SOMATIC CELL SCORE IN BULK TANK MILK IN THE STATE OF PARANÁ

Newton Pohl Ribas¹, Paulo Rossi Junior¹, Humberto Gonzalo Monardes², José Augusto Horst³, Daiane Regonato¹, Maycon Cesar Almeida¹

¹ UFPR
 ² McGill University, Canada
 ³ APCBRH
 Correspondência: Newton Pohl Ribas: newtonribas.ufpr@gmail.com

ABSTRACT: Since 1983, the logarithmic transformation of the somatic cell count of the bulk tank milk, the somatic cell score (BTSCS), has been used as an indicator of milk quality in the herd. This research studied BTSCS in bulk tank milk samples from milk processors of the state of Paraná, Brazil, analyzed at the Milk Quality Laboratory of the Dairy Herd Analysis Service of the Holstein Association of Paraná, the result of technical and scientific cooperation between UFPR and McGill University of Canada. The effect of BTSCS in bulk tank samples from dairy farms in the State of Paraná, Brazil was studied in a total of 1.950,034 tank milk samples from ten regions of Paraná tested for somatic cell count from January 2005 to April 2012. Environmental effects such as the region and age of the sample as well as the year and month of the analysis were considered. Variance components for the trait were estimated and the distribution of samples in the different classes of BTSCS was also studied. BTSCS estimated mean was 4.83 with a standard deviation of 1.52. All the effects were significant (P < 0.01). BTSCS varied in the different years and months, with February and 2010 showing the highest averages, 4.87 and 4.85, respectively. There were significant variations between regions, the highest BTSCS found was 5.28 in South Center/ Guarapuava region. BTSCS values decreased with age of the sample, bringing them down from 4.75 to 4.66 in five days. It was observed that 65.95% of all samples had a score five or less. This study confirmed that the logarithmic transformation of BTSCC in BTSCS presents statistical properties superior to those of BTSCC, including more accurate hypothesis, smaller standard errors and coefficients of variation and larger coefficients of determination.

Key Words: sample age; mastitis; month and year of analysis; milk quality; region

ESCORE DE CÉLULAS SOMÁTICAS EM AMOSTRAS DE LEITE DE TANQUES NO ESTADO DO PARANÁ

RESUMO: Trata-se da conversão da CCS em dez categorias, utilizado desde 1983, auxiliando a avaliação da qualidade do leite no rebanho. A presente pesquisa avaliou o comportamento do ECS em amostras de leite de tanques provenientes de indústrias de laticínios do Estado do Paraná, analisadas pelo Laboratório de Análise da Qualidade do Leite do Programa de Análise de Rebanhos Leiteiros do Paraná da Associação Paranaense de Criadores de Bovinos da Raça Holandesa, fruto do convênio entre UFPR, McGill University e APCBRH. Foram analisadas 1.950.034 amostras de leite de tanques, obtidas no período de janeiro de 2005 a abril de 2012, em dez regiões do Estado. Os efeitos de meio, entre eles, mês e ano de análise, região e idade da amostra foram estudados. Estimaram-se os componentes de variância para a característica e analisou-se a distribuição das amostras nas classes de ECS. A média estimada e desvio-padrão do ECS foi de 4,83 ± 1,52. Todos os efeitos incluídos no modelo foram significativos (P<0,01). Ocorreram variações do ECS entre os meses de análise, destacando-se maior média para o mês de fevereiro (4,87). Da mesma forma, o ano de análise apresentou variações significativas, em que a maior média ocorreu no ano de 2010 (4,85 ± 0,0031). Ocorreram significativas variações também entre regiões, em que a maior média e seu erro-padrão foi de 5,28 ± 0,0023 (Centro Sul - Guarapuava). O efeito de idade da amostra apresentou redução de 4,75 para 4,66 do primeiro ao quinto dia. Das amostras analisadas, 65,95% apresentaram escore cinco ou mais. Este estudo confirmou que a transformação logarítmica dos BTSCC em BTSCS apresenta propriedades estatísticas superiores aos de BTSCC, incluindo a hipótese mais precisa, os erros padrões menores e maiores coeficientes de variação e de determinação.

Palavras-chave: idade da amostra; mastite; mês e ano de análise; qualidade do leite; região

INTRODUCTION

The logarithmic transformation of bulk tank somatic cell count (BTSCC) into a somatic cell score (BTSCS) is been used to monitor milk quality in dairy herds since BTSCS presents statistical properties superior to those of BTSCC. In the United States and Canada. the milk quality control programs aim at reaching 80% of the herds with a maximum linear score of three in order to get better payment for the milk (Ribas, 1999).

The advantages of using the logarithmic transformations of BTSCC are:

1) hypothesis tests are more accurate in BTSCS than in BTSCC. BTSCS analysis of variance F values are approximately twice those of the corresponding BTSCC values. The standard errors and confidence intervals are relatively lower in BTSCS than in BTSCC (Shook & Ruegg, 1999);

2) BTSCS features a normal frequency distribution, desirable in statistical analysis, and the distribution of BTSCC is clearly skewed with the average substantially greater than the median (Hunt & Anderton, 1993; Shook & Schutz, 1994, Shook & Ruegg, 1999);

3) BTSCS average is close to the median with approximately 50% of the values positioned on either side of the mean, simplifying the interpretation. BTSCC average is considerably higher than its median, and this difference is highly variable, because is strongly influenced by a small percentage of extreme values (Hunt & Anderton, 1993; Shook & Schutz, 1994). According to Shook (1982), Shook & Schutz (1994) and National Mastitis Council (1999), dairy cattle management programs in many countries have created a linear distributing score bv the log transformations and their original values in ten categories going from zero to nine (Table 1).

Table 1 – Linear	score and bulk tank soma	tic cell count (BTSCC).			
LINEAR	Average point	BT	SCC (x 1,000	cells/ mL)		
SCORE	Average point	Variation				
0	12.5	0	to	17		
1	25	18	to	34		
2	50	35	to	70		

3	100	71	to	140	
4	200	141	to	282	
5	400	283	to	565	
6	800	566	to	1,130	
7	1,600	1,131	to	2,262	
8	3,200	2,263	to	4,525	
9	6,400	above	of	4,525	

The BTSCS is used in quality control programs of dairy herds (Shook & Ruegg, 1999) all over the world. It produces a range of values of approximately 10 points, with each BTSCS point up doubling the somatic cell count (SCC) and each point down splitting the SCC in two (Hunt & Anderton, 1993). Ostrensky (1999)compared BTSCS and BTSCC and some environmental factors influencing Paraná. He found BTSCC in а coefficient of determination (R²) of 0.4282 and a coefficient of variation (CV) of 121.07% for BTSCC and of 0.6444 and 25.25% for BTSCS, with BTSCS showing smaller standard errors than BTSCC.

Paula (2002) compared BTSCC and BTSCS and found 0.5009 for R² and 62.35% for CV in BTSCC, while BTSCS were 0.5350 and 18.62% respectively, with lower standard errors for BTSCS than for BTSCS. The same author observed that 65.95% of the bulk tank milk samples fitted in the score five or less indicating a probably higher incidence of mastitis in the herds studied (Paula, 2002).

BTSCS used in this study were collected under Normative Instructions number 51 (Brazil, 2002) and 62 (Brazil, 2011) of Brazil's Ministry of Agriculture. The objectives of this study were to study the effects environmental factors such as month and year of test and region and age of the sample at analysis on the SCS of bulk tank milks in the state of Parana. The study of the distribution of samples in the different BTSCS classes was also an objective of this study.

MATERIAL AND METHODS

BTSCS was calculated in 1,950,034 samples of refrigerated pooled milk tanks from farms in 10 regions of state of Paraná the (Northwest - Umuarama, Central West -Campo Mourão, Central North Londrina. Pioneer North - Cornélio Procópio, Central East - Ponta Grossa, West - Cascavel, Southwest - Francisco Beltrão, Central South - Guarapuava, Southeast – Irati and Curitiba) between January 2005 and April 2012, analyzed at the Milk Quality Laboratory of the Dairy Herd Analysis Service of the Holstein Association of Paraná. the scientific result of technical and cooperation between UFPR and McGill University in Canada.

To obtain better accuracy, Ostrensky (1999) and Paula (2002) proposed the following restrictions to the database: discard BTSCC values less than or equal to zero and above 4,525,000 cells/ml and keep samples between one and seven days old.

BTSCS is a logarithmic transformation of the BTSCC developed by Shook (1982), obtained by the equation: BTSCS = log2 (BTSCC/100.000) + 3.

All data were analyzed through computer software SAS® version 9.3. Studied traits were analyzed through the following mathematical model:

Yijkl = μ + Mi + Aj + Rk + II + eijkl Where:

Yijkl = BTSCS of samples from milk collected in the month i of the year j in the region k, age l and with the random error associated to each observation being e_{ijkl} , wherein:

 $\mu = overall mean;$

Mi = effect of the month of analysis i, where i = 1 (Jan), 2 (Feb), ..., 12 (Dec); J = effect of the year of analysis j,where j = 2005, 2006, ..., 2012 *;

Rk = effect of the region where the sampling took place **k**, where k = 1, 2, ..., 10;

II = effect of the age of the sample at analysis, in days, with I = 1, 2, ..., 7;

eijkl = random error associated to each observation Yijkl.

* In 2012, samples were collected only in the first four months of the year.

Tukey Test (1% probability) was used to compare means. BTSCC dependent variable was obtained using flow cytometry technology (Somacount 500®, Bentley Instruments, 1995b), in thousand cells/ml and BTSCS was obtained by logarithmic transformation of BTSCC (Ali & Shook, 1980, Shook, 1982), using the equation BTSCS = log2 (BTSCC/100) + 3. BTSCS values corresponding to the BTSCC range zero to 12,000 cells/ml were forced to be equal to zero in order to avoid negative numbers.

RESULTS AND DISCUSSION

Table 2 shows the BTSCC and BTSCS means with their respective standard deviations and coefficients of variation and the age of the samples obtained from 2005 to 2012.

Table 2 – Number of observations (N), means, standard deviations (SD) and coefficients of variation (CV) of Bulk Tank Somatic Cell Counts (BTSCC) and Scores (BTSCS) and age of samples in days.

CHARACTERISTICS	N	AVERAGE	±	SD	CV(%)
BTSCC*	1,950,034	553	±	545	96.10
BTSCS	1,950,034	4.83	±	1.52	30.06
Age of sample (days)	1,950,034	2.98	±	1.57	-

BTSCC averages were higher than those found by Franks (2001) and Godkin (1999) in different countries. Franks (2001) observed the lowest average in Switzerland (112,000 cells/ml) and the highest in Israel (382,000 cells/ml) and Godkin (1999), in Ontario, Canada, found an average of 250,000 cells/ml. Working with less data in Brazil, Machado and Pereira Sarries (2000), found the BTSCC mean to be 505,000 with a SD of 593,000 cells/ml. Their estimates, however, were similar to those observed in this study.

BTSCS values found by Ostrensky (1999) and Paula (2002) in Paraná were similar to the ones found here $(4.461 \pm 1.789 \text{ and } 4.839 \pm 1.235)$, respectively). The conclusion was that in spite of all efforts from the dairy organizations in the State of Paraná, its milk quality given by either BTSCC or BTSCS standards remained unchanged in the last twelve years. Values from this study are higher than those found in countries with developed dairy farming and may reflect poor hygiene and health management and little incentive from the industries in paying milk according to its quality, using BTSCC as a base of payment.

Accordingly, the upper limit average of 500,000 cells/ml found by Reneau Harmon & (1993),was associated with 16% of infected guarters herds and with 6% less milk in production. Table 3 shows the BTSCC distribution of samples in BTSCS classes in this study.

Table 3 - Classes of bulk tank somatic cell scores (BTSCS), corresponding range of
bulk tank somatic cell count (BTSCC), number of observations (N) in each
class and cumulative percentage of observations (%).

BTSCS	BTSCC VARIATION ¹	N	%
0	0 a 17	30,439	1.56
1	18 a 34	42,581	3.74
2	35 a 70	63,934	7.02
3	71 a 140	167,315	15.60
4	141 a 282	384,531	35.32
5	283 a 565	597,231	65.95
6	566 a 1,130	454,298	89.25
7	1,131 a 2,262	170,923	98.01
8	2,263 a 4,525	38,782	100.00
TOTAL		1.950.034	

BTSCS was five or lower in 65,95% of samples, a result below the goal set by the milk quality control services in the United States and Canada that is 80% of the herds having a maximum score of three (Ribas, 1999). In comparison, only 15.60% of the samples in Parana showed a score of 3 or less (Table 3). The high number of samples with BTSCS of above five shows how important is to implement milk payment programs according to quality and policies to regulate the legal limits for milk quality in Brazil (IN 62, Brazil, 2011) aiming at bringing down the limit of 600,000 cells/ml of 2012 to 400,000 cells/ml by 2015.

Table 4 - Analysis of variance	of the	bulk tank somatic	cell score	(BTSCS) in the
State of Paraná.				

SOURCE OF	df	MEANS SQUARES
VARIATION	u	BTSCS
Month of analysis	11	1, 193.58**
Year of analysis	7	1,425.27**
Region	9	37,404.30**
Age of sample (days)	6	350.56**
Residual	1,950,000	2.113**
Rª		0.46
CV (%)		30.06
**(P<0.01)		

(F=0.01) R²: Total variation accounted by the effects included in the model CV (%): Coefficient of variation

The following R² and CV for BTSCS were observed: 0.46 and 30.06%, respectively. The standard errors were lower for the BTSCS, across the effects studied. These results are similar to those found by Shook & Ruegg (1999), Ostrensky (1999) and Paula (2002), who observed higher R², smaller CV and smaller standard errors with the use of logarithmic transformations for the BTSCC, thus consolidating the statistical point of view for using logarithmic transformations of BTSCC.

The effect of the month of the analysis on BTSCS played a significant role (P < 0.01), as can be seen in Table 4. Table 5 shows that the largest estimates of adjusted means for BTSCS were in late summer and early fall, from February to April, and the lower estimates were found in late winter and early spring, during the months of August, September and October. Other authors, like Harmon & Reneau (1993), Harmon (1998b); Ott, Wells & Smith (1999) and Pritchard, Anderson & Myers (2001), found similar results to this study.

According to Harmon & Reneau (1993), Harmon (1998b), Paula (2002) and Magalhães *et al.* (2006), summer is the period with the highest incidence of clinical mastitis, mainly due to factors

such as the heat stress and humidity that increase susceptibility to infection and the proliferation of pathogens to which cows are exposed.

Table 5 – Leasts squares means, number of observations (N) and cumulative percentage of observations (%), by month of analysis.

MONTH OF		0/	E	BTSCS		
ANALYSIS	N	%	Mean ¹	±	SE	
January	165,665	8.50	4.78 ^ª	±	0,0039	
February	161,031	16,75	4.87 ^b	±	0,0039	
March	183,159	26.15	4.80 ^{ac}	±	0,0037	
April	178,901	35.32	4.81 ^{co}	±	0,0037	
May	170,074	44.04	4.77 ^{ae}	±	0,0038	
June	153,014	51.89	4.69 ^r	±	0,0040	
July	155,888	59.88	4.68 ^{rg}	±	0,0040	
August	157,926	67.98	4.63 ^h	±	0,0039	
September	150,967	75.72	4.57 ¹	±	0,0040	
October	159,212	83.89	4.60 ^J	±	0,0039	
November	15,159	91.90	4.67 ⁹	±	0,0040	
December	158,038	100.00	4.70 ^{%1}	±	0,003	
TOTAL	1,950,034					

Tukey Test. Means followed by at least the same letter don't differ statistically from each other (P<0.01)

The effect of year of analysis significantly influenced BTSCS (P <0.01), as it can be seen in Table 6. This table shows that the highest estimates of adjusted means were in 2010 (4.85) and the lowest in 2012 (4.65). In 2012 we used only information from the first four months of the year. The rising trend of BTSCS adjusted averages from 2005 (4.60) to 2010 (4.85) was evident. The following year, 2011, showed a clear decrease, 4.70, and 2012 seems promising because the four months collected in 2012 are supposed to be the highest in a normal year, as shown in Table 5.

 Table 6
 Leasts squares means, number of observations (N) and cumulative percentage of according to year of analysis.

YEAR OF	N	0/2		BTSCS	
ANALYSIS	IN IN	IN 70	Mean ¹	±	SE
2005	125,257	6.42	4.60 ^a	±	0.0044
2006	186,438	15.98	4.72 ^b	±	0.0036
2007	262,332	22.44	4.68°	±	0.0031
2008	326,385	46.17	4.71°	±	0.0029
2009	337,243	63.47	4.81 ^e	±	0.0029
2010	276,463	77.65	4.85 ^r	±	0.0031
2011	287,339	92.38	4.70 ^{0g}	±	0.0030
2012 ²	148,577	100.00	4.65 ^h	±	0.0043
TOTAL	1,950,034				

 7 Tukey Test. Means followed by at least the same letter don't differ statistically from each other (P<0.01) 2 2012 is represented only by mik samples collected on the first four months of the year.

Between 1998 and 2003, Noro (2004), described an upward trend of SCS from 3.08 to 3.58 in Rio Grande do Sul. Likewise Paula (2002), saw an increase from 4.74 to 4.76 between

1999 and 2001 in Paraná. Results from the present study suggest that farmers need to re-evaluate their mastitis control programs focusing on the health of the mammary gland. The industries, on their turn, should rethink the way they pay for the milk using a payment-by-guality policy based on BTSCC or BTSCS, correlating these values with a reduction in production losses and providing opportunities for the farmers to get more money for milk of better quality . Brazil's Ministry of Agriculture wants to bring down somatic cell count maximum legal to 400,000 cells/ mL of milk by level 2015 (Brazil, 2011), consolidating the expectations of the National Program for the Improvement of Milk Quality.

BTSCS was significantly affected by the region (P < 0.01) of sampling, as seen in Table 7). It was observed that the lowest BTSCS estimate was 4.20 in Francisco Beltrão (Southwest Paraná) and the highest 5.28 in Guarapuava (Center Paraná) with all the BTSCS adjusted averages differing significantly(P < 0.01) (Table 7). Other were found in high BTSCS values Curitiba (5.18) and Irati (5.02). All these regions of high BTSCS values show the Cfb temperate climate type, according to the Köppen classification (IAPAR, 1999), with winter average temperatures between 15°C and 18°C. Summers are cool with average temperature in the warmest month below 22 °C, not a well defined dry season and the annual relative humidity between 70 and 85%.

Paula (2002) and Noro (2004) found similar results to this study in different regions of Brazil. Herd size, production systems, level of technology adopted, health control programs and payment of milk according to quality would be the factors behind the BTSCS differences found.

percentage	s of observatio	ns (%) accord	ing to region.	() and band	
REGION	REGION		BTSCS		
MUNICIPALITY	N	%	Mean ¹	± SE	
1. Northwest Umuarama	6,991	3.18	4.48 ^a	± 0.0059	
 Central West Campo Mourão 	414,991	24.46	4.23 ^b	± 0.0023	
 Central North Londrina 	145,630	31.93	4.76°	± 0.0039	
 Pioneer North Cornélio Procópio 	35,372	33.74	4.80 ^d	± 0.0078	
5. Central East Ponta Grossa	138,721	40.86	4.53e	± 0.0041	
6. West Cascavel	135,252	47.79	4.66	± 0.0041	
 Southwest Francisco Beltrão 	73,903	51.58	4.20 ^g	± 0.0054	
8. Central South Guarapuava	502,468	77.35	5.28 ^h	± 0.0023	
9. Southeast Irati	51.142	79,97	5,02	± 0,0065	
10. Curitiba	390,564	100.00	5.18	± 0.0025	
TOTAL	1.950.034				

Table 7 - Leasts squares means, number of observations (N) and cumulative

The age of sample also played a role (P < 0.01) influencing BTSCS (Table

role (P <0.01) influencing BTSCS (Table 8).

Table 8 presents BTSCS averages adjusted by the age of sample. One day old BTSCS (4.75) was lower than the five days old BTSCS (4.66). However, BTSCS values of two, four and six days old were all similar (P <0.01).

Table 8 – Lea	sts squares	means,	number	of	observations	(N)	and	cumulative
perc	entages of c	bservatio	ons (%) ao	CCO	rding to the ag	e of	samp	le.

AGE OF SAMPLE	N	N %	I	BTSCS		
(in days)	ys)	70	Mean ¹	±	SE	
1	282,619	14.49	4.75ª	±	0.002	
2	685,983	49.67	4,71 ^b	±	0.0020	
3	358,766	68.07	4.67°	±	0.002	
4	258,364	81.32	4.70 ^d	±	0.0030	
5	206,047	91.88	4.66 ^e	±	0.003	
6	88,496	96.42	4.70 ^{0 or}	±	0.005	
7	69,759	100.00	4.80 ⁹	±	0.0058	
OTAL	1.950.034					

¹ Tukey Test. Averages followed by at least the same letter don't differ statistically of each other (P<0.01).

Comparing one and eight days old samples, another study showed a decrease in BTSCS from 28% to 10.7%, a fall justified by the cell lyses seen in aging samples (Kennedy *et al.*, 1982; Ostrensky, 1999). In the present study, 68.07% of the samples were three days old or less and 96.42% were analysed by the sixth day after the sampling, because difficulties in logistics and transportation, while in Canada 93% of all samples were analysed before the third day and 99% before the seventh day (Monardes *et al.*, 1996).

CONCLUSION

BTSCS averages are high in Paraná when compared to those found in countries with developed dairy industries. Dairy organizations have tried their best to ameliorate this picture by using BTSCS to monitor milk quality. Nevertheless milk quality in Parana has remained unchanged for the last twelve years.

This study confirmed that the logarithmic transformation of BTSCC in BTSCS presents statistical properties superior to those of BTSCC, including accurate more hypothesis, smaller standard errors and coefficients of variation and larger coefficients of determination. The industries involved should also reevaluate their payment policies rewarding better the milk with higher quality standards given by the **BTSCS** values.

ACKNOWLEDGMENTS

To the Milk Quality Laboratory of the Dairy Herd Analysis Program (PARLPR), of the Parana Holstein Breeders Association (APCBRH), which is the result of technical and scientific cooperation between UFPR and McGill University in Canada, for making available the database and for their valuable collaboration to this study.

To FUNDO PARANA of the Secretaria da Ciência, Tecnologia e Curitiba-PR, Ensino Superior, this was funded research through the covenants numbers 01/07 and 19/07 of the Foundation of the Federal University of Paraná for the Development of Science, Technology and Culture.

INFORMATIVE NOTES

The study was approved by the Ethics Committee on Animal Use of the Federal University of Paraná (protocol 024/2011).

REFERENCES

ALI, A. K. A.; SHOOK, G. E. An optimum transformation for somatic cell concentration in milk. **Journal of Dairy Science**, Champaign, v.63, p.487-490, 1980.

BENTLEY INSTRUMENTS. 1995b. Somacount 300 Operator's Manual. Chaska. p.12.

BRASIL. Ministério da Agricultura e do Abastecimento, Instrução Normativa. Portaria n. 51, de 18 de setembro de 2002. **Diário Oficial da República Federativa do Brasil**, Brasília, DF, n.321, 20 set. 2002.

BRASIL. Ministério da Agricultura e do Abastecimento, Portaria n. 62, de 30 de dezembro de 2011. **Diário Oficial da República Federativa do Brasil**, Brasília, DF, n.251, 30 dez. 2011.

FRANKS, B. International Milk quality. 2001. Disponível em:

http://www.2nzdairy.co.nz:82/suppliernews/july2001.pdf>. Acesso em: 24/03/2012.

GODKIN, A. Monitoring and controlling mastitis: progress in Ontario. In: NATIONAL MASTITIS COUNCIL REGIONAL MEETING, 1999, Waterloo. **Proceddings**... Madison: National Mastitis Council, 1999. p. 1-9.

HARMON, R. J.; RENEAU, J. K. Factors affecting somatic cell counts in milk. In: NATIONAL MASTITIS COUNCIL ANNUAL MEETING, 32., 1993, Arlington. **Proceedings**... Madison: National Mastitis Council, 1993. p. 48-57.

HARMON, R. J. Somatic cell counts: Myths vs reality. In: NATIONAL MASTITIS COUNCIL REGIONAL MEETING, 37., 1998, Bellevue. **Proceedings**... Madison: National Mastitis Council, 1998b. p. 40-50.

HUNT, E.; ANDERTON, N. K. Update on bovine mastitis: Conversion of somatic cell count to somatic cell score. **The Veterinary Clinics of North America**: Food Animal Practice, Philadelphia, v.9, n.3, p.579-580, 1993. KENNEDY, B. W.; SETHAR, M. S.; TONG, A. K. W. *et al.* Environmental factors influencing testday somatic cell counts in Holsteins. **Journal of Dairy Science**, Champaign, v.65, n.2, p.275-280, 1982.

MACHADO, P. F.; PEREIRA, A. R.; SARRÍES, G. A. Composição do leite de tanques de rebanhos brasileiros distribuídos segundo sua contagem de células somáticas. **Revista Brasileira de Zootecnia**, Viçosa, v.29, n.6, p.1883-1886, 2000.

MAGALHÃES, H. R.; FARO, L. E.; CARDOSO, V. L. *et al.*. Influência de fatores de ambiente sobre a contagem de células somáticas e sua relação com perdas na produção de leite de vacas da raça Holandesa. **Revista Brasileira de Zootecnia**, Viçosa, v.35, n.2, p.415-421, 2006.

MONARDES, H. G.; MOORE, R. K.; CORRIGAN, B.; RIOUX, Y. Milk preservatives under different systems of samples storage in Quebec, Canada. **Journal of Food Protection**, Des Moines, v.59, n.2, p.151-154, 1996.

NATIONAL MASTITIS COUNCIL (NMC). Laboratory Handbook on Bovine Mastitis. Madison: National Mastitis Council, 1999.

NORO, G. Fatores ambientais que afetam a produção e a qualidade do leite em rebanhos ligados a cooperativas gaúchas. 92 p. Dissertação (Mestrado em Ciências Veterinárias) – Universidade Federal do Rio Grande do Sul, Porto Alegre, 2004.

OSTRENSKY, A. Efeitos de ambientes sobre a contagem de células somáticas no leite de vacas da raça holandesa no Paraná. 114 f. Dissertação (Mestrado em Ciências Veterinárias) – Curso de Pós-Graduação em Ciências Veterinárias, Setor de Ciências Agrárias, Universidade Federal do Paraná, Curitiba, 1999.

OTT, S. L.; WELLS, S. J.; SMITH, M. A. Bulk tank somatic cell counts of U.S. Milk supply, 1997. In: NATIONAL MASTITIS COUNCIL ANNUAL MEETING, 38., 1999, Arlington. **Proceedings**... Madison: National Mastitis Council, 1999. p.154-156.

PAULA, M. C. **Contagem de células somáticas em amostras de leite de tanques.** 45 f. Dissertação (Mestrado em Ciências Veterinárias) – Curso de Pós-Graduação em Ciências Veterinárias, Setor de Ciências Agrárias, Universidade Federal do Paraná, Curitiba, 2002. PRITCHARD, D. E.; ANDERSON, K. L.; MYERS, Z. H. **Seasonal patterns of bulk tank milk somatic cell counts**. 2001. Disponível em: http://www.cals.ncsu.edu/na_sci/extension/dairy/winter%202000%20word%20version%202.htm >. Acesso em: 03/08/2012.

RIBAS, N. P. Importância da contagem de células somáticas para a saúde da glândula mamária e qualidade do leite. In: INTERLEITE: SIMPÓSIO INTERNACIONAL SOBRE PRODUÇÃO INTENSIVA DE PRODUÇÃO DE LEITE, 4., 1999, Caxambu. **Anais...** São Paulo, 1999. p. 77-87.

SAS® System for Linear Models, version 9.3. Cary: SAS institute, 2011.

SHOOK, G. E. Aproaches to summarizing somatic cell count which improve interpretability. In: NATIONAL MASTITIS COUNCIL ANNUAL MEETING, 21., 1982, Pennsylvanis. **Procedings...** Madison: National Mastitis Council, 1982. p. 150-166.

SHOOK, G. E.; SCHUTZ, M. M. Selection on somatic cell score to improve resistance to mastitis in the United States. **Journal of Dairy Science**, Champaign, v.77, n.2, p.648-658, 1994.

SHOOK, G. E.; RUEGG, P. Geometric mean somatic cell counts: what they are; what they do. In: NATIONAL MASTITIS COUNCIL ANNUAL MEETING, 38., 1999, Arlington. **Proceedings...** Madison: National Mastitis Council, 1999. p. 93-100.