

_____ Revista Brasileira de Climatologia

ISSN: 1980-055X

Recebido em: 30/04/2010

Aceito para publicação em: 24/07/2010

NOTA DE PESQUISA

ANÁLISE COMPARATIVA DE MEDIÇÕES DE VARIÁVEIS METEOROLÓGICAS REALIZADAS POR ESTAÇÕES METEOROLÓGICAS CONVENCIONAL E AUTOMÁTICA INSTALADAS NO PARQUE ESTADUAL DAS FONTES DO IPIRANGA - SÃO PAULO -SP

> Frederico Luiz Funari ²⁴ Augusto José Pereira Filho ²⁵

RESUMO

Para a realização dessa avaliação comparativa, foram utilizados dados médios diários das seguintes variáveis meteorológicas: temperatura do ar (°C), temperatura máxima (°C), temperatura mínima (°C), umidade relativa do ar (%), pressão atmosférica (hPa), chuva (mm) e temperaturas do solo (superfície, 5 cm,10 cm, 20 cm, 30 cm e 40 cm) (°C), extraídos de sensores instalados em estação meteorológica convencional e automática no Parque Estadual das Fontes do Ipiranga (PEFI), São Paulo-SP. O período estudado foi de 1-10-2007 a 31-1-2009, totalizando 489 dias. Para essa comparação foi usado o coeficiente de determinação (R²). Os resultados mostraram que houve uma boa concordância entre os valores médios obtidos nas estações meteorológicas convencional e automática.

Palavras chave: estações meteorológicas , estações convencionais e automática, instrumentos meteorológicos.

ABSTRACT

For benchmarking purposes , daily average data of the meteorological variables were used: air temperature (°C), maximum temperature (°C), minimum temperature (°C), relative humidity (%), atmospheric pressure (hPa), rain (mm) and soil temperatures(surface , 5 cm, 10 cm, 20 cm, 30 cm and 40 cm), extracted from sensors installed in conventional and automatic weather stations in Parque Estadual das Fontes do Ipiranga (PEFI), São Paulo-SP. The study was performed from 1-10-2007 to 31-1-2009, in a 489 days period. For

²⁵ Professor Associado –Coordenador do Laboratório de Hidrometeorologia-IAG-USP.

²⁴ Doutor em Geografia Física – Laboratório de Hidrometeorologia – IAG-USP.

Dovicto	Pracilaira	do	Climatologia	
Revista	brasileira	uе	Cilmatologia	

this comparison, the following statistics parameters were used: statistics: determination coefficient (R²). The results showed that there was a good correlation between the average values obtained by the conventional and automatic stations.

Key words: weather stations, conventional and automatic stations, meteorological instruments.

INTRODUÇÃO

O presente trabalho apresenta os resultados da comparação de algumas variáveis meteorológicas, tais como temperaturas do ar e do solo, umidade relativa do ar, pressão atmosférica e precipitação, medidos e registrados na área do PEFI, pela Estação Meteorológica Automática do Laboratório de Hidrometeorologia do Departamento de Ciências Atmosféricas do Instituto de Astronomia, Geofísica e Ciências Atmosféricas da USP, e pela Estação Meteorológica Convencional do mesmo Instituto. As duas Estações se encontram instaladas em um cercado meteorológico nas dependências do Parque de Ciência e Tecnologia da USP.

Diversos pesquisadores realizaram este *mes*mo tipo de trabalho entre estações convencionais (EC) e automáticas (EMA), em vários locais do nosso país: SENTELHAS *et al.* (1997), fizeram uma análise comparativa dos dados obtidos em Piracicaba-SP; AZEVEDO & FUNARI (2001), verificaram o desempenho de registradores digitais instalados em abrigo meteorológico padrão na cidade de São Paulo; SOUZA, GALVANI e ASSUNÇÃO (2002) avaliaram os elementos meteorológicos monitorados por EC e EMA na cidade de Maringá -PR. Uma comparação entre EC e EMA para três cidades do Espírito Santo foi realizada por RAMOS *et al.* (2008).

Dados coletados na Fazenda Água Limpa , na região do Distrito Federal, foram analisados por FERREIRA & VASCONCELLOS (2002). Vários dados meteorológicos registrados por EC e EMA, em Botucatu-SP , foram objeto de avaliação por CUNHA & MARTINS (2004). Utilizando dados coletados pelo INMET em Brasília por estações EC e EMA ,estes foram avaliados por ARAUJO & RODRIGUES (2004). Em um trabalho resultante de bolsa de iniciação científica, realizado em Bebedouro – PE, MOURA *et al*(2005) , estudaram os dados registrados em EC e EMA, para essa localidade. Para a cidade de Serra Negra do Norte- RN, BARBOSA *et.al*.(2006).

Uma análise dos dados medidos por EC e EMA, instaladas no Parque Estadual das Fontes do Ipiranga - PEFI, foi feita por PEREIRA FILHO & XAVIER (2007). Varias estações convencionais e automáticas localizadas no Estado de Minas Gerais tiveram seus dados analisados por VIANELLO & FERNANDES (2008). Com a finalidade de comparar dados de Estação Convencional e Automática, na região do semi-árido paraibano, ALMEIDA *et.al*. .(2008), avaliaram medidas coletadas durante dois anos da localidade de São João do Cariri-PB.

MATERIAL E MÉTODOS

Os dados para a realização deste trabalho foram obtidos simultaneamente na Estação Meteorológica Automática do Laboratório de Hidrometeorologia do DCA-IAG-USP (EMA), e Estação Meteorológica Convencional do IAG-USP, ambas instaladas no Cercado Meteorológico, localizado no Parque Estadual das Fontes do Ipiranga (PEFI), bairro da água Funda, São Paulo-SP.

As coordenadas geográficas das estações são: Latitude = 23° 39′ 03″,96 S (EC) e 23° 39′04″,22 S (EMA) Longitude= 46° 37′ 21″ W (ambas) Altitude = 802,0 m (ambas).

Figura 01 : Cercado da Estação Meteorológica do ,IAG USP e da Estação Meteorológica do Laboratório de Hidrometeorologia

O período de medição dos dados foi de 01 de outubro de 2007 a 31 de janeiro de 2009.

A medição dos dados na Estação Convencional (EC) é realizada por observações diretas diárias das 07:00h até as 24:00h (horário local); para o período compreendido das 01:00h as 06:00h (madrugada), os valores são interpolados linearmente dos instrumentos registradores, obtendo-se dessa forma os valores das 24 horas. Na Estação Meteorológica Automática (EMA), os dados são medidos e registrados a cada 5 minutos, continuamente durante as 24 horas de cada dia.

Tabela 01 - Variáveis meteorológicas e seus respectivos sensores

i abela or	variaveis meteorologicas e seus respectivos serisores							
EMC	Variável	Sensor	Fabricante	Precisão	Unidade			
	Temp.med.	Mercúrio	R.Fuess	0,1	Celsius			
	Temp.max.	Mercúrio	R.Fuess	0,1	Celsius			
	Temp.mín.	Álcool	R.Fuess	0,1	Celsius			
	Umid.Rel.	Psic.Asp.	R.Fuess	1,0	%			
	Temp.solo	Mercúrio	R.Fuess	0,1	Celsius			
	Pressão	Mercúrio	R.Fuess	0,1	hPa			
	Chuva	Pluviógrafo	W.Lambrecht	0,1	mm			
EMA	Temp.	Termistor	Vaisala	0,2	Celsius			
	Umid.Rel.	Capacitor	Vaisala	5,0	%			
	Temp.solo	Termistor	Vaisala	0,2	Celsius			
	Pressão	Cap.silício	Vaisala	0,2	hPa			
	Chuva	Báscula	Texas	0,2	mm			

Neste trabalho, utilizou-se da análise de regressão linear pelo método dos mínimos quadrados, onde se obtiveram os valores dos coeficientes de determinação (R²).

RESULTADOS

As tabelas a seguir mostram as comparações entre a Estação Meteorológica Convencional (EC) e a Estação Meteorológica Automática EMA). Foram comparados dados de temperaturas média, máxima e mínima do ar; umidade relativa média e mínima do ar; pressão atmosférica média, máxima e mínima do ar; precipitação (chuva); temperaturas do solo: média, máxima e mínima, da superfície do solo e nas profundidades de 5cm, 10 cm, 20 cm, 30 cm e 40 cm.

Tabela 02 – Parâmetros da regressão linear e coeficientes de determinação

Variável	Α	b	R ²
Temp. média	+ 0,033	0,972	1,00
Temp. máxima	- 0,211	0,985	0,97
Temp mínima	+ 0,153	0,986	1,00
Umid. média	- 5,066	1,026	0,90
Umid. mínima	- 3,600	0,897	0,91
Pressão média	- 7,766	1,010	0,99
Pressão máxima	- 35,580	1,040	0,98
Pressão mínima	- 49,061	1,055	0,97
Precipitação	+ 7,794	1,047	1,00
Temperaturas do			
Profundidade	Α	b	R ²
Superf média	- 4,427	1,167	0,96
Superf. máxima	- 7,730	1,385	0,88
Superf. mínima	+ 0,688	0,872	0,88
5 cm –média	- 2,680	1,079	0,98
5 cm – máxima	- 1,159	1,083	0,74
5 cm – mínima	- 0,507	0,998	0,95.
10 cm –média	- 2,567	1,098	0,99
10 cm – máxima	- 3,379	1,153	0,92
10 cm – mínima	+ 0,113	0,982	0,94
20 cm – média	- 1,872	1,100	0,99
20 cm – máxima	- 1,212	1,079	0,96
20 cm – mínima	- 0,429	1,033	0,97
30 cm – média	- 1,728	1,099	0,99
30 cm – máxima	- 0,460	1,049	0,96
30 cm – mínima	+ 0,290	0,993	0,98
40 cm – média	- 1,947	1,103	0,99
40 cm – máxima	- 0,145	1,021	0,97
40 cm – mínima	- 1,663	1,092	0,98

Tabela 02 - A - V	/erificação	segundo	teste	: t	de Student
--------------------------	-------------	---------	-------	-----	------------

Variável	m 1	d 1	n 1	m 2	d 2	n 2	t 0
	EMA	EMA	EMA	EC	EC	EC	Student
Temp. ar	18,97	3,96	288	19,48	2,89	24	- 0,617
Umid.Rel.	77,26	16,37	288	80,18	12,75	24	- 0,852
Pres.Atm.	926,8	2,81	288	927,19	2,77	24	- 0,670
Chuva	2314,1	85,1	288	2088,4	81,12	24	0,266
T.solo-sup.	23,41	7,91	288	23,86	5,07	18	- 0,238
T.solo-05cm	22,88	5,04	288	23,68	3,36	18	- 0,664
T.solo-10cm	22,84	3,73	288	23,15	2,18	18	- 0,626
T.solo-20cm	22,76	2,07	288	23,38	1,00	18	0,773
T.solo-30cm	22,69	1,45	288	22,22	0,41	18	1,37
T.solo-40cm	22,67	1,05	288	22,33	0,18	18	1,37

Período de dados estudados: 01-out.-2007 a 31-jan.-2009 (489 dias)

A seguir são apresentadas as diferenças médias encontradas, nos valores médios, máximos e mínimos:

Período de medição: outubro de 2007 a janeiro de 2009.

Tabela 03 - Diferenças entre a Estação Meteorológica Automática (EMA) e

Estação Meteorológica Convencional (EC):

Latação Meteorologica e	convencional (LC)	•	
Elemento	média	máxima	mínima
	EMA - EC	EMA - EC	EMA - EC
Temp. do ar (°C)	- 0,5	- 0,7	0,0
Umid. Relativa (%)	- 3	- 3	- 7
Pressão atm. (hPa)	- 0,2	- 0,0	- 0,7
Chuva (mm)	+ 14,1	-	-
Temp. solo- sup.(°C)	- 0,3	+ 8,6	- 1,1
Temp. solo 5cm (°C)	- 0,8	+ 1,9	- 0,5
Temp. solo 10cm (°C)	- 0,3	+ 1,6	- 0,2
Temp. solo 20cm (°C)	+ 0,4	+ 1,0	+ 0,2
Temp. solo 30cm (°C)	+ 0,5	+ 0,8	+ 0,2
Temp. solo 40cm (°C)	+ 0,3	+ 0,4	+ 0,2

DISCUSSÃO DOS RESULTADOS

As variáveis meteorológicos medidas pelas Estações Convencional e Automática, que foram comparados entre si , são os seguintes :

Temperatura do ar, média, máxima e mínima (Celsius); Umidade relativa do ar média e mínima (%); Pressão atmosférica média, máxima e mínima (hPa); Temperaturas do solo : superfície , e profundidades de 5 cm, 10 cm, 20 cm , 30 cm e 40 cm; e Chuva.

Os valores dos coeficientes de determinação encontrados (R²), são bastante elevados, e indicam a qualidade dos dados medidos por ambas as estações; apenas os valores de temperatura da superfície do solo (máxima e mínima)e a temperatura máxima da profundidade de 5 cm, tiveram coeficientes de determinação abaixo de 0,90.

Todos os coeficientes de determinação são bastante semelhantes aos encontrados por outros pesquisadores; alguns desses valores podem ser visualizados no Apêndice.

m 1 e m 2 = valores médios das variáveis.

d 1 e d 2 = desvio padrão.

n 1 e n 2 = número de medições diárias de cada variável.

t 0 = valor do teste de t-Student para um intervalo de confiança de 95 %.

As diferenças encontradas entre os valores obtidos pelas EC e EMA são também da mesma ordem de grandeza do encontrados em outras pesquisas , relacionadas na tabela a seguir:

 Tabela 04 - Diferenças encontradas nas comparações entre os dados obtido

por EC e EMA , por alguns pesquisadores e este trabalho.

Localidade	Temp.méd.	Temp.máx.	Temp.mín.	UR média
Piracicaba-SP	- 1,2 °C			+ 3 %
São Paulo-SP	+ 0,2			+ 6
Maringá-PR	+ 0,1	+ 0,2°C	+ 0,4°C	- 0,4
Botucatu-SP	0,0	- 1,0	- 0,3	+ 5
Brasília-DF	- 0,9	- 2,1	- 1,2	+ 3,5
S.João Cariri-PB	- 0,1	+ 0,1	- 0,3	+ 5,6
Este trabalho	- 0,5	- 0,7	0,0	- 2,9

Piracicaba-SP - SENTELHAS et.al.(1997)

São Paulo- SP - AZEVEDO & FUNARI (2001)

Maringá-PR – SOUZA, GALVANI & ASSUNÇÃO (2002)

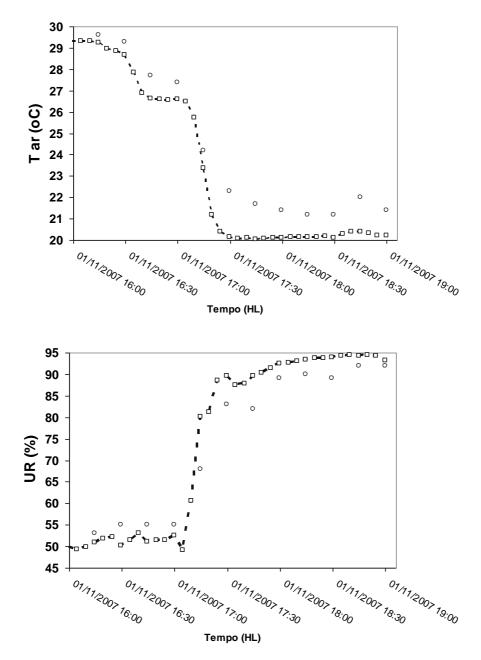
Botucatu-SP - CUNHA & MARTINS (2004)

Brasília-DF - ARAUJO & RODRIGUES (2004)

S. João do Cariri-PB - ALMEIDA. et.al.. (2008)

Dias selecionados

Foram selecionados dados de três dias, onde aparecem as diferenças existentes no modo de medição das variáveis, onde observa-se claramente a vantagem da EMA, em cujos dados é possível identificar a entrada de uma frente fria (01-11-2007), entrada da brisa marítima (02-09-2008), e da ocorrência de chuva convectiva local (21-12-2008).


Em 01-11-2007, ocorreu a passagem de uma frente fria, graças ao detalhamento da coleta dos dados da EMA (5 em 5 min.), pode ser determinada o momento da entrada da frente: 17:10h . Neste dia o total de precipitação foi de 13,7 mm.

No dia 02-09-2008, houve a entrada de uma brisa marítima, que segundo os dados registrados da EMA, ocorreu por volta das 17:15h.

Dia 21-12-2008, data da ocorrência de tempestade local , com trovoadas e queda de granizo. Das 15:00/15:15h – chuva forte com trovoadas e queda de granizo (precipitação total : 41,2 mm). No período de 15:00/17:05h, o total pluviométrico foi de : 83,3 mm, valor este que para o período de tempo de aproximadamente duas horas de duração, segundo equação obtida para São Paulo-SP por Occhipinti & Marques dos Santos (1965), dá um período de retorno de mais de 40 anos.

Tabela 05 - Coeficientes de determinação

Dia	Temperatura do	Umidade relativa	Pressão	evento
	ar		atmosférica	
	(Celsius)	(%)	(hPa)	
01-11-2007	0,99	0,96	0,93	Frente polar atlântica
02-09-2008	0,96	0,80	0,72	Brisa marítima
21-12-2008	0,95	0,91	0,49	Tempestade local

Figura 02 - Exemplo de registro de temperatura e umidade relativa das duas estações – tracejado (EMA) e pontos isolados (EC) para o evento de frente frio de 01 de novembro de 2007.

CONCLUSÕES

As duas Estações instaladas no PEFI, por se encontrarem instaladas no mesmo cercado, e terem uma manutenção criteriosa e constante, apresentam resultados de alta correlação e qualidade nos seus dados.

A existência da Estação Convencional com instrumentos padronizados fornece segurança nessas comparações. A única discrepância é variável quantidade de precipitação, onde os resultados são um pouco diferentes devido aos tipos de pluviógrafos utilizados. A EC utiliza o pluviógrafo do tipo Hellman, com sifão, o pluviógrafo da EMA, é do tipo basculante, este tipo de diferenças já foram constatados por outros pesquisadores como exemplo em Botucatu-SP, CUNHA & MARTINS (2004), constataram diferença de -18 %,(com relação a EC) devido ao instrumento ser de báscula, e com isso há erros devidos a área de captação da báscula e a intensidade da chuva.

Baseando-se nos resultados obtidos, podemos concluir que a alta qualidade dos dados coletados pelas duas estações, possibilitam um acompanhamento detalhado dos elementos meteorológicos obtidos no PEFI.

REFERÊNCIAS

ALMEIDA, H.A.; SOUZA,J.A. & ALCÂNTARA, H.M. – Análise comparativa de dados meteorológicos obtidos por estação convencional e automática no semi-árido paraibano.- Rev.Bras. de Agrometeorologia. v. 16. n. 1. p. 58-66. 2008.

ARAUJO, M.J.M. & RODRIGUES, J.E. – Estudo comparativo entre os dados coletados na Estação Meteorológica Principal de Brasília-DF e uma Estação automática. XIII- Congr.Bras.de Meteorologia. Fortaleza-CE. 2004.

AZEVEDO, T.R. & FUNARI, F.L. – Desempenho de registradores digitais de temperatura e umidade do ar em abrigo meteorológico padronizado- estudo comparativo visando o uso em trabalhos de campo. GEOUSP ,São Paulo, V.10.p.147-164.2001.

BARBOSA ,C.M.S. *et.al.* – Análise comparativa entre os dados das Estações Convencionais e Automática localizadas em Serra Negra do Norte-RN. – XIV – Congr.Bras. Meteorologia. Florianópolis-SC. 2006.

CUNHA, A.R. & MARTINS,D. - Estudo comparativo entre elementos meteorológicos em estações meteorológicas convencionais m e automática em Botucatu-SP. Rev.Bras. Agrometeorologia. V.12. n. 1. P.103-111.2004.

FERREIRA, E.A. & VASCONCELLOS, V.L.D. – Análise comparativa entre os dados da Estação convencional e automática da Fazenda Água Limpa/UnB- DF. XII – Congr. Bras. de Meteorologia, Foz do Iguaçu-PR. 2002.

GOODMAN, R. - Aprenda sozinho Estatística - Ed. Pioneira/EDUSP 1965. 273p.

MOURA, M.S.B. et.al. – Comparação dos dados de temperatura do ar obtidos em estação meteorológica convencional e automática na região do sub-médio São Francisco- Trabalho de Bolsa de Iniciação Científica – PICIN/UNEB-BA- 2005.

OCCHIPINTI, A.G. & MARQUES DOS SANTOS, P.M. – Análise das máximas intensidades de chuva na cidade de São Paulo. Instituto Astronômico e Geofísico da USP. 1965. 40p.

166

Revista	Brasileira	de	Climatologia	

PARADINE, C.G. & RIVETT, B.H.P. – Métodos estatísticos para tecnologistas . EDUSP-Editora da Universidade de São Paulo. 1974. 350p.

PEREIRA FILHO ,A.J. & XAVIER, T.M.B.S. – Comparação de dados da EMA e EC . IN: A Evolução do Tempo e do Clima na RMSP. IAG-USP .2007. p . 235-252.

RAMOS, H.E.A. *et.al.* – Avaliação comparativa de dados meteorológicos obtidos em estações convencionais e automáticas, localizadas em três municípios do Estado do Espírito Santo.- XV Congr.Bras.Meteorologia S.Paulo-SP, 2008.

SENTELHAS, P.C. *et.al.* Análise comparativa de dados meteorológicos obtidos por Estações Convencional e Automática. Rev. Bras.Agrometeorologia ,Santa Maria. V.5 n.2 .p.215-221- 1997.

SOUZA, I.A.; GALVANI ,E. & ASSUNÇÃO, H.F. – Avaliação de elementos meteorológicos monitorados por estações convencional e automática. XII Congr.Bras. de Meteorologia, Foz de Iguaçu-PR, Anais. P.2342-2346.2002.

VIANELLO, R.L. & FERNANDES, A.S. – Análise estatística comparativa das medias diárias de dados coletados em estações meteorológicas automáticas e convencionais do INMET. – XV- Congr. Bras. Meteorologia. São Paulo . 2008.

 Revista	Brasileira	de (Climatologi	a	