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ABSTRACT 

In this work, the least-squares methodology with covariance matrix is applied 
to determine a data curve fitting in order to obtain a performance function for 
the separative power U  of an ultracentrifuge as a function of variables that 
are experimentally controlled. The experimental data refer to 173 
experiments on the ultracentrifugation process for uranium isotope 
separation. The experimental uncertainties related to the independent 
variables measurements are considered in the calculation of the experimental 
separative power values, determining an experimental data input covariance 
matrix. The process control variables, which significantly influence the U 
values, are chosen in order to give information on the ultracentrifuge 
behaviour when submitted to several levels of feed flow F and cut  . After the 
model goodness-of-fit validation, a residual analysis is carried out to verify 
the assumed basis concerning its randomness and independence and mainly 
the existence of residual heteroscedasticity with any regression model 
variable. The response curves are made relating the separative power with the 
control variables F and  ,  to compare the fitted model with the experimental 
data and finally to calculate their optimized values.

Keywords: ultracentrifuge, uranium hexafluoride, isotopic separation, 
covariance matrix, least-squares method.

F feed flow rate, a.u.
P product flow rate, a.u.
W waste flow rate, a.u.
z isotope desired composition in feed F, a.u.
y isotope desired composition in product P, a.u.
x isotope desired composition in waste W, a.u.
R abundance ratio of the product.p

R abundance ratio of the waste.w

R abundance ratio of the feed.f

n size of the sample
L number of attributes of the total uncertainty.
e partial uncertainty magnitude.
Y generic dependent variable.
x ,x generic controlled variables.i j

V covariance matrix.
A project matrix
Pp pressure, a.u.

Greek symbols

independent variable standard deviation 
2x chi-square
2x r normalized  chi-squareed

  U ultracentrifuge separative power.
p      microcorrelation between uncertainties for x         i

and x .j
cut

 

a

  coefficients estimates i

coefficients estimates vector.    

Subscripts 

il, jl attribute uncertainty values 
ijl attribute relating uncertainty values
exp. experimental value
calc. calculated value 
p  product line
w waste line 

b
b

f           feed line

Superscripts 

t matrix transposition

INTRODUCTION

A gas ultracentrifuge, as schematized in Fig. 1 is 
composed of a long, thin vertical cylinder (rotor), rotating 
around its axis at a high velocity inside a case under 
vacuum.. The process gas, assumed to be a binary isotopic 

235 238mixture with UF  and UF inside the cylinder is 6 6, 

subjected to a centrifuge force that establishes a pressure 
gradient in the radial direction, increasing from the center 
to the rotor wall (Jordan, 1980). That pressure distribution 
is slightly dissimilar for the different isotopes because it is 
proportional to mass. This results in a partial separation of 
the feed F, into  two fractions: an enriched one (product) 

235and another depleted (waste) in the desired isotope ( UF ). 6

The ultracentrifuge performance and production capacity 
evaluation is usually done by means of the required work to 
isotope separation, which is proportional to the amount of 
processed material and to the obtained separation degree.  
Denoting by F, P e W, the streams of feed, product and 
waste and by z, y e x, the respective isotope desired 
compositions, the dependent variable that best defines the 
separative efficiency  of any isotope separation unit,  is the 
separative power or capacity dU, given by the following 
expression:

 

Rf
R

R
FR

R

R
WR

R

R
PU

f

f

w

w

w
p

p

p
ln

1

1
ln

1

1
ln

1

1

+

-
-

+

-
+

+

-
=d (1)

where F, P and W are the operational variables and the 
response variables are the abundance rations of product 
R =y/(1-y) and waste R =x/(1-x).p w
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Figure 1. Countercurrent ultracentrifuge design

EXPERIMENTS

An  isotopic separation test consists in the operation 
of an ultracentrifuge in a bench plant shown in Fig. 2. The 
ultracentrifuge receives an injection of a binary isotopic 

235 238mixture with UF  and UF  as feed flow F and permits 6 6

the extractions of  the product flow P and waste flow W. 
Samples are collected for verification of the separation 
obtained by the measures of the abundance ratio of the 
enriched and depleted streams, R  and R , respectively, p w

allowing to calculate the separative power dU, given by 
Eq. (1). Defining the cut q as the relation between the 
product and feed flow and fixing the product pressure line 
p , several groups of data are generated with the variation p

of the cut q and the feed flow F. Each of them is 
denominated a separation experiment, resulting in an 
ultracentrifuge performance function like dU (F, q ).
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Figure 2.Experimental  bench plant design.

STATISTICAL THEORY

The measurements of R , R , P and W, involved in the P W

separative power determination dU, provide correlated 
uncertainties and define a covariance between them. These 
statistical uncertainties are propagated in Eq. (1) in order to 
obtain the dU final uncertainty with the expression 
(Cowan,1998):
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where e , e   are the partial uncertainty magnitude of any il jl

independent variable R , R , P and W;    represents the P W ijl

microcorrelations between these variable measurements 
due to each attribute l. The process analysis permits to 
determine these microcorrelations values with safety. The 
dU experimental data fitting through a performance 
function of the kind dU (F, q) is obtained due to dU and 
(F,q) relation, that may be written as a second order 
polynomial given by:  

where x  are the independent variables R , R , P and W,     i P W i

express their respective variances. The R  and R   P W

variances are directly given by mass spectrometry analysis 
while the  P and W variances are calculated from mass 
flowmeters calibration curves. Each dU experimental data 
covariance matrix element  is calculated by the expression:
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where Y is the response (dU),    are the equation i

coefficients and x  , x  are the controlled variables (F, q). i j

This equation is used to evaluate the linear, quadratic and 
interaction effects between these variables providing the 
project matrix A, that contains all the fitted model 
explained variables. The Eq. (4) is a linear function in the    i
parameters and although we can perform the least-squares 
method to any function, in this case the chi-square and 
estimators resulting values have desired properties: the 
estimators and their variances can be analytically obtained, 
they will be unbiased with minimum variance no matter the 
number of experiments and the experimental data 
distribution function. According to the least-square 
method with covariance matrix, the best possible solution 

2 2is the one which minimizes the chi-square    . The      
value for this particular problem is given by (Smith, 1981 
and 1993):

(5)
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where                   , and    is the coefficients estimates 
vector of the fitted equation. Under the following 
conditions: (i) the dU experimental data is distributed 
according to a normal with a known covariance matrix, 
which permits to use the chi-square statistic, (ii) the fitted 
function, Eq.(4) is linear in the coefficients   i, allowing to 
obtain an analytical solution for Eq.(5) and (iii) the 
functional form of the fitted function, Eq.(4), is corrected, , 
i. e., it is possible to obtain the minimum deviation between 
the experimental and predicted values, so the quadratic 

2form c  should  be distributed in conformity with the chi-
square tables, allowing to evaluate the model goodness-of-
fit (Cowan, 1998). 

The desired least-square solution is given by:

bd AU calc »

exp
1 UVAV U

t db db
-= (6)

where the covariance matrix for the solution     is given by:

( )11 --= AVAV U
t

db
(7)

That gives the coefficients estimates variances and 
covariances of  the experimental data fitted curves. In this 
case, a FORTRAN program (Migliavacca, 2004) is used.

RESULTS AND DISCUSSION

The experimental data performed with only one 
ultracentrifuge covered the whole domain of interest, 
consisting of eight values of feed flow F, seven values of 
cut q and fixing the product pressure line  p , resulting in a p

group of 173 experiments. Due to secret character inherent 
to the process development, the sensitive data were 
codified, with all variables related to arbitrary units. The 
isotopic abundance ratios R , R  e R  , and the flow values  F P W

F, P e W, with their respective uncertainties; the separative 
power dU and cut q experimental values are presented in 
Tab. (1). In Tab. (2), are presented the coefficients 
estimates of the fitted equation, the determination 
coefficient, the chi-square and normalized chi-square and 
in Tab. (3) are presented  their variances and covariances in 
the upper triangle and  their correlations in the lower 
triangle.

Table 1. Codified variables and their uncertainties values

1         9.8086        1.1982        8.9588       1.1900          4.2337

2         9.8114        1.1622        9.0964        2.3143        12.1834

3         9.8114        1.1645        9.0994        2.3143        15.8560

4         9.8114        1.1619        9.1356        2.3143         6.6741

5         9.8014        1.1784        9.0483       2.0429         18.4626

6         9.8014        1.1779        9.0272        2.0429         6.7377

7         9.8014        1.1729        9.0604        2.0429        19.3306

...           ...              ...             ...             ...               ...
173     9.8971        1.0970        8.1057       0.5257          1.5282

Exp sRf sRp
-07(x10 )

RF
-04)(x10

Rp
-03(x10 )

Rw
-04(x10 ) -06(x10 )

Table 1. Codified variables and their uncertainties values 
(cont.)

4.11          67.478          75.853      0.124      0.734      0.4631    1.02
0.79          98.048        102.216      0.112      0.675      0.4995    1.01
8.67          97.547        102.216      0.112      0.675      0.4945    1.03
28.51        98.048        102.216      0.112      0.675     0.4922     0.98
1.36          86.021         90.278       0.116      0.700     0.4790     1.04
12.43        85.018         91.273       0.117      0.698     0.4837     1.05
5.87          86.021         90.278       0.116      0.700     0.4863     0.99
...               ...               ...            ...         ...           ...        ...

5.05         80.5081        22.1319     0.118      0.883     0.7863    0.50

P W q dUsRW sP sW
-07x10

Table 2. Model coefficients estimates and model 
goodness-of-fit parameters

0 1 2 11 22 112

-0,2845    2,8816    8,857E-03   -3,989   -2,75E-05   3,458E-03

R2 0,9931 2 2177,1 1,06red

Table 3. Covariance and correlation matrices

0 1 2 11 22 112

0,005      -3,9E-04      -2,8E-05       4,4E-03          0,00        3,8E-06

-0,04          0,02         -2,1E-05        -2,7E-03        0,00         2,3E-05

-0,81        -0,329         2,3E-07        2,6E-05         0,00            0,00

0,45         -0,178           -0,39              0,02            0,00           0,00

0,58           0,17             -0,89             0,42          1,7E-12        0,00

-0,11         -0,36             0,32            -0,737          -0,41        2,3E-07

In Figs. 3 - 4 are presented the residuals graphs 
against the controlled variables, which permit  to evaluate 
the regression model residuals heteroscedasticity degree 
(Vasconcellos e Portella, 2001).

Through Figs. 5 - 6 it is possible to verify how 
satisfactorily the theoretic curve fits the experimental data 
and finally in Fig. 7 is presented the response surface of the 
separative power dU against F and q that allows to 
visualize the dU behavior in the ultracentrifugation process 
and to find the optimum values of the operational 
controlled variables.
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Figure 5. dU against F .

Figure 6. dU against.

Figure 7. dU against F and q.

CONCLUSIONS

The least-squares method with covariance matrix 
was successfully applied in the determination of the 
ultracentrifuge separative power dU fitting curve against 
experimentally controlled variables. The normalized chi-
square was obtained and showed a very reasonable 
agreement between the dU experimental data dispersion 
and the uncertainties estimated through their covariance 
matrix. The fitted model was able to explain the 

2experimental data due to the determination coefficient (R = 
0,9931). In Figs. 3 - 4, it is possible to verify that there is no 
visible patterns between the residuals and the control 
variables and finally through the response curve graphs, 
Figs. 5 - 6, the theoretical model is showed to be reasonably 
fitted to the experimental data. 
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