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Abstract
Microfluidic technologies enable in vitro studies to closely simulate in vivomicrovessel envi-

ronment with complexity. Such method overcomes certain constrains of the statically cul-

tured endothelial monolayers and enables the cells grow under physiological range of shear

flow with geometry similar to microvessels in vivo. However, there are still existing knowl-

edge gaps and lack of convincing evidence to demonstrate and quantify key biological fea-

tures of the microfluidic microvessels. In this paper, using advanced micromanufacturing

and microfluidic technologies, we presented an engineered microvessel model that mim-

icked the dimensions and network structures of in vivomicrovessels with a long-term and

continuous perfusion capability, as well as high-resolution and real-time imaging capability.

Through direct comparisons with studies conducted in intact microvessels, our results dem-

onstrated that the cultured microvessels formed under perfused conditions recapitulated

certain key features of the microvessels in vivo. In particular, primary human umbilical vein

endothelial cells were successfully cultured the entire inner surfaces of the microchannel

network with well-developed junctions indicated by VE-cadherin staining. The morphologi-

cal and proliferative responses of endothelial cells to shear stresses were quantified under

different flow conditions which was simulated with three-dimensional shear dependent nu-

merical flow model. Furthermore, we successfully measured agonist-induced changes in in-

tracellular Ca2+ concentration and nitric oxide production at individual endothelial cell levels

using fluorescence imaging. The results were comparable to those derived from individually

perfused intact venules. With in vivo validation of its functionalities, our microfluidic model

demonstrates a great potential for biological applications and bridges the gaps between in
vitro and in vivomicrovascular research.
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Introduction
The development of microfluidic devices has been embraced by engineers over two decades.
However, the adaptation and application of microfluidics in mainstream biology is still lacking.
According to the recent summary, the majority publications of microfluidics are still in engi-
neering journals (85%) [1]. The improved performance of microfluidic devices have not been
well accepted by many biologists and applied to biological studies [1, 2]. More experimental ev-
idence is needed to demonstrate that microfluidics has the advantage over the conventional
transwell assays and macroscale culture dish/glass slide approaches for developing more physi-
ologically relevant in vitromicrovessel model. In this paper we continue our previous efforts in
developing in vitro functional microvessels that could provide a platform for the study of com-
plex vascular phenomena [3].

Several groups have pioneered in the development of advanced microvessel models using
micromanufacturing and microfluidic techniques [4–8]. Each of those microvessel models
demonstrated unique features and biological applications, such as the use of either polymer or
hydrogel to template the growth of vascular endothelial cells (ECs) [4], co-cultured ECs with
other vascular cells [5], simulating the vascular geometry pattern and studying vascular geome-
try associated endothelial leukocyte interactions [8], as well as investigating EC involved angio-
genesis and thrombosis [5–7]. However, there have been very limited reports for microvascular
function related changes in endothelial cell signaling in microfluidic based systems.

Nitric oxide (NO) is essential for controlling vascular tone and resistance in arterioles, and
regulating vascular wall adhesiveness and permeability in venules [9–12]. Additionally, the en-
dothelial intracellular Ca2+ concentration [Ca2+]i has been recognized to play an important
role in microvessel permeability [11, 13–18], angiogenesis [19] and morphogenesis [20]. Al-
though a few studies previously reported the use of DAF-2 DA in microfluidic network, some
of them only showed DAF-2 loading [21, 22], and others were lack of appropriate resolution
and data analysis [23]. Up-to-date, the agonist-induced dynamic changes in endothelial [Ca2+]i
and NO production have not been well demonstrated in previous microfluidic based studies,
especially no quantitative measurements were conducted with temporal and spatial resolution.

In this paper, we presented an in vitro formation of a microvessel network and directly com-
pared the key features with the results derived from microvessels in vivo. Continuous micro-
fluidic perfusion is able to control the mass transfer and flow shear stresses precisely. A
confluent endothelial monolayer was formed and fully covered inside the entire microchannel
network. The vascular endothelial adherens junctions were confirmed by VE-cadherin immu-
nofluorescence staining. Cell morphology changes in response to different patterns of shear
stress were evaluated by staining endothelial cell F-actin. Additionally, following our estab-
lished methods developed in individually perfused microvessel, endothelial [Ca2+]i and NO
production were quantitatively measured using a real-time and high-resolution imaging under
controlled and stimulated conditions. The main objectives of this study are to develop an in
vitro functional microvessel network, validate some of the key biological features of microvessel
endothelial cells, and provide a validated in vitro tool for the future studies of human endothe-
lial cells under physiological and pathological conditions.

Materials and Methods

Design and fabrication
The microchannel network designed in this paper was a three-level branching microchannels.
As shown in Fig 1A, the width of microchannels was 100 μm, 126 μm, and 159 μm, respective-
ly. The angles at the bifurcations was 120°. Standard photolithography was used for the master
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mold fabrication and polydimethylsiloxane (PDMS) soft lithography was used for the micro-
fluidic microchannel network fabrication as shown in Fig 1B–1G [24]. Briefly, a silicon wafer
was rinsed with acetone and methanol and baked on a hot plate (150°C) over 30 minutes for
dehydration (Fig 1B). SU-8 photoresist (SU8-2050, Microchem, Westborough, MA USA) was
spun-coated over the pre-cleaned silicon wafer with a thickness of 100 μm, and then the wafer
was baked on the hot plate at 65°C and 95°C, respectively (Fig 1C). The designed patterns were
transferred from a film mask to a SU-8 thin film after the UV light exposure (OAI model 150,
San Antonio, TX USA) (Fig 1D), post baking, and the development as shown in Fig 1E. After
the hard baking at 150°C, the developed patterns as the master mold were ready for PDMS soft

Fig 1. The schematic design and fabrication procedures for the microfluidic microchannel network. A. The schematic design shows the bifurcation
angle and the widths of microchannels at differnet levels. B. A pre-cleaned silicon substrate. C. SU-8 photoresist was spun-coated onto the silicon wafer. D.
The photoresist was exposed to UV light through the photomask. E. The developed microchannel network pattern was used as the master mold. F. PDMS
mixing solution was cast onto the master mold and cured. G. The inlet and the outlet were punched and the microchannel device was bonded onto a glass
substrate with a spun-coated thin PDMS layer.

doi:10.1371/journal.pone.0126797.g001
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lithography. PDMS (Slygard 184, Dow Chemical, Midland, MI USA) was mixed at a weight
ratio of 10:1, and cast onto the master mold to replicate the microchannel patterns (Fig 1F).
PDMS was cured and peeled off from the master mold after it was baked in an oven at 60°C for
3 hours. The inlet and the outlet, which were used for the cell loading, tubing connections,
media and reagent perfusion, and waste collection, were punched with a puncher (1 mm, Mil-
tex, Plainsboro, NJ USA). In a typical confocal microscopy system, an objective lens with high
numerical apertures (NA) has a limited working distance in a range of a few hundred microns
[25]. Therefore, to incorporate the microfluidic devices to our confocal system, the number 1
glass coverslip (thickness of 130–160 μm, Fisher Scientific) spun-coated with a thin layer of
PDMS (thickness of 20 μm) was used as the substrate for the device bonding (Fig 1G). A per-
manent bonding was created to seal the microchannels completely after oxygen plasma treat-
ment (50 W, 100 mtorr) of PDMS for 30 seconds.

Viscosity measurement and numerical simulation
To estimate the shear stresses of the culture media under the experimental conditions, the vis-
cosity of the cell culture medium containing 10% fetal bovine serum (FBS) was measured using
a Wells-Brookfield cone/plate digital viscometer (LVTDCP, cone # CP-40, Stoughton, MA,
USA) at 37°C, with shear rate at 90, 225, 450 sec-1, respectively. As shown in Fig 2A, the media
viscosity (5 repeated measurements) measured at the shear rate range showed some shear rate
dependence, an indication of non-Newtonian behavior. Based on these measurements, the dy-
namic viscosity (μ) as a function of shear rate (γ) was fitted by an equation μ = mγn-1, where an
exponent n is 0.789 and a flow consistency index (m) is 3.4282.

We then conducted numerical simulations using a three-dimensional, finite element model
in the commercial software COMSOL Multiphysics (Version 4.0.0.982, COMSOL Inc., Bur-
lington, MA, USA). Stationary incompressible Navier-Stokes equations were chosen as govern-
ing equations for the fluids, and no-slip wall boundary condition was set along the internal
surfaces of the microchannels. The implemented boundary conditions at the inlet and outlet
were constant inlet velocity and zero external pressure, respectively. Culture medium was se-
lected as the reference fluid during the simulation with a constant density (1020 kg/m3), and a
power law dynamic viscosity model was applied based on the fitted equation derived from
measured culture media viscosities (Fig 2A). PARallel sparse DIrect linear SOlver (PARDISO)
was used to execute the iteration, and the model was considered converging when the estimat-
ed error was less than 2.2e-11. The simulated wall shear stress distribution along the entire net-
work and the selected regions of channels were shown in Fig 2B and 2C, respectively.

Cell culture
Primary human umbilical vein endothelial cells (HUVECs) were purchased from Lonza. The
cells were maintained in MCDB 131 culture medium (Gibco, Carlsbad, CA USA) supple-
mented with 10% FBS, 1% L-glutamine, 0.1% Gentamicin, 0.05% bovine brain extract (9mg/
mL), 0.25% endothelial cell growth supplement (3mg/mL), and 0.1% heparin (25mg/mL) in
tissue cultured flasks, which were pre-coated with 0.2% gelatin. The cell culture was performed
in a humidified atmosphere of 5% CO2 at 37°C, and the cells between passage 2 and passage 5
were used for this study. When the cultured HUVECs reached confluent, the cells were har-
vested and re-suspended in 8% Dextran (mol wt 70,000, Sigma, St. Louis, MO, USA) diluted
with MCDB 131 culture medium. Dextran was used to increase the medium viscosity for better
controlling cell seeding inside the microchannels.

Prior to cell loading, the device was treated with oxygen plasma for 3–5 minutes to reduce
the hydrophobicity of inner surfaces of PDMS microchannels. The device was then loaded

In Vitro Recapitulation of Functional Microvessels

PLOS ONE | DOI:10.1371/journal.pone.0126797 May 12, 2015 4 / 19



with deionized water and sterilized under the UV light exposure for 8 hours in a laminar bio-
safety hood. After UV sterilization, the device was rinsed with 1× phosphate buffered saline
(PBS), coated with fibronectin diluted in 1×PBS (100 μg/mL, Gibco, Carlsbad, CA USA) along
the entire inner surfaces of PDMS channel walls, and incubated at 4°C inside a refrigerator for
overnight. After this, the device was rinsed with 1×PBS again to remove the free fibronectin so-
lution completely, and loaded with cell media. Finally, the device was incubated for 15 minutes
at 37°C and was ready for cell loading.

To load the cells, a droplet (10 μL) of HUVECs was placed at the inlet, and a slow flow was
created by either tilting the device, or placing a glass pasteur pipette (the inner diameter of the
pipets is around 1.5 mm, VWR) at the outlet. Capillary action through the microchannels was
gently introduced by the glass pipette and the cells slowly moved along the media into the
channels. The key for a successful cell loading was to control the flow velocity very slowly, oth-
erwise, most of the cells cannot attach uniformly inside the microchannels. After 15–20 min-
utes incubation in the incubator, the attached cells on the PDMS channel walls can be visually

Fig 2. Viscosity measurement of culture media and numerical simulation for the wall shear stress
distribution of the microchannel network. A. Viscosity measurement of culture media perfusate. Filled
triangles (▲) represent viscosity of the culture medium with 10% FBS; Open triangles (4) represent the
viscosity of standard Newtonian calibration solution. Dotted and dashed lines are their trend lines,
respectively. B1. COMSOL simulation shows the wall shear stress distribution through the entire network
under high flow rate condition. B2. The wall shear stress distribution of the selected region in B1. C1.
COMSOL simulation shows the wall shear stress distribution through the entire network under low flow rate
condition. C2. The wall shear stress distribution of the selected region in C1.

doi:10.1371/journal.pone.0126797.g002
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confirmed under the microscope. An additional loading can be performed if necessary. After a
satisfied cell seeding density was reached, the device was gently rinsed with the media to re-
move the dextran solution. A complete attachment requires five to six hours. Long-term con-
tinuous perfusion was set up by a syringe pump system (Harvard Apparatus, Holliston, MA,
USA) with a steady flow rate of 0.35 μL/min. The perfusion can last up to two weeks, and can
be adjusted to maintain different flow patterns if necessary [3]. The attached cells were grown
under the perfusion along the entire inner surfaces of microchannels, which was illustrated by
F-actin staining. Fig 3 shows the confocal images of endothelial cell F-actin at upper and lower
layers of endothelial cells within the channels, as well as the three-dimensional reconstructed
cross sectional images at different channel regions. The studies of cell morphology, endothelial
cell junction, endothelial [Ca2+]i, and NO responses to agonist were conducted on either the
lower or upper surfaces of the microchannels and no significant differences were observed be-
tween upper and lower stack of images.

Fig 3. The representative confocal images show the HUVECs successfully cultured throughout the
inner surfaces of the entire microchannel network. A. The schematic image of the network with selected
regions as shown in B-D. B-D. HUVECs stained with F-actin and cell nuclei in each region, where B1, C1 and
D1 show the upper layer of endothelial cells at different location of the channel. B2, C2 and D2 show the lower
layer of the endothelial cells at different locations of the channel. E. The three-dimensional reconstructed
cross-sectional images at each region. The locations of the cross-sections are indicated as 1–1’, 2–2’, and
3–3’ in B1-D1, respectively. Each scale bar is 100 μm.

doi:10.1371/journal.pone.0126797.g003
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Confocal fluorescence imaging of intracellular calcium concentration
([Ca2+]i)
Endothelial [Ca2+]i was measured in Fluo-4 AM loaded endothelial cells on a Leica TCS SL
confocal microscope with a Leica ×25 objective (NA: 0.95). An argon laser (488 nm) at 50%
power was used for excitation, and the emission band was 510–530 nm. To minimize photo-
bleaching, fluo-4 images were collected using a 512 × 512 scan format at a z-step of 2 μm.
Stacks of images were collected from the same group of HUVECs with 20 seconds intervals.
Each network device was first loaded with fluo-4 AM (5 μM) for 40 minutes followed by albu-
min-Ringer perfusion to rinse the lumen fluo-4 AM before control images were collected.
Quantitative analysis of endothelial [Ca2+]i at the individual endothelial cell level was con-
ducted using manually selected regions of interests (ROIs) along the microchannels. Each ROI
covered the area of one individual endothelial cell, as indicated by the fluorescence outline. The
changes in endothelial [Ca2+]i at the cellular levels were quantified by calculating the mean
fluorescence intensity (FI) of each stack of ROIs after the subtraction of the background auto
fluorescence. The percent change in FI was expressed as FI/FI0�100, where FI0 was the initial
baseline FI of fluo-4. Details have been described previously [11].

Confocal fluorescence imaging of nitric oxide production
Endothelial NO levels were investigated at the cellular levels in the microvessel network using
DAF-2 DA, a membrane-permeable fluorescent indicator for NO, and fluorescence imaging.
Experiments were performed on a Nikon Diaphod 300 microscope equipped with a 12-bit digi-
tal CCD camera (ORCA; Hamamatsu) and a computer controlled shutter (Lambda 10–2; Sut-
ter Instrument; Novato, CA). A 75-W xenon lamp was used as the light source. The excitation
wavelength for DAF-2 was selected by an interference filter (480/40 nm), and emission was
separated by a dichroic mirror (505 nm) and a band-pass barrier (535/50 nM). All the images
were acquired and analysed using Metafluor software (Universal Imaging).

Each network device was first perfused with albumin-Ringer solution containing DAF-2
DA (5 μM) for 35~40 minutes before collecting DAF-2 images. DAF-2 DA was present in the
perfusate throughout the experimental duration [26]. All images were collected from a group
of HUVECs located in the same focal plane using a Nikon Fluor lens (x20, NA: 0.75). Data
analysis was conducted at the individual endothelial cell level using manually selected ROIs.
Each ROI covered the area of one individual cell as indicated by the fluorescence outline. The
PDMS auto fluorescence was subtracted from all of the measured fluorescence intensities (FIs).
The basal NO production rate was calculated from the slope of the mean FI increase during
albumin-Ringer perfusion after DAF-2 loading was reached the steady state. The changes in
FIDAF upon adenosine triphosphate (ATP) stimulation were expressed as the net changes in FI
(ΔFI). FI was expressed in arbitrary units (AU) and identical instrumental settings were used
for all of the experiments. The rate of FIDAF change was derived by first differential conversion
of cumulative FIDAF over time. Details have been described previously [12, 26].

Immunofluorescent staining
HUVECs were fixed in 2% paraformaldehyde solution (Electron Microscopy Science, Hatfield,
PA, USA) for 30 minutes at 4°C by perfusing the fixing solution into the network. The cells
were blocked with 1 mg/mL bovine serum albumin (BSA, Sigma, St. Louis, MO, USA) in PBS
solution for 30 minutes followed by permeabilization with 0.1% Triton X-100 (Sigma,
St. Louis, MO, USA) for 5 minutes. The primary antibody (VE-cadherin) was perfused at 4°C
for overnight. Then, the second antibody (Alexa488, Invitrogen, Carlsbad, CA, USA) was
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perfused for 1 hour at the room temperature. DRAQ 5 (Biostatus, Shepshed Leicestershire,
UK) was used for cell nuclei staining. Following the similar fixing, blocking, and permeabilizing
procedures, F-actin was labeled by perfusing phalloidin-Alexa 633 (Sigma, St. Louis, MO,
USA) for 10 minutes, followed by the DRAQ5 nuclei staining. Fluorescent images were ob-
tained using Nikon Ti-E inverted microscope (Chiyoda, Tokyo, Japan) and a confocal laser-
scanning microscope (Leica TCS SL). The objective lens used for Nikon Ti-E was Nikon Plan
Fluor X10, NA 0.3 Ph1 DLL. The images were acquired at 1390 × 1040 pixel and the pixel size
is 0.645 μm. The objective lens used for the confocal microscope (Leica TCS SL) was Leica
APO X25, NA 0.95 W CORR using 1024 × 1024 format and the pixel size is 0.58 μm.

VE-cadherin staining in individual venules was performed following single vessel perfusion
procedure in the mesentery of Sprague-Dawley rats (2–3 mo old, 220 to 250 g; Hilltop Labora-
tory Animal, Scottdale, PA). Details have been described previously [14, 27]. In brief, the rat
was anesthetized with Pentobarbital sodium, given subcutaneously with initial dosage at 65
mg/kg body wt and an additional 3 mg/dose given as needed. A midline surgical incision (1.5
to 2 cm) was made in the abdominal wall and the mesentery was gently moved out of the ab-
dominal cavity and spread over a coverslip for single vessel perfusion. The selected venule was
then cannulated and perfused with BSA-Ringer perfusate first to remove the blood in the vessel
lumen before fixation. The fixation and antibody staining procedures are identical to those de-
scribed in cultured microvessels.

Cell morphology analysis in response to shear stress
To study the actin cytoskeleton and HUVECs morphology changes under shear stresses, differ-
ent scenarios were performed to vary the culture and shear flow conditions. Detailed experi-
mental conditions are listed in Table 1. Briefly, after initial seeding three different flow
conditions were set for the same patterned networks in different devices as shown in Table 1:
Low shear culture, low shear test (LSC-LST); Low shear culture (till the ECs reached conflu-
ence), high shear test (LSC-HST); and high shear culture, high shear test (HSC-HST). The
transition from low shear stress to high shear stress was gradually applied by programming a
step function (10 steps of increase in 18 hours) using the syringe pump (Harvard Apparatus,
Holliston, MA, USA).

Quantitative analysis of F-actin staining images was performed to examine HUVEC mor-
phology changes (i.e. cell surface area) in responses to different levels of shear stresses. The sur-
face area for each individual cell was acquired by performing area measurement function using
NIS Elements software (Nikon, Chiyoda, Tokyo, Japan) with manually adjusting of ROIs. Each
ROI covered the area of one individual cell. For statistical analysis, data was presented as the
mean ± standard error (SE) and each individual experiment was performed at least three times
(n� 3). The results were evaluated by the t test and single factor analysis of variance
(ANOVA).

Table 1. Summary of flow conditions applied to culturedmicrovessels.

Culture and test
condition

Flow rate for culture/
test (μL/min)

Wall shear stress at the selected
region (dyne/cm2)

LSC-LST Low shear culture-Low
shear test

0.35/0.35 1.0

LSC-HST Low shear culture-High
shear test

0.35/4.05 1.0, then 10

HSC-HST High shear culture-High
shear test

4.05/4.05 10

doi:10.1371/journal.pone.0126797.t001
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Results

Characterization of endothelial adherens junctions in microvessels
developed in microchannel network
With the initial cell loading concentrations of 2 ~ 4 × 106 cells/mL, confluent monolayers de-
veloped within 3–4 days under a constant flow of culture media. The three-dimensional images
of F-actin staining are shown in Fig 3. Under the same culture conditions, we examined the
junctional formation between ECs as an indication of endothelial barrier function. VE-
cadherin, an important adhesion protein for the maintenance and control of the junctions be-
tween endothelial cells, was illustrated with antibody staining. To make a direct comparison of
VE-cadherin distribution between cultured ECs grown under static and continuous flow condi-
tions, and EC junctions in intact microvessels, we also conducted VE-cadherin staining in stati-
cally cultured HUVECs and in intact venules of rat mesentery. Fig 4B–4D shows the confocal
images of VE-cadherin and nuclei staining at different regions of the microchannel. The confo-
cal images illustrate that VE-cadherin was well developed throughout the entire network, dem-
onstrating a continuous distribution between ECs with less lattice-like structure as that often
appeared in statically cultured endothelial monolayers (Fig 4E). The smooth and continuous
VE-cadherin pattern shown in the microfluidic microvessels is similar to that observed in in-
tact microvessels (Fig 4F), suggesting that the continuous flow condition during cell growth
provide a better environment for appropriate EC spreading, viability, proliferation, and forma-
tion of junctions.

Endothelial cell responses to shear stress
Flow related shear stress has been shown to induce redistribution of F-actin in aortic vessel seg-
ment [28], and changes in cell shape and cytoskeletal structure in cultured ECs [29]. To quanti-
fy the shear stresses within the cultured microvessel network, the numerical simulation was
conducted as those shown in Fig 2B and 2C. The shear rate dependent non-Newtonian culture
medium simulation showed slightly larger variations of wall shear stress at the bifurcation and
turning region of the microchannel networks comparing to the Newtonian flow. However, the
wall shear stress within the selected straight regions in the devices (Fig 5A) were still uniformly
distributed and the magnitude of wall shear stress were 10 dyne/cm2 under the flow rate
4.05 μL/min, and 1.0 dyne/cm2 under the flow rate 0.35 μL/min within the selected regions in
the devices as shown in Fig 2B2 and 2C2, which are in the range of the shear stress distribution
of venules in vivo [30, 31]. Based on these simulations, we evaluated the cytoskeletal rearrange-
ment of F-actin fibers and cell shape changes in response to three patterns of flow related shear
stress within the microchannel networks: continuous low shear without a change (LSC-LST);
low shear culture with high shear exposure (LSC-HST); and continuous high shear exposure
(HSC-HST). The flow rate and correlated shear stress under each condition are listed in
Table 1. Under the LSC-LST conditions, about 70% of the cells showed cobblestone pattern
with dominated peripheral F-actin, and 30% of the HUVECs showed elongated cell shape with
increased central stress fibers aligned along the flow direction. Under LSC-HST and HSC-HST
conditions, about 50% of the cells were elongated with distinct stress fibers along the flow di-
rection. Fig 5B–5D shows representative images from each group and Fig 5E shows the quanti-
fications of their changes in cell surface areas in those aligned and non-aligned cells and cell
density. Both aligned and non-aligned cells in three groups demonstrated shear magnitude-de-
pendent reduction of cell surface area and corresponding increases in cell density, suggesting a
role of shear stress in promoting cell proliferation.

In Vitro Recapitulation of Functional Microvessels

PLOS ONE | DOI:10.1371/journal.pone.0126797 May 12, 2015 9 / 19



Measurements of endothelial calcium concentration ([Ca2+]i) in response
to ATP
Increases in endothelial [Ca2+]i have been demonstrated to play important roles in regulation
of a variety of microvessel functions including endothelial barrier function, i.e. microvessel per-
meability. In individually perfused microvessels, inflammatory mediator commonly induces
transient increases in endothelial [Ca2+]i followed by transient increases in microvessel perme-
ability. To validate the biological functions of the microvessels developed under flow in our
model, we applied the method developed in individually perfused intact microvessels [11, 17]
to the microvessels developed in the microchannel network and quantitatively measured the
changes in endothelial [Ca2+]i when the microvessel was exposed to ATP. Experiments were

Fig 4. The representative immunofluorescent staining confocal images demonstrate the VE-Cadherin
distributions of cultured vascular network, a statically cultured endothelial monolayer, and an intact
rat mesenteric venule. A. The schematic image of the network with selected regions as shown in B-D. B-C.
VE-Cadherin and cell nuclei staining were shown at the first and third branching regions. D1-D2. VE-Cadherin
and cell nuclei staining were shown at the top and bottom surfaces of the second branching regions,
respectively. E. VE-cadherin junction distribution of HUVECs cultured under static condition. F. VE-cadherin
distribution of endothelial cells from an individually perfused intact rat venule.

doi:10.1371/journal.pone.0126797.g004
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conducted in four devices with fluo-4 loaded endothelial cells. When ATP (10 μM) was per-
fused to each device, [Ca2+]i in all endothelial cells under the view reached a peak at 35 ± 10 sec-
onds with the mean peak [Ca2+]i at 187 ± 22% of the control. Representative fluo-4 images and
the fluorescence quantification are shown in Fig 6. The transient pattern is similar to what we
observed in individually perfused intact microvessels [17, 18].

Fig 5. HUVECs’ responses to different levels of shear stress: Themorphology changes illustrated by F-actin staining. A. The schematic image of the
network showing the selected region for shear stress test. B-D. Confocal images show F-actin redistribution under different perfusion conditions. E.
Comparison of the cell surface areas (upper Y axis) and cell density (number of cells per 0.5 mm2, lower Y axis) between static culture and the three testing
groups: LSC-LST (419 cells in 6 devices); LSC-HST (412 cells in 6 devices); and HSC-HST (235 cells in 3 devices). The percentage of aligned and non-
aligned cells are noted on each of the bar. All data are reported as the means ± SE of independent experiment. *: P<0.05; **: P<0.01; ***: P<0.001.

doi:10.1371/journal.pone.0126797.g005
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Measurement of ATP-induced nitric oxide production
In intact venules, it has been demonstrated that inflammatory mediator-induced increases in
endothelial [Ca2+]i was associated with increased NO production, and both increased endothe-
lial [Ca2+]i and NO production contribute to the increases in microvessel permeability [11, 12].
With demonstrated ATP-induced increases in endothelial [Ca2+]i, we further measured NO
production in response to ATP in DAF-2 loaded endothelial cells lining the microchannels.

Each device was first perfused with albumin-Ringer solution containing DAF-2 DA (5 μM)
for 35~40 minutes before collecting images. After the loading phase, the rate change of DAF-2
fluorescence (FIDAF) under control conditions was 0.15 ± 0.05 AU per min. When ATP
(10 μM) was added to the perfusate, the rate change in FIDAF was significantly increased. The
peak rate of FIDAF increase was 1.18 ± 0.37 AU per min. The increased FIDAF returned to the
control level after 10~15 minutes of ATP exposure. Data were derived from 3 devices with a
total of 35 ROIs and 11 to 12 ROIs per vessel. NO donor, sodium nitroprusside (SNP), was
added at the end of each experiment to verify the sufficiency of DAF-2 in the cells and the spec-
ificity of DAF-2 in response to NO. Fig 7 shows the quantification of time-dependent changes
in FIDAF and correlated images from an individual experiment. The changes in slopes of the
FIDAF indicate the changes in NO production rates before and after ATP stimulation. The rate
of FIDAF increase measured under control conditions is close to those observed in intact

Fig 6. ATP-induced endothelial cell [Ca2+]i increase in HUVECs culturedmicrochannel network. A.
Time course of ATP-induced changes in endothelial [Ca2+]i from a representative experiment. B. Fluo-4
confocal images from one representative experiment before and after the start of ATP perfusion at 60
seconds and 160 seconds.

doi:10.1371/journal.pone.0126797.g006
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microvessels [9, 26, 32], indicating similar levels of basal NO production. Images in Fig 7B il-
lustrate the ATP-induced cumulated increases in FIDAF at 10 minutes of ATP exposure.

Discussion
Our study presented in vitro formation of a microvessel network using a microfluidic device
and characterized endothelial junctions, cellular responses to shear stresses, and quantitatively
measured the changes in endothelial [Ca2+]i and NO production before and after exposure to
ATP. The results demonstrated that this engineered microvessel network recapitulates the key
aspects and fundamental functions of in vivo venules, and reveals its promising utility for bio-
logical applications including studies with human samples.

With advanced microfabrication techniques, the flexibility to create patterns and scale sizes
provides users with arbitrary design options to mimic the geometries of in vivomicrovascula-
ture, which allows the functional studies involved in complex flow patterns found at vessel bi-
furcations and in regions of high curvature that occur in vivo. This microfluidic microvessel
network on a thin glass substrate with a spin-coated PDMS thin film (average total thickness is
150–180 μm) allows excellent light transmission and easy adaptation to both bright field and
fluorescence microscopy when using short working distance and large numerical aperture ob-
jectives. Our study demonstrated that this device is capable for real-time and high-resolution
imaging to detect changes in intracellular molecules and cell morphology using fluorescent
markers, which is a necessary feature for biological studies. This modification is a further prog-
ress of applying our previous studies using endothelialized microvessel network [3, 24].

Fig 7. ATP-induced NO production in HUVECs culturedmicrochannel network. A. Time dependent changes in FIDAF (left Y axis) from a representative
experiment before and after ATP (10 μM) stimulation. The 1st differential conversion of cumulative FIDAF (df /dt, right Y axis) represents the NO production
rate (dash-dotted line). B. Representative DAF-2 fluorescence images. ATP induced significant increases in nitric oxide (NO)-DAF-2 fluorescence intensity
(FI) relative to control (left). FIDAF was further increased with the application of the NO donor sodium nitroprusside (SNP).

doi:10.1371/journal.pone.0126797.g007
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The main difference of using this microchannel network compared with traditional cell cul-
ture is that the cells, instead of growing under static conditions at 2-dimensional flat surface,
were growing in a three-dimensional channel with continuous flow, which made the cell cul-
ture environment closer to the in vivo situation. By conducting direct comparisons of cell cul-
ture under static conditions and under flow in a microchannel with intact microvessels, the
cultured microvessels showed junctional formation and cellular responses closer to in vivo
than traditional static EC monolayers. Our viscosity measurements showed non-Newtonian
behavior of cultured media under the physiological shear range in venules. The numerical sim-
ulation, with the implemented dynamic viscosity of the culture media, provided more accurate
estimation of the wall shear stress distribution in the cultured microvessels. Based on the chan-
nel dimensions and simulation, the applied shear stress was easily controlled within the range
of venous system (1 to 10 dyne/cm2) [30, 31]. More importantly, our study characterized the
biological functions of these cultured microvessels under basal and stimulated conditions, and
validated its utility for biological applications. Our results indicated that the endothelial cells
grown under flow conditions formed better monolayers with well-developed junctions between
endothelial cells as that demonstrated by VE-cadherin staining. As shown in Fig 3, the
HUVECs completely covered the entire inner surfaces of the channels including the corners
and formed a completely enclosed network. Most importantly, the VE-cadherin staining
showed a uniformly distributed band between endothelial cells within the network, which is
similar to that observed in intact venules (Fig 4F) [14, 27], and distinct from the intricate lat-
tice-like structure commonly found in statically cultured endothelial monolayers (Fig 4E).

Previous studies of the endothelial F-actin rearrangement under shear stress are commonly
performed in flow chambers [33, 34] and cone-and-plate viscometer [35–37]. The endothelial
cells usually reached confluence under static culture and then were exposed to higher shear
stresses. In this study, we tested different shear flow conditions within the variations of mea-
sured physiological range in venous system, including continues lower shear stresses
(LSC-LST), continues higher shear stresses (HSC-HST), and changing shear stress from low to
high (LSC-HST), respectively. Under higher flow conditions, the decreased cell surface area
and increased cell density indicated a role of shear in promoting EC proliferation. This phe-
nomena has also been resported by other studies [38]. The advantages of long term perfused
microfluidic model also include the ability to gently remove the cells that were not fully at-
tached during the cell seeding, and to continuously remove the wastes out of the channels and
prevent over-confluence of the cell growth. We also noticed that within the microvessel chan-
nels, not all of the HUVECs aligned along the flow direction in each group. The Reynolds num-
ber (Re) for the selected microfluidic channel region was around 0.014 at the low flow rate
(1 dyne/cm2) and 0.22 at the high flow rate (10 dyne/cm2) used during the media perfusion
(Table 1). In fluid mechanics, Reynolds number is used to predict flow patterns. When Rey-
nolds number is well below one, it indicates the fluid to be hydrodynamically stable with
smooth and constant motion. Laminar flow occurs at low Reynolds numbers. Therefore, it was
very unlikely existing of disturbed or secondary flow during the perfusion. Our results showed
that the higher shear stress resulted in higher percentages of aligned cells. Based on the cell
density counts, it is obvious that the cells within the channels have some variations of their
growth stages, and therefore, showing different sensitivity to the shear stress or responding to
the same shear stress at different rate. We would like to point out that, although effort and
progress have been made to reduce the gaps between ECs in vivo and in vitro, current methods
are still far from an ideal replication of all aspects of intact microvessels. One of the examples is
that the proliferation rate of ECs in normal tissue is very low, estimated from months to years
[39], but can be thousands times higher under stimulation or under cell culture conditions.
The shear force, space restrictions, and the cell culture media composition may all affect the
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EC proliferation rate, and the variations of the cell growth stage within the microchannels may
result in non-synchronized responses to mechanical stimuli.

The major technical improvement for biological applications reported in this study is the
quantitative measurements of agonist-induced dynamic changes in endothelial [Ca2+]i and
NO production at individual cell levels in a well-developed microvessel network. Studies in in-
dividually perfused intact microvessels indicated that inflammatory mediator-induced in-
creases in endothelial [Ca2+]i is essential for increases in microvessel permeability and that the
magnitude of the [Ca2+]i determines the degree of permeability increases [15–18, 40]. In addi-
tion, agonist-induced Ca2+/calmodulin-dependent endothelial nitric oxide synthase (eNOS)
activation and NO production have been shown to play important roles in the regulation of
microvessel permeability [10–12]. In this study, we directly applied the methods developed in
individually perfused intact microvessels [17, 26] to this cultured microvessel network and
conducted parallel studies to those performed in the intact microvessels in vivo. Currently the
uses of microfluidics to study intracellular calcium and NO responses have been reported by a
few investigators. The calcium studies were either from suspended leukemic cells [41] or from
non-confluent osteoblasts [42]. Though ATP-induced NO has been reported in bPAEC cul-
tured microfluidic device, there was no characterization of the junctions of endothelial cells in
which NO was measured and no temporal resolution of NO production was analyzed in those
studies [23]. In our study, we choose ATP as the representative agonist to study receptor-me-
diated changes in endothelial [Ca2+]i and NO production. ATP can be released by red blood
cells, aggregated platelets, and injured tissue or under inflammatory conditions. The increased
levels of ATP cause the release of endothelial-derived relaxing factor and trigger the synthesis
of prostacyclin, and increase in microvessel permeability by increasing endothelial [Ca2+]i [18,
43, 44]. The action of ATP is primarily via the purinergic P2y receptor expressed on most
types of endothelial cells [45, 46]. The calcium measurements using fluo-4 as indicator in the
microvessel network showed similar responses to what we found in intact microvessels [11,
18]. The observed time courses of the changes in endothelial [Ca2+]i were also similar to those
found in intact microvessels [47]. The residence time for the ATP application in the microves-
sel model was 1.3 sec with the slowest flow rate (0.35μl/mins), and should not affect the
measured responses.

As for NO measurements using DAF-2 DA, we need to recognize the specific manner of
DAF-2 chemical conversion in the presence of NO and conduct data analysis accordingly [26,
48], which has not been presented in the previous reports. DAF-2 DA is membrane permeable
and diffuses freely into the cells driven by concentration gradient and is then hydrolyzed by
cytosolic esterase to form DAF-2. Intracellular DAF-2 is less membrane permeable due to its
polarity, and is designed to be trapped inside the cells. Because the fluorescence chemical
transformation of DAF-2 by NO is irreversible [48], the detected NO-sensitive fluorescence
with DAF-2 represents a cumulative production of NO, not the dynamic changes of NO. The
slope of the FIDAF curve represents the NO production rate and the plateau indicates the ter-
mination of NO production instead of the actual NO concentration in the cells. To present
the real-time course of NO production, df/dt, the NO production rate, was calculated based
on the differential conversion of that regression equation (shown in Fig 7A). Using this meth-
od, our study presented the first measurements of the basal NO production rate and the
changes in NO production after exposure to ATP in HUVECs-developed microvessels in the
microfluidic device with temporal and spatial resolution. The results are comparable to those
derived from individually perfused intact venules. Although venules have pericytes surround-
ing the vessel walls, currently no information suggests that pericytes influence agonist induced
NO production in endothelial cells. When NO was measured in DAF-2 loaded microvessels,
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DAF-2 DA only loaded into ECs, not into pericytes, thus the DAF-2 fluorescence was only
from ECs [11].

Conclusions
These results presented in this paper demonstrated in vitro formation of a microvessel network
that recapitulated key features of microvessels in vivo and validated its utility for biological ap-
plications. The fabrication process of the microchannels was simple and straightforward to
lower the barrier for biologists. The cell seeding and culture with constant perfusion method
was user friendly to most researchers and easy to replicate. Cells in our model kept their pheno-
type, viability, proliferation with proper barrier functions. Comparing to other conventional in
vitromodels, our model is more physiological realistic. In particular, HUVECs were successful-
ly grown to confluence throughout entire microchannels under well-controlled conditions.
The flow conditions applied to the cultured microvessels were close to that at the similar type
of vasculature in vivo. Immunofluorescent staining of VE-cadherin demonstrated the forma-
tion of vascular endothelial junctions, an indication of well-maintained endothelial restrictive
barrier functions. HUVECs responded to different physiologically relevant flow shear stresses
and inflammatory stimuli. The endothelial [Ca2+]i, basal NO, and the changes in NO produc-
tion rate in response to ATP were real-time measured and quantified at individual cellular level
in Fluo 4 and DAF-2 loaded microvessels, respectively. Most importantly, the agonist-induced
transient [Ca2+]i responses and increased NO production were similar to those observed in in-
dividually perfused intact microvessels. The developed microvessel model has the potential to
bridge the gap between over-simplified in vitro tests and more expensive and labour-intensive
in vivo animal models for the microvascular signalling and functional studies. It offers valuable
quantitative insights into how biophysical and biochemical properties influence vascular biolo-
gy and pathophysiology, and serves as the complements for in vivo animal studies. Because the
cultured endothelial cells can be from human tissues, a well characterized device will be suitable
for studies of interactions between human blood components with microvessels formed by
human endothelial cells under physiological and pathological conditions.
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