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Abstract 

This article analyzes the impact of renewable energy policies on carbon dioxide emissions (CO2) 

in nine Latin American countries, in a period of 1991 to 2012. The Panel Vector Auto-Regressive 

(PVAR) was utilized. The results revealed that the renewable energy policies reduce the 

environmental degradation (CO2 emissions) in -0.0109, and the consumption of renewable energy 

-0.0231, while the economic growth and consumption oil increase the emissions in 0.9082 and 

0.1437 respectively. These empirical findings will help the policymakers develop appropriate 

renewable energy policies, as well as help to advance the literature that approaches the impact of 

renewable energy policies on environmental degradation in the Latin America region. 
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1. Introduction 

 The increase of fossil fuels consumption and the consequent intensification of the level of 

Carbon dioxide emissions (CO2) have set off an alarm signal in the worldwide (Arce et al. 2016). 

Indeed, 80% of these emissions come from fossil fuels burning, where 44% comes from coal, 36% 

from oil and 20% from natural gas (IRENA, 2014). Therefore, in order to mitigate these emissions, 

different policies have been applied to promote the development of renewable energy sources.   

 The aim of this investigation is to answer the following question: Does renewable energy 

policies reduce the carbon dioxide emissions? To answer this question, the impact of renewable 

energy policies on CO2 emissions will be analyzed in nine countries from Latin America region, in 

a period between 1991-2012. A Panel Vector Auto-Regressive (PVAR) was utilized as 

methodology. In the literature, the impact of renewable energy policies on environmental 

degradation has been widely researched. For instance, several studies have indicated that the 

renewable energy policies decrease the CO2 emissions (e.g., Hinrichs-Rahlwes, 2013; Ortega et al. 

2013; Verma and Kumar, 2013; Smith and Urpelainen, 2014; Redondo and Collado,2014; Arce 

and Sauma, 2016;Argenteiro et al. 2015;Carley et al. 2016;Arce et al. 2016;Thapar et al.2016). 

 This investigation is extremely important because it is necessary to identify whether these 

policies are effective. Moreover, this article will help the policymakers develop appropriate 

renewable energy policies that inventive the investments, development, and consumption of 

alternative sources with the intention of reduce the environmental degradation in the Latin 

American countries.           

 The paper is organized as follows. Section 2, presents the literature review. Section 3, 

presents the data based used, method and preliminary tests. Section 4, presents the empirical results 

and discussion. Finally, Section 5 presents the conclusions. 

2. Literature review 

 The impact of renewable energy policies on environmental degradation (CO2 emissions) 

has been widely researched in the ecological and economic literature. There is evidence in the 

literature that the renewable energy policies have encouraged the introduction of renewable energy 

sources in the energy mix and consequently reduce the environmental degradation. Table 1, 

presents a summary of the literature review.  
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Table 1. Summary of literature review 

Author(s) Period(s) Country(ies)  Policy(ies) Conclusion(s) 

Carley et al. 

(2016)  
1990-2010 164 countries FITs and RPS. 

The REP reduces 

the CO2 

emissions. 

Arce et al. (2016) n. a. n. a. 

Carbon taxes; FITs; 

Premium payments; 

Quota obligations. 

The REP reduces 

the CO2 

emissions. 

Thapar et al. 

(2016) 
n. a. India 

Grant/subsidies; 

Accelerate depreciation; 

Tax 

concessions/exemptions; 

Preferential tariffs; 

Renewable purchase 

obligations. 

The REP reduces 

the CO2 

emissions. 

Arce and Sauma 

(2016) 
n. a. n. a. 

Carbon taxes; FITs; 

Premium payments and 

Quota systems. 

The REP reduces 

the CO2 

emissions. 

Argenteiro et al. 

(2015) 
1995-2012 

15 E.U 

countries 

Tax 

concessions/exemptions; 

Preferential tariffs; 

Renewable purchase 

obligations. 

The REP reduces 

the CO2 

emissions. 

Smith and 

Urpelainen (2014) 
1979-2005 U. S FITs. 

The REP reduces 

the CO2 

emissions. 

Redondo and 

Collado (2014) 
2011 Spain Premium payments. 

The REP reduces 

the CO2 

emissions. 

Ortega et al. 

(2013) 
2002-2011 Spain FITs. 

The REP reduces 

the CO2 

emissions. 

Verma and 

Kumar (2013) 
n. a. n. a. 

Carbon quotas; Cap-and-

trade and bilateral IPPs. 

The REP reduces 

the CO2 

emissions. 

Stokes (2013) 1997-2012 Canada FITs. 

The REP reduces 

the CO2 

emissions. 

Hinrichs-Rahlwes 

(2013) 
1998-2009 Germany FITs. 

The REP reduces 

the CO2 

emissions. 

Notes: n. a. denotes ‘not available’. The abbreviations are as follows: Feed-in tariffs (FITs), 

Independent Power Producers (IPPs), Carbon Dioxide Emissions (CO2); Renewable Energy 

Resources (RPS); Renewable Energy Policies (REP); Europe Union (E.U); United States (U.S). 
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3. Data and method  

 This section is divided into three parts. In the first one, the variables and data used are 

described. The second contains the method that will be used. The third shows the preliminary tests. 

3.1 Data  

 Annual data from 1991 to 2012 was used for a panel of nine Latin American countries, 

namely: Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Mexico, Peru, and Uruguay. The 

choice of these countries and time series are due to the availability of existing data. After the 

presentation of the object of this study, the variables that will be used are presented in Table 2 

below. 

  

These variables were chosen considering the following criteria: (i) they have had renewable 

and fossil consumption over a long period; and (ii) they have data available for the entire period. 

The total population of each country of this study was used to transform the variables (LCO2, LRE, 

LO, and LY) into per capita values with the purpose of control the disparities in the population 

growth among the Latin American countries. The option to use constant Local Currency Unit 

Table 2. Variables description and summary statistics 

Variables Definition(s) Source (s) Obs Mean Std. Dev Min Max 

LCO2 
Consumption of energy in 

million metric tons. 

Energy 

Information 

Administration 

(EIA). 

189 -13.1235 0.4819 -14.1656 -12.2740 

 

LPOL 

Include economic instruments, 

information, and education, 

policy support, regulatory 

instruments, research, 

development and deployment 

(RD&D) voluntary approaches. 

International 

Energy 

Agency (IEA). 

189 1.1554 1.0622 0.0000 3.5554 

LRE 

Net generation in billion 

Kilowatt-hours, from 

hydroelectric, geothermal, wind, 

solar, tide, wave, biomass, and 

waste. 

Energy 

Information 

Administration 

(EIA). 

189 -14.0800 0.7164 -15.5654 -12.7685 

LO 
Consumption of oil consumption 

in million metric tons. 

Energy 

Information 

Administration 

(EIA). 

189 -11.4646 0.4673 -12.5180 -10.7145 

LY 
GDP in constant local currency 

unity (LCU). 

The World 

Bank Data 

(WBD). 

189 10.8891 2.8139 7.7480 16.0930 

Notes:  n. a. denotes ‘not available’. The prefix (L) denotes natural logarithms. The Stata 

command sum was used. 
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(LCU) in the variable LY, allowed the influence of exchange rates to be circumvented. The Stata 

15.1 was used in the econometric analyzes. 

3.2 Method  

The Panel data Vector Autoregressive (PVAR) developed by (Holtz-Eakin et al. 1988) was 

used to analyze the causal relationship between all variables. The PVAR model used in this 

empirical analysis follow the specification of Eq. (1): 

 

 where itY  is a vector of dependent variable; itX  is a vector of exogenous covariates; iu  and 

ite  are a vector of dependent variable-specific panel fixed-effects and idiosyncratic errors, 

respectively. The matrices 
pp AAAA ,,,, 121 −  and B are parameters to be estimated. 

So, before the realization of PVAR regression, it is advisable to verify the properties of the 

variables. To this end, some preliminary tests were applied, namely:  (i) Variance Inflation Factor 

(VIF) test to check the presence of multicollinearity (O’Brien, 2007);(ii) Pesaran CD test to identify 

of cross-section dependence (Pesaran, 2004);(iii) 2nd generation of unit root tests (CIPS-test) to 

check the presence of cross-section dependence (Pesaran,2007); (iv) Hausman test to verify 

whether the panel has random effects (RE) or fixed effects (FE);and (v) Lag-order selection 

statistics for PVAR (Hansen,1982)  that reports the model overall coefficient of determination.  

 After the PVAR regression, it is necessary to apply the specification tests to verify the 

characteristics of the model. To this end, some diagnostics tests by Abrigo and Love (2015) will 

be applied, namely: (i) Eigenvalue stability condition to verify the stability in the PVAR model;(ii) 

Granger causality Wald test to check the casual relationship between variables of model;(iii) 

Forecast-error variance decomposition (FEVD) that compute the forecast-error variance 

decomposition based on the Cholesky decomposition of the underlying PVAR model. In this test, 

the standard errors and the confidence intervals are based on Monte Carlos simulation; and (iv) 

Impulse-response function that calculates the plots impulse-response functions (IRF). The 

confidence bands of IRFs are estimated using Gaussian approximation and base on Monte Carlo 

simulation. 

 

itiitppitppitititit euBXAYAYAYAYY +++++++= −−+−−− 112211   (1) 



17 
 

 

Revista Brasileira de Energias Renováveis, v.8, n.1, p. 12-28, 2019 
 

3.3 Preliminary tests 

This section shows the results of preliminary tests. To check the presence of 

multicollinearity and cross-section dependence in the variables, the Variance Inflation Factor (VIF) 

test and Pesaran CD test were performed. The results of both tests can be seen in Table 3. 

Table 3. VIF and Pesaran CD-tests 

Variables VIF 1/VIF CD-test p-value Corr Abs (corr) 

LCO2 n.a n.a 17.02 0.000 0.605 0.615 

LPOL 1.01 0.9867 22.82 0.000 0.811 0.811 

LRE 1.31 0.7608 8.43 0.000 0.299 0.403 

LO 1.15 0.8660    8.93 0.000 0.317 0.674 

LY 1.19 0.8398 25.68 0.000 0.912 0.912 

Mean VIF 1.17  

DLCO2 n.a n.a 3.03 0.002 0.110 0.194 

DLPOL 1.02 0.9833 1.04 0.298 0.038 0.169 

DLRE 1.11 0.8970 -0.33 0.745 -0.012 0.226 

DLO 1.29 0.7778 4.94 0.000 0.180 0.236 

DLY 1.21 0.8230 11.17 0.000 0.406 0.406 

Mean VIF 1.16  

Notes: n. a. denotes ‘not available’. The Stata command xtcd was used. Hereafter the prefixes (L) 

and (D) denote the variables in the natural logarithms and first-differences respectively.  

 

 The values of the mean of VIFs was 1.17 in levels (natural logarithms) and in the first 

differences was 1.16. The low VIFs statistics than benchmark 10% support the argument that 

multicollinearity is not a great problem in the model. Moreover, the Pesaran CD-test points to the 

presence of cross-section dependence (CSD) in the variables in levels and in first-differences 

except for the variables (DLPOL and DLRE) in the first-differences. After the realization of VIF 

and  Pesaran CD-test, it is necessary to apply the 2nd generation unit root test (CIPS-test) to verify 

the stationarity of variables. The null hypothesis rejection of this test is that all variables are I(1) 

that is stationary. Table 4, shows the results of unit root test. 
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Table 4.  Unit roots test 

2nd Generation unit root test CIPS (Zt-bar) 

Variables 
Specification without trend Specification with trend 

Zt-bar p-value Zt-bar p-value 

LCO2 -2.045 0.020 -1.413 0.079   

LPOL 0.259 0.602 0.721 0.764 

LRE -3.556 0.000 -2.490 0.006 

LO -0.662 0.254 0.932 0.824 

LY -1.833 0.033 -2.061 0.020 

DLCO2 -10.120 0.000 -9.176 0.000 

DLPOL -7.108 0.000 -6.464 0.000 

DLRE -11.934 0.000 -10.567 0.000 

DLO -7.980 0.000 -6.635 0.000 

DLY -8.072 0.000 -6.466 0.000 

Notes: The Stata command multipurt was used. 

 

The 2nd generation unit root test (CIPS-test) was used with lag length (1), and with the 

specifications without trend and with the trend. The results of the CIPS-test indicate that the 

variables in level are I (0) except the variables (LCO2, LRE, and LY), and the variables in the first 

differences are I(1).           

 The Hausman test was performed to determine whether the panel has random effects (RE) 

or fixed effects (FE). The null hypothesis of this test that the best model is RE. Table 5, reveals the 

coefficients of Hausman test.  

Table 5. Hausman test 

Variables 
(a) 

Fixed 

(b) 

Random 

(a-b)  

Difference 

Sqrt (diag(V_a-V-b)) 

S.E. 

LCO2 -0.5283 -0.0530 -0.4753 0.0654 

LPOL -0.0073 0.0006 -0.0079 0.0071 

LRE -0.0279 -0.0080 -0.0199 0.0364 

LO 0.2796 0.0442 0.2354 0.0586 

LY 0.3125 0.0006 0.3120 0.0766 

DLPOL 0.0118 0.0178 -0.0060 n.a 

DLRE -0.0947 -0.0994 0.0048 0.0115 

DLO 0.3599 0.4255 -0.0656 n.a 

DLY 0.5315 0.3937 0.1378 n.a 

Chi2 (9) 54.63*** 

Notes: n. a. denotes ‘not available’. *** denotes statistical significance level of 1%. 
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The results of Hausman test point to the selection of (FE) model, where the result is 

statistically significant at 1% ( =2

9 54.63***).  After the realization of the Hausman test, the PVAR 

lag-order selection was used to report the model overall coefficients of determination. The overall 

coefficient of determination (CD), Hansen´s J statistic (J), p-value (Jp-value), moment model 

selection criteria (MMSC) - Bayesian information criterion (MBIC), MMSC-Akaike information 

criterion (MAIC), and MMSC-Hannan and Quinn information criterion (MQIC) were applied. 

Table 6, shows the results of lag-order selection. 

Table 6. Lag order selection on estimation 

Lags CD J Jp-value MBIC MAIC MQIC 

1 0.2439 77.7339 0.3917 -295.0021 -72.2661 -162.7734 

2 0.2697 50.1867 0.4660 -198.3039 -49.8133 -110.1515 

3 0.5016 19.7235 0.7612 -104.5219 -30.2766 -60.4457 

4 0.3539 - - - - - 

Notes: The Stata the command pvarsoc was used. 
 

 One lag was used in the PVAR model, totalizing 144 observations, 9 panels, and an average 

of number T of 16.000. The estimations result of the Hansen´s J statistic (J) is higher at one lag, 

and the MBIC, MAI, and MQIC estimations are lower at one lag. 

 

4. Empirical results and discussion  

 The results of PVAR model, Eigenvalue Stability Condition, Granger Causality Wald test, 

Forecast-Error Variance Decomposition (FEVD), and Impulse-response function will show in this 

section. Table 7, shows the results of the PVAR with one lag. 
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Table 7. PVAR model results 

Response of 
Response to 

DLCO2 DLPOL DLRE DLO DLY 

DLCO2 

-0.3429 

(-12.17) 

0.000 

-0.2794 

(-4.12) 

0.000 

0.5293 

(8.38) 

0.000 

-0.1795 

(-12.53) 

0.000 

0.0483 

(3.09) 

0.002 

DLPOL 

-0.0109 

(-2.07) 

0.038 

0.0718 

(3.79) 

0.000 

0.0004 

(0.03) 

0.972 

-0.0096 

(-2.01) 

0.044 

-0.0088 

(-4.04) 

0.000 

DLRE 

-0.0231 

(-2.24) 

0.025 

-0.2208 

(-10.83) 

0.000 

-0.3109 

(-18.05) 

0.000 

0.0200 

(2.59) 

0.010 

-0.0157 

(-3.13) 

0.002 

DLO 

0.1437 

(5.56) 

0.000 

-0.2770 

(-4.27) 

0.000 

-0.8014 

(-12.99) 

0.000 

-0.0831 

(-4.08) 

0.000 

-0.1247 

(-5.53) 

0.000 

DLY 

0.9082 

(15.22) 

0.000 

0.4551 

(2.83) 

0.005 

-0.8554 

(-8.10) 

0.000 

1.1259 

(27.54) 

0.000 

0.4378 

(9.37) 

0.000 

N obs 171 

N panels 9 

Notes: The Stata command pvar, with one lag was used. 
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     The outputs of PVAR indicate that the renewable energy policies reduce the CO2 

emissions in -0.0109, and consumption of renewable energy in -0.0231. Additionally, the 

economic growth and consumption of oil (fossil fuels) increase the emissions in 0.9082 and 

0.1437, respectively. Indeed, to check the stability condition of PVAR estimates, the 

eigenvalue stability condition was computed. Table 8, display the graph of eigenvalue 

stability condition. 

 

Table 8. Eigenvalue stability condition 

Eigenvalue Graph 

Real Imaginary Modulus 

 

0.3332 0.000 0.3332 

-0.1862 -0.2295 0.2956 

-0.1862 0.2295 0.2956 

-0.2585 0.0000 0.2585 

0.0704 0.0000 0.0704 

Notes: The Stata command pvarstable was used. 
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The eigenvalues indicate that the PVAR is stable because all eigenvalues are inside of 

unity circle. Moreover, to observe the presence of causalities and their direction was the Granger 

causality Walt test was computed. Table 9, show the results of Granger causality Walt test. 

 

 

The Granger causality Wald test show the presence of a bi-directional causality between all 

variables in the study. Certainly, after estimation by PVAR the forecast error variance 

decomposition (FEVD) will be applied. The FEVD is computed when exogenous variables are 

included in the underlying PVAR model. Table 10, show the outputs of FEVD-test. 

Table 9.  Results of Granger causality Wald test 

Equation \ Excluded chi2 Df. Prob > chi2 

DLCO2 

DLPOL 4.304 1 0.038 

DLRE 5.011 1 0.025 

DLO 30.903 1 0.000 

DLY 231.715 1 0.000 

ALL 477.662 4 0.000 

DLPOL 

DLCO2 16.999 1 0.000 

DLRE 117.296 1 0.000 

DLO 18.201 1 0.000 

DLY 8.004 1 0.005 

ALL 138.435 4 0.000 

DLRE 

DLCO2 70.162 1 0.000 

DLPOL 0.001 1 0.972 

DLO 168.749 1 0.000 

DLY 65.686 1 0.000 

ALL 424.096 4 0.000 

 

 

DLO 

DLCO2 156.915 1 0.000 

DLPOL   4.051 1 0.044 

DLRE 6.699 1 0.010 

DLY 758.582 1 0.000 

ALL 1085.129 4 0.000 

DLY 

DLCO2 9.566 1 0.002 

DLPOL 16.322 1 0.000 

DLRE   9.795 1 0.002 

DLO 30.625 1 0.000 

ALL 57.642 4 0.000 

Notes: The Stata command pvargranger was used. 
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Table 10.  Forecast-error variance decomposition (FEVD)  

Response variable and 

Forecast Impulse 

Variable Horizon 

Impulse variable 

DLCO2 DLPOL DLRE DLO DLY 

DLCO2      

0 0 0 0 0 0 

1 1 0 0 0 0 

2 0.8374 0.0044 0.0008 0.0354 0.1220 

5 0.8239 0.0047 0.0026 0.0395 0.1292 

10 0.8239 0.0047 0.0026 0.0395 0.1292 

15 0.8239 0.0047 0.0026 0.0395 0.1292 

DLPOL      

0 0 0 0 0 0 

1 0.0013 0.9987 0 0 0 

2 0.0024 0.9826 0.0114 0.0013 0.0023 

5 0.0024 0.9817 0.0119 0.0014 0.0025 

10 0.0024 0.9817 0.0119 0.0014 0.0025 

15 0.0024 0.9817 0.0119 0.0014 0.0025 

DLRE      

0 0 0 0 0 0 

1 0.1191 0.0061 0.8749 0 0 

2 0.1095 0.0050 0.7985 0.0674 0.0196 

5 0.1112 0.0050 0.7786 0.0786 0.0265 

10 0.1112 0.0050 0.7786 0.0786 0.0265 

15 0.1112 0.0050 0.7786 0.0786 0.0265 

DLO      

0 0 0 0 0 0 

1 0.2731 0.0062 0.0011 0.7196 0 

2 0.2018 0.0070 0.0249 0.5319 0.2343 

5 0.2091 0.0077 0.0244 0.5238 0.2350 

10 0.2091 0.0077 0.0244 0.5238 0.2350 

15 0.2091 0.0077 0.0244 0.5238 0.2350 

DLY      

0 0 0 0 0 0 

1 0.1253 0.0013 0.0391 0.0572 0.7770 

2 0.1283 0.0063 0.0333 0.0536 0.7786 

5 0.1303 0.0073 0.0329 0.0530 0.7765 

10 0.1303 0.0073 0.0329 0.0530 0.7765 

15 0.1303 0.0073 0.0329 0.0530 0.7765 

Notes: Stata command pvarfevd was used. 
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The FEVD show that the DLCO2 two periods after a shock explains the FEVD in 84%, 

DLPOL in fifteen periods explaining 0.04%, DLRE 0.03%, DLO 4% and DLY 13%.  DPOL in 

one period after a shock explains the FEVD in 100 %, DLCO2 in fifteen periods explaining 0.02%, 

DLRE 2%, DLO 0.01%, and DLY 0.03%. DLRE in one period after a shock explaining the FEVD 

in 88%, DLCO2 in fifteen periods explaining 11%, DLPOL 0.5%, DLO 8%, and DLY 3%.  DLO 

in one period after shocks explains the FEVD in 72%, DLCO2 in 27%, DLPOL in fifteen periods 

explaining in 0.08%, DLY 24%, and DLRE in two periods 3%. DLY in one period after a shock 

explains the FEVD in 78%, DLCO2 in fifteen periods explaining in 13%, DLPOL 0.07%, DLRE 

in one period explaining 4%, DLO in 6%.         

 The impulse-response was computed to analysis the IRFs and dynamic multipliers after 

PVAR. Figure 1, shows the impulse-response function of variables. The impulse-response function 

was computed following the Cholesky procedure. The procedure was repeated 1000 times to 

compute the 5th and the 95th percentiles of the impulse responses. 
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Figure 1.  Impulse-response function 

 

Notes: The Stata pvarirf command was used. 

The impulse-response function it is in concordance with FEVD and shows that all variables 

converge to equilibrium, supporting that variables are I (1). Additionally, the shock of DPOL on 

DLCO2 is very small (See Figure 1).  

The results of PVAR model show that the renewable energy policies have the capacity to 

mitigate the CO2 emissions. This result is related to efficient of these policies that to promote the 

introduction of renewable energy sources on energy matrix, as well as, the consumption of this 

kind of source. Moreover, the fast growth of RES policies in the Latin American countries could 

be attributed to the interrelated energy challenges. The region will need a substantial amount of 

new electricity generation to meet growth in demand, and replace aging infrastructure. Currently, 

many countries in the Latin America region has energy mixes that expose them to fossil fuel price 

instability. This could significantly affect their national budgets through pass-through provisions 

in electricity supply contracts, and/or climate variability. These factors have incentive the creation 

of new policies. The results point too that the consumption of fossil fuels increase the CO2 
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emissions and that economic growth promotes the consumption of fossil fuels. This result is due 

to some countries of Latin America region are major fossil fuels producers such as Argentina, 

Brazil, Colombia, Ecuador, Peru, and Mexico, or depend on imports of this kind of source, such as 

Chile.    

 

5. Conclusion 

The impact of renewable energy policies on CO2 emissions was investigated. This article 

focused on nine countries from Latin America region in a period of 1991 to 2015. The results of 

preliminary tests proved the presence of multicollinearity, cross-section dependence between the 

variables, unit roots, the fixed effects in the model, and the need to use the lag length (1) in the 

PVAR regression.          

 The results of PVAR regression pointed that the renewable energy policies reduce the 

environmental degradation (CO2 emissions) in -0.0109, and the consumption of renewable energy 

-0.0231, while the economic growth and consumption oil increase the emissions in 0.9082 and 

0.1437 respectively.  

 The negative impact of renewable energy policies on environmental degradation proved 

that these policies are effective in reduce the CO2 emissions. Indeed, these policies are able to 

promote the investments and development in green technologies, and consumption of alternative 

sources. Moreover, the negative impact of consumption of alternative sources is the reflection of 

the effectiveness of renewable energy policies.        

 So, the positive effect of economic growth and consumption of oil (fossil sources) on 

environmental degradation in the Latin America region is due to the higher economic growth that 

will further increase the consumption of energy from fossil sources and consequently increase the 

environmental degradation. Another explanation for this is that the Latin American countries have 

a high economic dependency on fossil fuels due to that some countries of this region are major 

fossil fuel energy producers (e.g., Argentina, Brazil, Colombia, Ecuador, Peru, and Mexico) and 

others are major imports of this kind of source (e.g., Chile). Indeed, this high economic dependency 

on fossil fuels exerts a negative impact on the environment.      

 Based on these results, it is necessary to create more renewable energy policies that reduce 

the consumption of fossil fuels in the Latin American countries; Create conservation policies that 



27 
 

 

Revista Brasileira de Energias Renováveis, v.8, n.1, p. 12-28, 2019 
 

reduce the consumption of energy, nonetheless that these policies do not retard the economic 

growth; Reduce the bureaucracy in institutions and lobbies that discourage the renewable energy 

foreign investments. These policies and changes are able to increase the consumption of alternative 

sources and economic growth due to the new investments, development, and production of this 

kind of source, and also reduce the consumption of fossil fuels and energy, and consequently the 

environmental degradation.           

 Finally, these empirical findings will help the policymakers develop appropriate renewable 

energy policies, as well as help to advance the literature that approaches the impact of renewable 

energy policies on environmental degradation in the Latin America region.  
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