BTBC cells, the LRBM culture described
previously [19,23] was used. Approximately 103 cells
were suspended in 250 μl of assay medium (DMEM sup-
plemented with 2% horse serum, 10 μg/ml recombinant
human insulin, 0.5 μg/ml hydrocortisone, 5 ng/ml EGF,
100 ng/ml cholera toxin and 1X penicillin/streptomycin)
and seeded on a solidified LRBM and cultured at 37°C
in 7% CO2 incubator. The cells were re-fed with assay
medium every 4 days and phase contrast pictures were
taken after 15 days.

Hormone dependency and tamoxifen sensitivity
Cells were seeded in 96-well plates in DMEM containing
10% FBS plus or minus estradiol (E2) for 48 hours. The
effect of E2 on cell growth was determined using a Lumi-
nescent cell viability assay (Promega) that measures
growth based on ATP levels. The manufacturer’s protocol
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was followed in seeding cells, preparation of reagents, and
luminescent measurements. For testing sensitivity to tam-
oxifen, cells were grown in the same way for 24 hours and
then treated with vehicle (DMSO) or 5 μM tamoxifen for
another 24 hours. Cell growth was measured in Synergen
H3 (Biotech) plate reader and the data was analyzed with
the IGEN-5 software.

Results
SHP2 is essential for the maintenance of the
mesenchymal morphology in BTBC cells
To determine the functional significance of SHP2 in
BTBC, we chose the MDA-MB231 and the MDA-
MB468 breast cancer cell lines which are known to be
basal-like and triple-negative [24,25]. These cells harbor
several genetic abnormalities commonly discovered in
BTBC, including activating Ras mutation in the MDA-
MB231, elevated EGFR expression and p53 mutation in
both [24,26], and PTEN homo-deletion and EGFR gene
amplification in the MDA-MB468 cells [24,27]. In
addition, both cell lines show elevated SHP2 expression
[28]. Hence, they are appropriate for testing the import-
ance of SHP2 in BTBC. The expression of SHP2 was
silenced with two independent shRNA sequences that
were previously shown to be specific and devoid of off-
target effects [18,21]. Cells expressing luciferase shRNA
were used as controls in this study. As shown in
Figure 1A, each shRNA effectively silenced SHP2 ex-
pression. Microscopic examination of confluent cells
grown in 2D cultures revealed that the SHP2 silenced
cells had acquired an epithelial morphology characte-
ristic of luminal epithelial cells while the parental and
the control cells showed the expected elongated and
spindle-shaped mesenchymal morphology. In other
words, silencing SHP2 expression induced morpho-
logical changes that are comparable to the MCF-10 cells,
the immortalized and non-tumorigenic breast epithelial
cells commonly used as “normal” controls (Figure 1B).
Morphological changes induced by SHP2 silencing were
obvious even in non-confluent cells (Additional file 1:
Figure S1A). Similar results were obtained in the MDA-
MB468 cells (Additional file 1: Figure S1B and C).
To further confirm that the PTPase activity of SHP2

was responsible for the observed morphological changes
and to rule out the possibility of any off-target shRNA
effects, we inhibited SHP2 function by expression of
the PTPase-dead SHP2 (C459S-SHP2), also known as
dominant-negative SHP2, using the strategy described by
us previously [12,13]. As shown in Figure 1C, FLAG-
tagged wild-type SHP2 (WT-SHP2) and C459S-SHP2
were efficiently expressed in both cells lines. In agree-
ment with shRNA-based SHP2 inhibition, expression of
C459S-SHP2 led to similar morphological changes, while
the wild-type counterpart (WT-SHP2) or vector alone

did not (Figure 1D). These results suggest that SHP2 is
required for the maintenance of the mesenchymal prop-
erty in BTBC cells and its inhibition induces luminal-
like morphology in BTBC cells.

SHP2 is essential for the migratory and invasive
properties of BTBC cells
Most BTBC cell lines, including the cells used in this study
are highly mesenchymal and exhibit enhanced migratory
and invasive properties [29]. The morphological changes
induced by SHP2 inhibition were indicative of the import-
ance of SHP2 in these properties. To test this possibility,
we employed the simple wound-healing assay in which
cells will be induced to migrate and fill the space created
by scratching. In agreement with our previous report on
effect of SHP2 in cell polarity [18], silencing SHP2 expres-
sion retarded cell migration. While the control cells were
able to heal the wound in 24 hours, the SHP2-silenced cells
were unable to do so even in 48 hours (Figure 2A and B).
Similar results were obtained when SHP2 function was
inhibited by expression of C459S-SHP2 (Additional file 2:
Figure S2A and B). Hence, SHP2 is essential for the migra-
tory behavior of BTBC cells.
The effect of SHP2 inhibition on the invasive property

of BTBC cells was tested by the DQ matrigel assay. This
assay system utilizes collagen IV conjugated to quenched-
FITC, which fluoresces upon collagen degradation. Fluor-
escence emission is proportional to amount of collagen
degradation, and therefore, it can be used to measure abil-
ity of cells to degrade and invade extracellular matrix
(ECM). Cells were mixed with laminin-rich basement
membrane (LRBM), containing approximately 10 μg/ml
DQ collagen as described previously [22], and seeded in
slide culture chambers. ECM degradation was monitored
under a fluorescent microscope as described in the ma-
terials and methods. While the parental and the control
cells showed enhanced matrigel degradation, the SHP2-
silenced cells had very little or no degradation (Figure 2C
and E). The corresponding light pictures further con-
firmed the highly mesenchymal and invading nature of the
parental and control cells and the absence of such pheno-
types in the SHP2-silened cells. Fluorescence intensity
measurements further confirmed that the parental and the
control cells degraded collagen matrices approximately 20
times more than the SHP2-silenced cells (Figure 2D and F).
Expression of C459S-SHP2 also led to suppression of the
invasive phenotype (Additional file 2: Figure S2C). These
results clearly demonstrated that the invasive property of
BTBC cells is SHP2 dependent.

SHP2 is required for expression of EMT proteins and
matrix-degrading enzymes
The retardation of cell migration and the blockade of in-
vasiveness induced by SHP2 silencing implied loss of the
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Figure 1 Silencing SHP2 expression induces morphological changes in BTBC cells. A) The expression of SHP2 was effectively silenced with two
independent shRNA (shRNA-1 and shRNA-2) sequences. P: parental cells; C: control cells; sh-1: shRNA-1 cells; sh-2: shRNA-2 cells. (B) Pictures of parental,
control and SHP2-silenced cells showing morphological changes induced by SHP2 silencing in the MDA-MB231 cells. A picture of the MCF-10A cells is
included to show morphological similarity to the SHP2-silenced cells. C) Analysis of ectopic SHP2 expression; V: vector alone; WT: wild type SHP2; CS:
C459S-SHP2. D) Pictures of MDA-MB231 and MDA-MB468 cells expressing vector alone, WT-SHP2 or C459S-SHP2 to show morphological changes. Note
that expression of dominant-negative SHP2 (C459S-SHP2) induces morphological changes reminiscent of SHP2-silnced cells.
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Figure 2 (See legend on next page.)
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mesenchymal phenotype. To further validate these
observations, total cell lysates prepared from the 3D
matrigel cultures were analyzed for expression of the
mesenchymal markers, Snail, fibronectin (FN), and
Vimentin. Consistent with the observed phenotypic
changes, the levels of Snail, FN, and Vimentin were sig-
nificantly reduced in the SHP2-silenced cells (Figure 3A),
confirming that SHP2 is essential for the maintenance of
the mesenchymal property in BTBC cells. Assuming that
one of the mechanisms for SHP2 in promoting the ex-
pression of EMT proteins could be through protein sta-
bility, we conducted proteasome inhibition studies with
Mg-132 treatment. As shown in Figure 3B, treating cells
with Mg-132 restored FN and Snail, but not vimentin.
These findings suggest that SHP2 promotes the stability
of FN and Snail, but its positive effect on vimentin might
be at the level of transcription.
The proteasome inhibition studies were suggestive of

enhanced degradation of FN and Snail in the absence of
SHP2. To examine the dynamics of FN and Snail deg-
radation in the presence and absence of SHP2, we first
restored these proteins by Mg-132 treatment for 6 hours.
This was necessary since FN and Snail levels in the
shRNA cells were low and hence could not be com-
pared. After removal of Mg-132 by washing, new protein
synthesis was blocked by cyclohexamide treatment for
variable time points. As shown Figure 3C and E, the
levels of both proteins decreased very rapidly in the
SHP2-silenced cells, but very slowly in the controls.
Band density measurements revealed that the half-life of
FN was less than 2 hours while that of Snail was less
than 1 hour in the SHP2 silenced cells. But, the half-life
of both proteins in the control cells was at least 6 hours
(Figure 3D and F). Hence, loss of SHP2 destabilizes
some EMT proteins in BTBC cells.
Previous studies have shown that the MDA-MB231

and the MDA-MB468 cells express MMP2 and MMP9
[30,31]. We reasoned that the loss of the invasive prop-
erty in the SHP2-silenced cells could be related to loss
of the expression of these proteases. We thus tested the
impact of SHP2 inhibition on the expression and secre-
tion of MMP2 and MMP9 in matrigel assays. Cells were
seeded in matrigel and the conditioned media harvested
from these cultures was analyzed by immunoblotting for
MMP-2 and MMP-9. Inhibition of SHP2 blocked the
secretion of MMP9 into the medium in both the MDA-
MB231 and the MDA-MB468 cells, although the level of

MMP9 in the control MDA-MB468 cells was relatively
low in the first place (Figure 3G and H, top panels).
Analysis of corresponding total cell lysates showed that
the expression of MMP9 was reduced, but not completely
blocked by SHP2 inhibition in both cells (Figure 3G and H,
second panels). However, the level of MMP9 in the con-
trol MDA-MB468 cells was relatively low when compared
to the control MDA-MB231 cells, which also reflects the
low level of MMP9 secretion into the medium by
the MDA-MB468 cells. The secretion and expression of
MMP2 was also suppressed in the SHP2-silenced MDA-
MB231 cells (Figure 3G, third panel), but this protease
was undetectable in the MDA-MB468 cells (data not
shown). Reprobing for β-actin in the total cell lysates
showed comparable level of protein loading. Overall, these
results suggest that SHP2 promotes the invasive pheno-
type of BTBC cells by positively regulating the expression
and secretion of MMP9 and possibly MMP2 in a cell
context-dependent manner.

Inhibition of SHP2 induces basal-to-luminal transition
As shown in Figure 1 and Additional file 1: Figure S1,
silencing SHP2 expression induced a luminal-like epithelial
morphology in BTBC cells. Based on these findings, we
reasoned that inhibition of SHP2 may induce conversion
of BTBC cells to a luminal lineage, which we termed basal-
to-luminal transition (BLT). This possibility was tested by
the laminin-rich basement membrane (LRBM) culture
where non-transformed luminal breast epithelial cells like
the MCF10A form acini-like structures while breast cancer
cells produce a continuously-growing amorphous cellular
mass [19,23]. As expected, the control cells formed a disor-
ganized cellular mass that continued to grow and invade,
whereas the SHP2-silenced cells grew very slowly, forming
acini-like spheroid structures that are comparable to those
formed by the control MCF-10A cells (Figure 4A and B).
These results suggest that inhibition of SHP2 reverses the
transformation and invasive phenotype and induces BLT in
BTBC cells.
To further confirm the occurrence of BLT, the expres-

sions of basal and luminal markers were analyzed by im-
munoblotting of total cell lysates prepared from LRBM
cultures. The results showed that the expression of the
basal marker α-SMA (alpha smooth muscle actin) was
higher in the parental and the control cells and lower in
the corresponding SHP2-silenced cells (Figure 4C). But,
the converse was true for expression of the luminal

(See figure on previous page.)
Figure 2 Effect of SHP2 silencing on cell migration. Silencing SHP2 expression retards cell migration in the MDA-MB231 (A) and the MDA-MB468
(B) cells. Data shown was from the control and the shRNA-2 cells derived from the respective cell lines. C) Effect of SHP2 silencing on the ability of the
MDA-MB231 cells to degrade FITC-labeled collagen in 3D matrigel invasion assay. D) Fluorescent intensity measurement of collagen degradation by the
MDA-MB231 cells. E) Effect of SHP2 silencing on the ability of the MDA-MB468 cells to degrade FITC-labeled collagen in 3D matrigel invasion assay.
F) Fluorescent intensity measurement of collagen degradation by the MDA-MB468 cells. Data shown was mean ± SEM of three independent experiments.
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marker CK18 (cytokeratin 18). These results confirm
that inhibition of SHP2 leads to BLT in triple-negative
breast cancer cells.
The next logical step was to determine whether induc-

tion of BLT is accompanied by loss of the triple-negative
status. Normal luminal breast epithelial cells and breast
cancer cells that belong to the luminal subtype express
the hormone receptors estrogen receptor alpha (ERα)
and progesterone receptor (PR). We thus determined
the state of ERα and PR expression in the same total cell
lysates. Consistent with the occurrence of BLT, inhib-
ition of SHP2 led to expression of ERα in triple-negative

breast cancer cells (Figure 4C). However, we were unable
to detect PR expression by immunoblotting with a spe-
cific antibody (not shown). Nonetheless, these findings
demonstrate that SHP2 is essential for the maintenance
of the triple-negative status in BTBC cells. In other
words, inhibition of SHP2 in BTBC cells induces differ-
entiation to hormone-positive cells.

Inhibition of SHP2 induces estrogen dependency and
sensitivity to tamoxifen
The expression of ERα (Figure 4C) in SHP2-silenced
cells suggested that they may depend on estrogen

Figure 3 Effect of SHP2 silencing on expression of EMT proteins. A) Silencing SHP2 expression down regulated the levels of fibronectin (FN), Snail
and vimentin (Vim). B) Proteasome inhibition with Mg-132 restores Snail and fibronectin levels, but not vimentin. C) Analysis of FN and Snail levels in
the control and the SHP2-silenced MDA-MB231 cells after stabilization with Mg-132 and inhibition of new protein synthesis with cyclohexamide (CHA
in a time-course (TC) fashion. D) Band density measurement of FN and Snail levels from three independent experiments performed as in C. E) Analysis
of FN and Snail levels in the control and the SHP2-silenced MDA-MB468 cells. The experiments were performed as in C. F) Band density measurement
of FN and Snail levels from three independent experiments performed as in E. G) Effect of SHP2 silencing on expression and secretion of MMP2 and
MMP9 in MDA-MB231 cells. H) Effect of SHP2 silencing on expression and secretion of MMP9 in MDA-MB468 cells.
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signaling for growth. To test this possibility, we con-
ducted cell growth studies in the presence and absence
of estradiol (E2) using a cell viability assay (Promega)
that determines cell growth based on ATP levels. The
MCF-10A (non-transformed breast epithelial cells) and
the MCF-7 (the hormone-positive breast cancer cell line)
cells that require E2 for growth were used as positive
controls. While the control cells did not respond to E2
treatment, the SHP2-silenced cells showed an approxi-
mately 30% increase in cell growth rate over the un-
stimulated counterparts (Figure 5A). As expected, the

growth of the MCF-10A and the MCF-7 cells was re-
tarded by E2 subtraction in the growth medium. We also
determined the effect of E2 on cell growth rate by direct
counting in a time-course fashion as described pre-
viously [32]. Consistent with the cell viability data,
addition of E2 in the growth medium increased the
growth rate of the SHP2-slinced cells. For instance, the
unstimulated and the E2-stimulated SHP2-silenced cells
grew by approximately 4-fold and 7-fold, respectively,
over a period of 3 days (Figure 5B). As expected, the
control cells grew by more than 10-fold over the same

Figure 4 Silencing SHP2 expression induces acini-like structure formation. A) Light pictures of parental, control and SHP2-silenced MDA-MB231
cells cultured in 3D LRBM matrigel that allows acini-like structure formation. B) Light pictures of parental, control and SHP2-silenced MDA-MB468 cells
cultured in 3D LRBM matrigel that allows acini-like structure formation. Pictures of acini-like structures formed by the MCF-10A cells cultured under
identical conditions is shown in both A and B for comparison. C) Effect of SHP2 silencing on expression of basal and luminal markers and estrogen
receptor alpha (ERα). Data presented is representative of at least three independent experiments.
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Figure 5 (See legend on next page.)
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period of time. These observations suggest that SHP2
inhibition-induced ERα expression confers hormone
dependency.
Based on the above findings, we reasoned that hormone

dependency may lead to sensitivity to anti-hormone treat-
ment. We used the same assay system to determine sen-
sitivity to tamoxifen (Tam) by adding 1 μg/ml and
incubation for 48 hours. While the control cells showed
very little or no sensitivity, the SHP2 silenced cells exhib-
ited loss of viability even below those that were not stimu-
lated with E2 (Figure 5C and D). In other words, Tam
abrogated the effect of E2 on cell growth in the SHP2-
silenced cells. However, treating SHP2-silenced cells with
Tam alone did not induce further inhibition than that
induced by SHP2 silencing. These findings further support
our hypothesis that inhibition of SHP2 induces ERα
expression, hormone dependency, and sensitivity to anti-
hormone therapy.

Discussion
When compared to the hormone- and HER2-positive
subtypes of breast cancer, BTBC causes disproportion-
ately high mortalities in women [2,33,34]. The major fac-
tors are the aggressive nature of the disease and the lack
of targeted therapies. Several RTKs, including EGFR,
FGFR, c-MET, IGF-1R, and Eph2 are known to be dys-
regulated in BTBC [5,6,8], but development of targeted
therapies against them has not been successful. SHP2 is
a critical downstream signal transducer of many RTKs,
including those dysregulated in BTBC [9-11,13,35,36],
but its functional role has not been effectively demon-
strated. As a result, its potential for targeted therapy in
BTBC has not been explored. In this study, we con-
ducted shRNA-based inhibition studies to show the im-
portance of SHP2 in BTBC.
Most BTBC cell lines, including the cells used in this

study are highly mesenchymal and exhibit enhanced
migratory and invasive properties [29]. We found that si-
lencing SHP2 expression induces morphological changes
that resemble luminal breast epithelial cells which are
apparent even in non-confluent cells (Figure 1B and
Additional file 1: Figure S1). Expression of the PTPase-
dead (dominant-negative) SHP2 also induced similar
phenotypes (Figure 1D), confirming that SHP2 is essen-
tial for the mesenchymal morphology of BTBC cells.
These findings are consistent with our previous report
in which we showed the importance of SHP2 for the main-
tenance of the transformed phenotype in HER2-positive

and basal-like breast cancer cells [19]. Therefore, SHP2
may play critical roles in different subtypes of breast
cancer.
We have recently demonstrated that SHP2 regulates

focal adhesion kinase (FAK) in BTBC cells to promote cell
polarity and migration in 2D cultures [18]. Because the
SHP2 inhibition-induced loss of the mesenchymal morph-
ology was so dramatic, we wanted to determine the effect
of SHP2 silencing on cell migration for extended period of
time. We have found that the SHP2 silenced cells could
not completely close the monolayer wound even in
48 hours, while the control cell did it within 24 hours
(Figure 2A and B). Expression of dominant-negative SHP2
also led to retardation in cell migration (Additional file 2:
Figure S2A and B), confirming the importance of the
SHP2 enzyme function in cell migration. Thus, inhibition
of SHP2 severely retards BTBC cell migration.
In agreement with the loss of the mesenchymal

morphology and migratory behavior in 2D, the SHP2-
silenced cells were defective in their invasive property,
the hallmark of “mesenchymalness” (Figure 2C-F and
Additional file 2: Figure S2C). These changes were con-
firmed by the reduced expression of Vimentin, FN, and
Snail, the commonly used EMT markers (Figure 3A).
Interestingly, proteasome inhibition restored Snail and
FN expression, but not vimentin (Figure 3B). Time-course
protein translation inhibition studies following Mg-132
stabilization showed that loss of SHP2 leads to rapid deg-
radation of FN and Snail by the proteasome (Figure 3C-F).
These findings suggest that SHP2 promotes FN and Snail
protein stability in BTBC cells. However, our data does
not show the mechanism by which SHP2 promotes the
stability of FN and Snail. Future studies addressing aspect
will be necessary. In case of vimentin, it seems that SHP2
promotes vimentin expression at the transcriptional level.
It will also be necessary to address this point in future
studies.
Ability to interact, degrade, and move through the ECM

by a cancer cell is the major mechanism for the deve-
lopment of a malignant disease [37,38]. Matrix metallo-
proteinase 2 and 9 (MMP-2 and MMP-9) have been
implicated as playing significant roles in enabling invasive-
ness and metastasis of breast cancer [31,39]. We have
demonstrated that inhibition of SHP2 suppresses the ex-
pression of both proteases in BTBC cells (Figure 3G and H).
In support of our findings, a previous study has also
shown that SHP2 promotes the expression of MMP9 [40].
These results provide a mechanistic explanation as to how

(See figure on previous page.)
Figure 5 Effect of SHP2 silencing on estrogen responsiveness. A) Comparison of cells for responsiveness to estradiol treatment using cell
viability assay. B) Effect of estradiol on the growth of the control and the SHP2-silenced MDA-MB231 and MDA-MB468 cells as determined by
direct cell counting in a time-course fashion. C) Effect of SHP2 silencing on sensitivity to tamoxifen in the MDA-MB231 cells. D) Effect on SHP2
silencing on sensitivity to tamoxifen in the MDA-MB468 cells. V: vehicle; E2: estradiol; Tam: tamoxifen; Con: control shRNA; sh: SHP2 shRNA.
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SHP2 promotes the invasiveness property of BTBC cells.
However, our results cannot rule out the possibility of
SHP2 regulating the expression and/or secretion of add-
itional proteases to promote invasiveness. Future studies
may also be needed to explore these possibilities.
For the first time, we have demonstrated that inhib-

ition of SHP2 induces basal-to-luminal transition (BLT)
in BTBC cells (Figure 4A and B). Previous studies by us
and others have shown that the acini-like structures
formed by isolated breast epithelial cells resemble the
milk-producing structures of the normal breast. There-
fore, our results are consistent with SHP2 inhibition
leading to BLT. More surprising was the induction of
ERα expression (Figure 4C), which suggested that inhib-
ition of SHP2 converts BTBC cells into hormone-
positive epithelial cells.
The SHP2-inhibition induced BLT in BTBC cells was

unexpected since these cells are thought to originate from
the basal cells of the breast, the myoepithelial cells. One
possible explanation is that the minority stem-like cell pop-
ulations, also known as cancer stem cells (CSC), present in
the MDA-MB-231 and the MDA-MB-468 cells [41,42],
may give rise to luminal lineage cells. As in normal breast
stem cells which are pluripotent and can give rise to lu-
minal and basal lineages, the stem-like cells present in
BTBC cells might have differentiated into luminal lineage
upon SHP2 inhibition, leading to formation of acini-like
structures in LRBM cultures. Future studies may be needed
to show how inhibition of SHP2 in BTBC cells leads to
differentiation of pluripotent basal cells to luminal cells.
We have demonstrated that inhibition of SHP2 converts

triple-negative breast cancer cells into hormone-positive
(ERα-positive) cells that depend on estrogen signaling for
growth (Figure 5A and B). We have also shown that
SHP2-silenced cells are sensitive to tamoxifen treatment
(Figure 5C and D). A recent study has shown that SHP2 is
essential for estradiol (E2)-induced cell growth and signal-
ing in the ERα-positive MCF7 breast cancer cell line pri-
marily using a small molecule-based SHP2 inhibition [43].
This report also showed cross-talk between the ERα and
the IGF-1R-Gab2 signaling axis in which SHP2 was found
to be important. It is possible that the observed inhibition
of cell growth and signaling in MCF7 cells treated with
the SHP2 inhibitor PHPS1 might have emanated from the
loss of this cross talk. Since activation of the SHP2 enzyme
function is dependent on tyrosine kinase activation and
interaction of its SH2 domains, it is unlikely that ERα per
se can activate SHP2 to mediate signaling. In addition, the
observed differences between our findings and this report
may reflect cell-context differences between the MCF7
and the SHP2-silnced BTBC cells. Nonetheless, our
findings imply that SHP2 inhibition can be used to
treat BTBC singly or in combination with the existing
anti-hormone therapies.

Conclusions
In this study, we show that inhibition of SHP2 induces
basal-to-luminal transition (BLT), ERα expression, estrogen
dependency for growth, and sensitivity to anti-hormone
therapy. Therefore, inhibition of SHP2 may provide a
therapeutic benefit to basal-like and triple-negative breast
cancer patients if specific drugs can be developed.

Additional files

Additional file 1: Figure S1. Includes pictures of non-confluent parental,
control, and SHP2 shRNA cells derived from the MDA-MB231 (A) and from
the MDA-MB468 (C). Also shown in Figure S1 are pictures of confluent
parental, control, and SHP2 shRNA cells derived from the MDA-MB468 cells
(B). Pictures of non-confluent parental MCF-10A cells are included in all cases
as a reference.

Additional file 2: Figure S2. In this supplemental data, we show that
inhibition of SHP2 by dominant-negative (C459S-SHP2) expression also
suppresses cell migration and matrigel invasion.
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