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ABSTRACT 
 
In this work, wavelet transforms are the analysis tools for studying transient 
and discontinuous phenomena associated to turbulent flows. The application 
in quest results from velocity measurements with hot wire anemometry in 
the transient wake considering a circular cylinder in an aerodynamic 
channel. Continuous and discrete wavelet transforms are applied and 
compared with the corresponding results given by the Fourier transform. 
For the continuous wavelet transform, the Morlet function was adopted as 
transform basis, and for the discrete case, the Daubechies orthonormal 
wavelet with 20 null moments. Results using the discrete wavelet packet 
transform are also presented and compared. A wake past a cylinder was 
analytically simulated and compared with the actual one, both in transient 
flow. The ability of the wavelet transforms in the analysis of unsteady 
phenomena and the potential of the wavelet approach as a complementary 
tool to the Fourier spectrum for the analysis of stationary phenomena is 
presented and discussed. 
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NOMENCLATURE 
 
a scale coefficient 
b position coefficient 
C approximation set 
D detail set 
Fs sampling frequency, Hz 
gn, wavelet filter 
hn wavelet filter 
j dyadic scale parameter or level 
k dyadic position parameter 
L2() space of square integrable functions 
m wavelet packet coefficient 
N degree of a polynomial function 
n positive integer 
p prime number 
 real numbers set 
t time, s 
x time series 

X
~

 wavelet transform 
Z integer numbers set 
 
Greek symbols 
 
 wavelet function 
 scale function 
 
Subscripts 
 
c coarse 

d detail 
J coarser index 
 
INTRODUCTION 
 

Experimental data of turbulence are usually 
presented as discrete time series representing 
continuous functions in time, such as velocity, 
temperature or pressure, sampled with a suitably 
chosen constant frequency, allowing recording and 
analysis by digital means. Analyses are usually 
characterized by statistical results such as averages 
and variances, correlation functions and spectral 
density functions, performed over a single “time 
history”, since turbulence is considered a 
phenomenon of random background with the 
presence of coherent structures (Hussain, 1983) and 
the ergodicity hypothesis is usually accepted (Galanti 
and Tsinober, 2004). For the study of such 
phenomena, Fourier analysis has been a valuable and 
widely used analysis tool. 

Back to the 30's, pioneering experimental 
articles in turbulence already used hot wires, a 
technique employed even nowadays, when the first 
correlation measurements in a pipe flow were 
manually calculated (Taylor, 1936). It took more than 
thirty years until the calculations could be done with 
the help of computers. Comte-Bellot, 1965 and Lawn, 
1971 used analogical band pass filters and true-rms 
voltmeters for spectral measurements in parallel 
plates, using hot wires, and pipe flow, using Laser 
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Doppler Anemometry, respectively. Since then, the 
rapid development of informatics and computer-aided 
methods led to very fast data acquisition systems, 
computers and software, improving dramatically the 
analysis resources for experimental data. 

The study of turbulence by means of Fourier 
analysis provides information on the frequencies 
involved and the interdependence of simultaneous 
phenomena, such as fluctuation of velocity and 
pressure in different positions (Hinze, 1975). 
Nevertheless, for nonstationary data, Fourier analysis 
is useless because the average values are not 
meaningful (Bendat and Piersol, 1993). 
Nonstationary data are the usual rule in field 
measurements; an extreme example is the case of 
typhoon winds (Huy et al., 2009). There are also 
transient flows generated by operating conditions 
(Indrusiak et al., 2005; Indrusiak and Möller, 2011) 
and other nonstationary phenomena like bistable flow 
which arise from stationary initial conditions 
(Zdravkovich and Stonebanks, 2000; Alam et al. 
2003; Olinto et al., 2009). In transient and other 
nonstationary flows, besides the variable mean 
values, additional phenomena may appear, as the 
flow average velocity changes with time. 

A discrete time series is considered 
nonstationary when its mean square values and 
autocorrelation functions are not invariant with time 
(Bendat and Piersol, 1986). According to these 
authors, the absence of a general methodology to 
analyze non-stationary random data is due partly to 
the fact that such a classification is a negative 
statement specifying only a lack of stationary 
properties, rather than a positive statement defining 
the precise nature of the nonstationarity. The 
consequence is the need of a specific model for each 
class of nonstationarity. 

Literature shows the wavelet transform as a 
suitable tool for analyzing problems represented by 
nonstationary series and discontinuities. Since the last 
decade of the twentieth century, there have been 
studies that use the wavelet transform to understand 
the chaotic nature of turbulence in systems where the 
assumptions of ergodicity, homogeneity and isotropy 
are restricted (Meyer, 1993). The wavelet analysis 
has become widely used not only in turbulence 
studies, but also in various areas of knowledge, from 
music (e. g. Velarde et al., 2013) to image processing 
(e. g. Unser and Blu, 2003) and speaker recognition 
(e.g. Sumithra, 2014), from economics (e. g. 
Crowley, 2007) to medicine (e.g. Armstrong, 2011; 
Castillo et al., 2013). 

However, the option for wavelet transform may 
not always contribute for further understanding of the 
analyzed data; in some situations Fourier analysis 
provides equivalent results. The same is true 
regarding the many possible choices of wavelet 
functions available and the proper selection of the 
wavelet transform can indeed become an issue 
(Farge, 1992).  

The current work has therefore two main goals: 
to present a general overview of relevant aspects 
from the wavelet analysis and to bring them into 
perspective when applying this approach for 
analyzing nonstationary data, obtained from 
measurements with hot wire anemometry in 
laboratory flows. Continuous and discrete wavelet 
transforms were applied. For the former, the Morlet 
kernel is assumed, and for the latter, the orthonormal 
Daubechies Db 20 wavelet is applied.  
 
SIGNAL ANALYSIS 

 
Statistical signal analysis can be performed in 

time or frequency spaces. In time space, spectral 
information is not visible, and in frequency or Fourier 
space, time information is lost. In order to preserve 
time-frequency characteristics of signals, appropriate 
tools are continuous wavelet transforms and the 
analysis in wavelet space, whose time-scale domain 
allows an easy access to frequency information. 
Discrete wavelet transforms may be used as well, 
they usually are computed faster than the continuous 
transforms and the results can be presented as a set of 
frequency band time series of the same length of the 
original series. 

 
 Fourier transform: some relevant remarks 
 
Analysis tools in time domain are mean value and 
central moments: variance, skewness and kurtosis as 
well as auto and cross correlations. In frequency 
domain, Fourier transform is extensively applied, 
both to the signal itself and to the probability density 
function. The latter originates energy (power or 
Fourier) spectrum, as stated by Einstein, 1914. A 
relevant aspect related to Fourier analysis is the 
Parseval identity for functions of finite energy 
establishing that total energy of the signal is 
preserved by Fourier transform (Körner, 1988). 
Power spectrum can also be estimated through finite 
Fourier transform of the original signal time history. 
A usual procedure used to enhance quality of 
spectrum of a stationary signal is to estimate the 
spectral values for each of a collection of sample 
records, acquired sequentially and average the results. 
A time window (e.g. Hanning) is applied to each 
sample record to taper the data to provide a more 
gradual entrance and exit and avoid anomalies in the 
estimated spectrum (Bendat and Piersol, 1993). 
Figure 1 explains graphically the procedure. A 
smoothing can also be done in frequency by 
averaging over a proper spectral bandwidth. 

One of the drawbacks of applying Fourier 
transform is the incapability of recognizing the 
presence of bursts or transient phenomena that may 
or may not be observed in physical space, but will be 
completely hidden in the Fourier space, since the 
transform coefficients refer to the entire time domain 
of the signal. Fourier transform base components - 
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sine and cosine functions - have infinite support i.e. 
they are defined for all x in  and are not identically 
zero in any finite interval contained in , which 
means that they are located in frequency, but extend 
over the whole time domain. Therefore, Fourier 
coefficients represent an average for the entire time 
domain at each frequency considered. 

 

 
Figure 1. Schematic representation of the split of 

time series in blocks, multiplied by a spectral 
window (a). Result of applying the window to each 

block (b). 
 

Windowed Fourier transform or Gabor 
transform was one of the attempts to allow time 
location, using Fourier transform (Gabor, 1946). The 
transform is done to the signal part within fixed sized 
windows applied to the signal. If the window is too 
narrow, low frequencies cannot be resolved. 
Conversely, by choosing a too large window, time 
localization of high frequencies will be lost.  

 
Wavelet transforms: an overview 

 
 The continuous wavelet transform has 

emerged from the idea of compressing or expanding 
the window of windowed Fourier transform, keeping 
the same basis functions, compressed and dilated, 
allowing a better time location in high frequencies 
and better identification of low frequencies. To 
constitute a wavelet basis suitable for signal analysis 
applications, a function must be well located in both 
frequency and time. Due to this property of dual 
location, there is a balance in the resolutions in each 
area: the gain in temporal resolution is offset by a 
loss of resolution in frequency (Daubechies, 1992), 
according to the Heisenberg’s uncertainty principle. 
This fact does not represent a limitation of the 
perception or of the analysis tools, but follows from 
the definition of frequency, which may not be 
measured instantaneously. 

A wavelet, as the name suggests, is a “small” 
wave, which grows and decays in a limited and 
closed interval of time, being identically zero outside 
this region. This is exactly the so-called compact 
support property, satisfied by some of the possible 
wavelet families, as the orthonormal Daubechies 
wavelets. A “large” wave, by contrast, would be the 
sine/cosine functions for example, which keep 
oscillating all over the real domain (Percival and 
Walden, 2000). In other words, the basis created by 

dilations and translations of wavelet functions are 
transient, and therefore are more suitable for 
analyzing transient functions. There are many 
functions with the required admissibility property, 
which imposes a finite energy Fourier transform of 
the candidate function, but not all of them form an 
orthogonal basis for the space of the square integrable 
functions, L2(). 

Parseval identity applies also to wavelet 
transforms, ensuring that the energy of the signal is 
preserved by the transforms. 

 
Continuous wavelet transform 

 
The standard formulation for the wavelet 

function (t) that generates the continuous wavelet 
transform (CWT) is given, depending on its dilations 
and translations, as follows: 

  

  0,,
1

, 





 

 aba
a

bt

a
tba   (1)

  
where a and b are respectively the scale and position 
coefficients. The continuity of the transform is due to 
the continuous variation of coefficients a and b. This 
means that even in the analysis of a discrete signal, 
this analysis will be performed on all possible scales 
and at every point of the domain. These bases are not 
orthogonal, since the information is repeated in more 
than one coefficient, and therefore generates a large 
amount of redundant data. 

The wavelet transform, therefore, is the 
application which associates a signal x(t) to its 
wavelet coefficients, given by: 

  

     dtttxbaX ba,,
~ 





  (2)

  
Discrete wavelet transforms 

 
Discrete wavelet transform could simply be 

thought as a restriction of continuous version, when 
coefficients a and b no longer vary continuously, but 
assume dyadic (or any other p-adic, with p prime) 
values. However, discrete wavelet function families 
and their transforms are themselves another entire 
area of research, especially because of their direct 
connection with filter banks, (Strang and Nguyen, 
1996), and the fast formulations for their transforms 
(Unser and Blu, 2003, Mallat, 1989).  

Discrete wavelet families are defined by a 
compact supported scaling function (t), an 
associated wavelet function ψ(t) (also with compact 
support), and again their translations and dilations, 
assuming j as dyadic scale parameter and a finite 
amount of possible k values within each scale. 
Nevertheless, just some of these functions are defined 
analytically (e. g. Haar wavelet), and the main 
property characterizing these families is their 
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association to finite length coefficient vectors, called 
wavelet filters hn and gn, which allow the 
computation of these function values for any value t 
in the real line , as well as the fast discrete 
transforms. 

The discrete wavelet transform (DWT) is thus 
given by: 

  

       kjttxkjX
k

kjd ,,
~

,  (3)

  
For each level j the part of the signal containing 

the mean values (lower frequencies) is given by 
(Mallat, 1998): 

  

     
k

kjc ttxkjX ,,
~   (4)

  
The DWT of a series with 2n elements is 

computed for 1jJ, being Jn a convenient arbitrary 
choice for the coarser desired level. Then, any 
discrete time series with a sampling frequency Fs can 
be represented by: 

  

         



Jj k

kjd
k

kJc tkjXtkJXtx ,, ,
~

,
~  (5)

  
where the first term is the approximation CJ of the 
signal at scale J, which corresponds to frequency 
interval [0, Fs/2J+1] and the inner summation of the 
second term are details Dj of the signal at scales j 
(1jJ), which corresponds to frequency intervals 
[Fs/2j+1, Fs/2j]. Indeed, the DWT has the ability to 
split the whole range of signal frequencies associated 
with different scales of resolution and different 
characteristics in a manner similar to a bank of 
analog filters.  

Again, the wavelet functions considered for 
discrete transforms form a basis in the space of 
integrable functions L2(), since they generate, scale 
by scale, families of discrete nested spaces that, in the 
limit, cover the entire space L2(), satisfying the 
concept of multiresolution analysis (Mallat, 1989, 
Daubechies, 1992). The different types of available 
bases can be classified with respect to symmetry or 
orthonormality of the functions (t) and ψ(t) (and 
their translations and dilations), as well as with 
respect to the  smoothness of these functions. In this 
sense, the smoothness is translated as null moment 
property, which states that polynomial functions until 
a certain degree N can be represented exactly by 
scaling functions, having null projections with 
respect to the associated wavelets at the same scale. 
This property is directly related to the size of the 
wavelet filters, hn and gn, which are responsible for 
the signal decomposition in the scaling and in the 
wavelet function directions, respectively. In the case 
of wavelets from the orthonormal Daubechies family, 

for example, the size is then 2N. The functions of this 
family are many times labeled as DbN, indicating the 
number of null moments considered. 

Fast wavelet transform applied to a time series 
given in a resolution level j can then be interpreted as 
the convolution of this series, given by an input 
vector x with its 2j discrete values, with the wavelet 
filters hn and gn, that define the scaling function and 
wavelet function. Therefore, the initial vector x (or 
C0) and, subsequently, each vector Cj are then split in 
two other half sized vectors, Cj+1 and Dj+1, where j+1 
indicates the next coarser level obtained by the 
decomposition. In Figure 2(a) a representation for the 
decimated fast DWT is shown, whose pyramidal 
algorithm is due to Mallat (1989). In the undecimated 
version of the transform, both vectors Cj+1 and Dj+1 

keep the same size as the original vector x at each one 
of the decomposition levels of the transform. 

A modification of the pyramidal algorithm 
yields the so called discrete wavelet packet transform 
(DWPT), where each detail series is wavelet 
transformed in two series, with respectively lower 
and upper half bandwidth frequency interval (Meyer, 
1993). For each level j one can obtain 2j successive 
intervals of equal bandwidth. This recursive 
transformation of detail series is represented in a 
binary tree, Fig. 2(b). Any admissible binary tree can 
be chosen for representation of the signal in the 
wavelet space, with frequency intervals of variable 
bandwidths, according to the analysis to be done. An 
admissible tree is any binary tree where each node 
has either 0 or 2 branches. 

 

 
 
 

Figure 2. Wavelet trees: (a) DWT, (b) DWPT, 3 
level decompositions. 

 
For discrete wavelet packet transform, the 

coefficients X
~

 at each resolution level j, given by 
Equation (6), can be thought as being the projection 
of time series x in the directions defined by bases 
functions ψj,m,k (t), where m varies from 0 to 2j-1 
indicating each one of the packets of the 
decomposition. Parameter k is the position inside 
each packet. 

  

     
k

kmj ttxkmjX ,,,,
~   (6)

  
Here, the notation ψj,m,k (t) is general and is used 

for indicating both scaling and wavelet function. In 
practice, the DWPT is performed also only with 
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respect to the wavelet filters hn and gn, and is 
represented at Fig. 2(b), where the blocks Dj,m contain 

the coefficients kmjX ,,

~
. 

 
EXPERIMENTAL TECHNIQUE 
 

The test section, presented in Fig. 3, is a 
2000 mm long rectangular channel, with 146 mm 
height and 193 mm width. Air, drawn from the 
laboratory environment, is the working fluid, driven 
by a centrifugal blower. The blower velocity was 
controlled by a frequency inverter. 

A single wire hot wire probe was placed at a 
fixed position to measure the reference velocity for 
the experiments. At the maximum velocity the 
Reynolds number, calculated for the cylinder 
diameter (32.1 mm) was 2.7 × 104. Measurements of 

the velocity in the wake of a single tube were 
performed using a constant temperature hot wire 
anemometer. A double hot wire probe was used, 
allowing the determination of both axial and 
transversal velocity components. Acquisition 
frequencies of 25 kHz and 8 kHz were used and low 
pass (anti-aliasing) filters of 10 kHz and 3 kHz were 
applied. At both experiments, the fan was turned on 
manually (about 1 second) after the start of the 
acquisition system. A constant acceleration for the 
flow velocity variation was set by adjusting the 
inverter for a linear frequency variation from 0 to 
60 Hz. At both experiments, the air velocity achieves 
its maximum value and becomes statistically 
stationary 4.5 seconds after the beginning of the dada 
acquisition. 

 

 
 

Figure 3. Schematic view of the test section. 
 

ANALYTICAL MODEL 
 

The wake of a single cylinder in both stationary 
and transient flows was used to confirm the ability of 
the CWT to allow the visualization of the energy 
distribution in the time-frequency domain. 

For comparison with the transient signal 
acquired at a frequency of 8 kHz (216 samples, 8.2 
seconds), the evolution in the wake was simulated 
analytically by the function represented below: 

  
  015.10  txst  (7)

  

     ttttxsts  5830sinlog2.415.1 2  (8)

  
   ttxsts 194sin8log2.82.4   (9)
  

Equation 8 is a sinusoidal function with a linear 
frequency modulation, known as chirp. Its 
instantaneous frequency is given by (30t - 29) Hz. 
The chirp was chosen due to its resemblance to the 
real velocity signal at the transient period without the 
random component. Indeed, chirp is a continuously 
varying, in amplitude, frequency and mean value, 
signal. Wickersham et al. (2014), to highlight the 
performance of CWT in the analysis of flames, also 

used a similar signal. For Eq. 7, 8 and 9, the 
increment of t was 1/8000 seconds. 

Figure 4 shows (a) the transient axial velocity 
and (b) the transient transversal velocity in the wake, 
0.10 m downstream the cylinder, (c) reference 
velocity and (d) the analytically created signal. 
Steady state occurs at about 4.5 seconds after data 
acquisition started and about 3.7 seconds after the 
blower started. 

 

 

Figure 4. (a) Axial velocity in the wake of the 
cylinder, (b) transversal wake velocity, (c) reference 

velocity upstream the cylinder, (d) analytically 
created signal. 
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WAVELET ANALYSIS 
 
For discrete transforms (DWT and DWPT), the 

strategy for the current work was initially to explore 
all possible wavelet functions available on the 
MATLAB library and, according to preliminary 
results, to make a pre-selection for performing further 
analysis with nonstationary data. The four initially 
chosen were Haar, Meyer, and two orthonormal 
Daubechies functions, one with five null moments 
(Db5), and the other with 20 null moments (Db20). 
Preliminary analysis were done using both DWT and 
DWPT, of a typical stationary wake signal acquired 
at the wind tunnel at same conditions as the signal 
shown in Fig. 4 (sampling frequency of 25 kHz) 
(Indrusiak, 2004). The series resulting of 
reconstruction of the signals for some frequency 
intervals (0 to 6.1 Hz, 6.1 to 12.2 Hz and 12.2 to 
18.3 Hz) were analyzed through Fourier spectra, 
showing that, for the signal investigated, the best 
frequency filtering ability of discrete wavelet 
transforms is obtained with Db20. The first three 
wavelets present high frequency components along 
with the expected frequency content, while in the 
latter high frequencies were completely eliminated. 
Indeed, spectra of the reconstructed approximation (0 
to 6.1 Hz) and details (6.1 to 12.2 Hz and 12.2 to 
18.3 Hz) of the signal, Fig. 5, show that the best 
frequency filter behavior was achieved by the use of 
Db20 wavelet as basis. Thus, for DWT and DWPT 
analysis, Db 20 was used. 

 

Figure 5. Power spectral density for the first three 

frequency intervals reconstructed from DWPT level 
11 ((0 to 6.1 Hz, 6.1 to 12.2 Hz and 12.2 to 18.3 

Hz), using wavelet bases of (a) Haar, (b) Meyer, (c) 
Db5 and (d) Db20. 

 
The Parseval identity ensures that discrete 

wavelet transforms for orthonormal basis conserve 
the energy of the signal. Figure 6 shows the energy 
spectra of stationary signal, calculated by Fourier, 
DWT and DWPT. Fourier spectrum was obtained 
using Welch (Welch, 1967) algorithm with a 
Hamming window function. Frequency interval was 
6.1 Hz. For DWT, the first frequency interval was 
also 6.1 Hz. Nevertheless, each subsequent interval 
has twice the frequency value of the previous one, 
due to the inherent characteristic of DWT. Indeed, 
also the peak related to vortex street was smoothed 
due to the very large interval (97.6 to 195.3 Hz). For 
the spectrum obtained from DWPT frequency 
interval was 6.1 Hz, equivalent to that of Fourier 
spectrum, for the first 128 intervals (up to 781 Hz) 
and then due to computational reasons doubled at 
each 64 intervals, thus presenting a smoother aspect 
at higher frequencies. 

 

 

 
Figure 6. Power spectral density of the stationary 

wake signal, obtained by (a) Fourier transform and 
DWT, (b) Fourier transform and DWPT. In (c), DW 

and DWP spectra were respectively divided and 
multiplied by ten to allow better viewing.
 
Despite of the adjustments, spectra are 

coincident, as shown in Fig. 6(a) and 6(b). To allow 
better visualization wavelet and wavelet packet 
spectra were respectively divided and multiplied by 
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ten in Fig. 6(c). 
Another peculiarity of discrete wavelet 

transform, when assuming a periodic extension of the 
wavelet family in the analysis of finite dimensional 
data, is the appearance of spurious results arising 
from the discontinuities at both extremities of the 
finite experimental series. A usual procedure for 
Fourier transform is the application of a time window 
function (Bendat & Piersol, 1986). A similar 
procedure may be applied to the signal prior to 
wavelet transformation. Another approach is to 
extend the series at the extremities considering any 
kind of data extrapolation (Kozakevicius and 
Schmidt, 2013). In addition, a confidence interval can 
be calculated to predict the region where results are 
reliable. In the present work the initial values of some 
series are null and also the acquisition time was 
extended beyond the interval of interest and thus no 
procedure was necessary. 

Since the orthonormal wavelet transform 
preserves the energy of the signal, the distribution of 
energy in a time-frequency plane is represented by 
means of the squares of transform coefficients 

 b,aX
~

.of CWT. This is often called spectrogram or 

wavelet spectrum. For CWT, the Morlet function was 
adopted, following the tendency in the literature. 
Figure 7(a) shows the spectrogram of the analytical 
function (chirp) represented by Eqs. 7, 8 and 9. 
Figure 7(b) is the spectrogram of the signal acquired 
in the cylinder wake, at a sampling frequency of 
8 kHz and in Fig. 7(c), the background turbulence is 
shown. Wavelet spectrum of the chirp (Fig. 7(a)) 
shows a very regular increase of energy at increasing 
frequencies along time. It reproduces time evolution 
of the wake, Fig. 7(b), whose energy levels and 
frequencies increase along time during the transient 
time interval, presenting furthermore constant energy 
level and frequency interval at permanent part of the 
signal. This high-energy frequency interval related to 
the permanent wake spreads from 80 to 120 Hz. 

The continuous wavelet spectrum of the 
reference velocity (Fig. 7(c)) shows that, after the 
onset of the flow, at about 0.8 seconds, energy is 
distributed randomly over all frequencies, with levels 
increasing with time at transient part, especially at the 
interval from beginning to 1.5 seconds. The 
background of Fig. 7(b) is similar to that of Fig. 7(c), 
but with higher energy levels, denoting enhancement 
of energy of the flow at all scales due to the wake. 

The comparison of Figs. 7(a-c) shows that the 
flow downstream the cylinder can be considered as a 
sum of a background of randomly distributed energy 
plus the very organized and high energy level 
(coherent) structure formed by the vortices 
transported by the flow. These observations can be 
corroborated by observing some details of the 
evolution of chirp and wake in the spectrograms for 
time interval from 3 to 3.3 seconds, and the 
background turbulence in the same interval in Fig. 
8(a-c), respectively. 

As in time domain the analytical signal 
resembles the real series in the wake, also the 
spectrograms are similar. The main difference is that 
while energy distribution of the first one is regular, 
like the series itself, the actual series presents 
irregularities in the entire interval. This is because the 
wake is turbulent at very low Reynolds numbers. 
According to Blevins (1990) after a Reynolds number 
of 300 the wake is fully turbulent. This value 
corresponds, in the present case, to a flow velocity of 
about 0.15 m/s. The frequency of vortices in the wake 
fluctuates around the average frequency dictated by 
mean incident velocity and cylinder diameter. By 
means of Fourier analysis, one can obtain the average 
frequency and fluctuation of the wake remains 
completely hidden. Only by wavelet analysis, this 
feature is observed.  
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Figure 7. (a) Spectrogram of the analytical function 
(chirp) given by equations 7, 8 and 9; (b) spectrogram of 

the signal acquired in the cylinder wake and (c) 
spectrogram of reference velocity. In (b) and (c) 

sampling frequency of 8 kHz. 
 
The evolution of transient wake (acceleration 

period) is clearly visible and it is noticeable that both 
frequency and energy increase with time. Any cut in 
the graph, parallel to frequency-energy plane, shows 
the instantaneous power spectral distribution, while a 
cut parallel to time-energy plane shows the 
fluctuation of energy over time for the chosen 
frequency, as shown in the quantitative analysis of 
transient wake, using DWPT, by Indrusiak and 
Möller, 2011. 

 
 

 

 

 
 

Figure 8. Details of Figs. 7 (a), (b) and (c). 
 

CONCLUSIONS 
 
The current work presents an overview of some 

relevant aspects for wavelet analysis when applied to 

stationary and nonstationary signals. The signal used 
was a transient wake past a circular cylinder. For 
discrete transforms, analyses performed over a 
stationary part of the signal show that DWT and 
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DWPT performs like Fourier transform, preserving 
the energy content of the signal for each frequency 
band of the analysis. Continuous transform was 
applied to the whole signal, including transient part, 
and to a signal analytically constructed to have a 
similar behavior to the transient wake, with no 
broadband noise. Results show a very regular 
transient energy ridge for the analytical signal and a 
less regular ridge, surrounded by white noise energy, 
for the actual signal. For both, time-frequency 
evolution of the wake became clearly visible. 

Some drawbacks of the choice of an appropriate 
wavelet function were presented. The ability of 
wavelet transforms to represent a given signal by 
splitting the whole range of signal frequencies 
(associated to different resolution scales and different 
characteristics) obtaining the entire time-frequency 
evolution is very important, since it allows a better 
understanding of random stationary and 
nonstationary processes. 

The analyses performed over a transient signal, 
as well as over an analytically constructed signal, 
were designed ad hoc to show the applicability of the 
transforms. The wavelet function used for the CWT 
is a usual choice in the literature, but for discrete 
transforms, a non-exhaustive comparison was made 
between some available wavelet functions. The 
results show that the transforms are skillful to 
enhance the analysis of transient as well as stationary 
signals. In the chosen example, frequencies of the 
wake and their time location were known beforehand, 
but in phenomena where the frequencies of interest 
are not known or cannot be previously determined 
through Fourier analysis, the wavelet analysis can 
become a rather cumbersome process due to the 
search for more adequate wavelets and parameters. 
Therefore, wavelet transform cannot be considered 
simply an option to Fourier transform, but rather a 
complementary tool to be used to broaden 
understanding of the phenomenon or when traditional 
methods are unsatisfactory, as happens whenever 
nonstationary phenomena occur. 

The ability of wavelet transform in filtering the 
signal analyzed in its various frequency ranges to 
visualize the evolution in each time interval, although 
not necessarily leading to the discovery of specific 
characteristics of flow, is very helpful for better 
understanding of phenomena studied. Wavelet 
transforms are versatile tools in experimental analysis 
because, while not requiring that the phenomenon is 
stationary, allow the time-frequency analysis of 
virtually any turbulent flow. 
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