Ciéncia/Science

NUMERICAL STUDIES OF NATURAL CONVECTION IN A
SQUARE CAVITY

Viviana Cocco Mariani’,

and Ivan Moura Belo’

“Pontificia Universidade Catdlica do Parana
Departamento de Engenharia Mecanica
Bairro Prado Velho

CP. 81611-970, Curitiba, Parana, Brasil
viviana.mariani@pucpr.br

* Pontificia Universidade Catélica do Parana
Departamento de Engenharia Mecénica

CP. 81611-970, Curitiba, Parana, Brasil

ABSTRACT

In the present work a numeric study of thermal and fluid dynamics behavior of
natural air convection in a bi-dimensional square cavity is presented, in a
laminar flow. The square cavity has two walls heated with different
temperatures and two isolated walls, the Boussinesq approximation is used
and a constant Prandtl number. The Finite Volume Method is used for the
discretization of flow equations. The staggered load of variables is adopted
and Power-Law and SIMPLE models are used. The numeric simulation is
made up of several Rayleigh numbers, 10° Ra 10°, and the results of average
Nusselt numbers are compared to values obtained in the literature. Flow and
isotherm lines are presented and analyzed. The numerical results presented
here in this work agree with the ones available in the literature and can be used
by researchers who work in the convection problem numeric simulation area.
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NOMENCLATURE INTRODUCTION
Nu average Nusselt number The quality of air in confined environments has an
Nu, local Nusselt number extensive applicability, it can be highlight the study of air
c, fluid specific heat at constant pressure, J/(kg.K) in biological laboratories, pharmaceutical production
D, hydraulic diameter, m units, production of electronic equipment, nuclear reactor

g gravity acceleration, m/s’
H height of cavity, m

k thermal conductivity, W/m.K
L length of cavity, m

p pressure, N/m’

P dimensionless pressure
Pr Prandtl number

R residue

Ra Rayleigh number

T temperature, K

u, v velocity components, m/s

Uv dimensionless velocity components
x,y,z  cartesian coordinates, m
X Y,Z dimensionless cartesian coordinates

Greek symbols

a thermal diffusivity, m’/s

B thermal expansion coefficient
o dimensionless temperature
7] absolute viscosity, N.s/m’
v kinematic viscosity, m’/s
P density, kg/m’

v stream function
Subscripts

C cold wall

H hot wall

max maximum value

operation, environment planning and building, solar
energy collectors, etc. Natural convection in closed
environments has been experimentally and numerically,
extensively studied, works of Davis (1983), Ostrach
(1988), Hortmann et al. (1990), Le Quéré (1991) and
Bravo et al. (2000), Ding et al. (2004) who studied
numerically closed square cavities with two adiabatic
walls and two heated ones for different Rayleigh numbers
are mentioned. Studies in closed rectangular cavities with
heated walls, in one or both sides, were conducted by
Anderson and Lauriat (1986).

Aydin et al. (1997) have investigated the flow in
square cavities which were heated on one of the sides and
cooled on the top. The air natural convection in a cubic tri-
dimensional geometry differently heated on the two
vertical walls was studied by Peng et al. (2003). Doescher
et al. (2003) have analyzed the flow of a fluid in bi-
dimensional cavities where the boundaries are level 0.1
and 2 Koch pre-fractals. For level 0 they have reproduced
the same results obtained in the literature, for the other
levels fluctuations were detected for Re > 4000. Corcione
(2003) has studied numerically the natural convection in a
permanent regimen in closed rectangular bi-dimensional
domains, where the inferior wall was heated and the
superior one was cooled and different boundary conditions
were investigated for lateral walls. Several simulations
were performed changing the length of cavities and the
Rayleigh number.

The fluid dynamic behavior of air in confined
environments with presence of heat generation sources has
been studied, mainly for the concern of industries in
improving refrigeration of electronic components. Chu et
al. (1976) have numerically studied an environment with a
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heat source situated on a vertical adiabatic wall, Oh ef al.
(1997) have studied a square cavity with a heat generation
input source inside it and occupying 25% of the cavity
volume. Reinehr et al. (2000) have studied cavities with
geometric relations ranging between 1 H/L 4 with a heat
source inserted in one of the vertical walls.

The present work investigates heat transfer by
natural convection inside a closed bi-dimensional square
cavity, in a permanent laminar flow. The cavity has isolated
horizontal walls and vertical walls heated at different
temperatures, i. e., the left vertical wall is cooled at a
certain temperature (7)) and the right vertical wall is
heated at a certain temperature (7,). The numeric
simulation is performed by different Rayleigh numbers, i.
e., 10° Ra 10°. The influence of the Rayleigh number on
flow patterns is analyzed and discussed through
temperature distribution, stream flow and the average
Nusselt number, compared to values obtained in the
literature.

The Boussinesq approximation is used and the
Prandtl number is kept constant. The governing equations
are solved using Finite Volume Method described by
Patankar (1980). The staggered load of variables is
adopted and the Power-Law and SIMPLE models are used.

MATHEMATICAL MODEL

To model the studied flow the Navier-Stokes
equations and energy conservation are used, some
simplifications are adopted: laminar flow, Newtonian
incompressible fluid, bi-dimensional system, permanent
regime, all fluid properties, p , u, k and c, are considered
constant, except for vertical direction density where the
Boussinesq approximation is assumed and in the energy
conservation equation, compressibility effects and viscous
dissipation are assumed to be negligible. The following
dimensionless governing equations are used,

X=x/H;, Y=y/H, U=—2— ()
(o /H)
2 _
= v :(p_pO)H 92% ()
(/H) pa.’ Ty =Tt

where, X and Y are the horizontal and vertical coordinates,
respectively, U and V are horizontal and vertical velocity
components, respectively, 0 is temperature, H is cavity
height which is the characteristic dimension of the
geometry studied in the present work, v=p/p is kinematic
viscosity, u and v are the velocity components in directions
x and y, T is temperature, 7, is the hot temperature
prescribed for the right vertical wall and 7, is the cold
temperature prescribed for the left vertical wall. Thus, the
dimensionless equations governing flow are,

oX oY

0 (3)

ouu) , o0U) __oP
oX oY X

+PrVU )
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where dimensionless Prandtl (Pr) and Rayleigh (Ra)
numbers are, respectively,

(7

3
PF:L and Ra: gB(TH_TC)H Pr
pa v’

where o=k p/c,is thermal diffusivity, p is fluid density, p
is absolute viscosity, [ is thermal expansion coefficient, &
is thermal conductivity, c, is the fluid specific heat and g is
gravity acceleration.

The domain of computation used in the present work
is shown in Fig. 1, it is a bi-dimensional square cavity with
length L.

U=V=206/Y=0 A

N~

G=1,U=V=0

U=V=06/8Y=0

AR

L=1

Figure 1. Geometry of the studied square cavity

The initial assumed conditions are U=V=0¢ 0=
0.5 for all domain, or better,0=X,Y=<1. The boundary
conditions are: (a) U = V=0 (non slipping conditions)
on all cavity walls; (b) 6 =0 at X =0 (on the left vertical
wall); (¢) 6 =1 at X=1 (on the right vertical wall) and

—=0()atY=0and Y=1.
oY

The differential equations, represented by Egs. (3)
to (6), together with the respective boundary conditions,
are solved using the Finite Volume Method (FVM),
described in detail by Patankar (1980). In this method the
solution domain is divided in small finite control volumes.
The differential equations are integrated in each one of
these control volumes. From this integration there results
an algebraic equation that, when solved, simultaneously or
separately, supplies the velocity and pressure components.
The Power-law interpolation is adopted to estimate the
diffusive and convective terms. For the coupling pressure-
velocity the SIMPLE (Semi IMPlicit Linked Equations)
algorithm is used.

The descriptive equations are solved iteratively,
using the line by line method known as Thomas algorithm
or TDMA (TriDiagonal Matrix Algorithm). Sub-
relaxation is used to accelerate convergence (Patankar,
1980; Maliska, 1995). The solution domain is covered by a
uniform mesh made up of 40x40 and 80x80 control
volumes, which is used in all numerical simulations. The
staggered load of variables is used. The numeric solution is
considered converging when the absolute maximum value
of mass conservation is lower than 10°. After the
convergence is obtained the average Nusselt number on
the heated vertical wall is calculated as,

— Dh

1
Nu=—""" Nude (8)
! (61 —90) J.

0
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where Dh =4 Area/Perimeter is the hydraulic diameter and
Nu,= —(00/0X),_, is the local Nusselt number on the
heated wall.

RESULTS AND DISCUSSION

In this work the numeric results were compared to
values obtained by Davis (1983), Hortmann ef al. (1990)
and Bravo (2000). Numeric meshes made up of 40x40 and
80x80 control volumes for a Rayleigh number 10, 10’ and
10° were used.

For each point in the mesh, a residue R can be
calculated to indicate the iterative method convergence, in
this work R was adopted for residue of the continuity
equation (mass conservation), i.e., the convergence criteria
was obtained when the highest value of [R| < 107, or better,

R:max§-l7

<107 )

i,j
The flow behavior in the computation domain is
usually investigated by streamlines. The streamlines are
boundaries of constant stream function obtained from the
velocity field, defining stream function vy as,

8le and al=—V (10
oY oX

Figures 2, 3 and 4 illustrate streamlines (to the left)
and isotherms (to the right) from the flow generated by
natural convection on the square cavity for the mesh made
up of 80x80 control volumes, for the three investigated
Rayleigh numbers, respectively. It is noticed that for Ra =
10’ and 10° two small re-circulations are formed near the
middle of the cavity. With the growth of the Rayleigh
number and, consequently, there is a growth of circulation
inside the cavity, more and more a pronounced
compression of isotherms near cavity boundaries is
observed.

i N & asf ‘

Figure 2. Streamlines (to the left) and isotherms (to the
right) for Rayleigh = 10

Figure 3. Streamlines (to the left) and isotherms (to the
right) for Rayleigh = 10’
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Figure 4. Streamlines (to the left) and isotherms (to the
right) for Rayleigh = 10°

The numeric results from some variables are shown
in Tabs. 1, 2 and 3, and those variables alre:%’rmaX is the
maximum stream function modulus; u,,, is the maximum
horizontal velocity component modulus, u, on the cavity
central vertical line, at x=Y%; v, is the maximum vertical
velocity component modulus, v, on the cavity central
horizontal line, at y="2 and Nu is the average Nusselt
number, according to Eq. 8.

As seen in Tabs. 1, 2 and 3, the numeric results
obtained in this work perform as good as with the results
found in the literature for the numeric mesh made up of
40x40 and 80x80 control volumes. We can notice that the
average Nusselt number is higher for a Rayleigh number
equal to 10°, where the temperature gradients are higher,
and so are the velocities for this Rayleigh number,
increasing the re-circulation regions. The results of this
work are compared to the works of Bravo et al. (2000) who
have solved the transient problem, using the Euler method
for the discretization of the temporal term and the central
difference for discretization on spatial terms, Hortmann et
al. (1990) have solved the present problem in a permanent
regimen with the finite volume method and Davis (1983)
used the implicit method with second rate central
differences together with Richardson extrapolation.

The velocity profiles U, on the vertical central line,
of cavity and velocity V, on the horizontal central line of
cavity, are shown on Figs. 5 and 6, respectively. On Fig. 5
we notice that there is symmetry on the velocity U profile,
comparing to the inferior and superior half of the cavity
and on Fig. 6 we notice a slight symmetry when comparing
the left and right half of the cavity.

Table 1. Numerical results for Ra = 10".

% Wl | Uss | Ve | Nu | References
Y
5.0855 | 16.1354| 19.6691| 22469 |  Fresent
work
50917 | 16.0637 | 19.5146 | 2.2492 | Bravo et al.
401 1160955 19.5303 | 2.2436 | Hortman et
x al.
01 L] 16182 | 19.5090 (22340 | Do Y2l
avis
5.0764 | 16.1899 | 19.6655| 2.2419 | Fresent
work
50077 16.1615| 19.6141| 22470 | Bravo et al.
50 - 1616301 19.6082 | 2 2446 Hortman er
x al.
ol De Vahl
Davis
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Table 2. Numerical results for Ra = 10°.

X
% | Wloax | Unnss Vaas | Nu | References
Y

97362 36.2210 68.7922| 4 6043 | Fresent
work

9.7271[33.9648 | 67.5619 | 4.5473 | Bravo et al.

4x0 - |34.7396 | 68.8438 | 4.6165 @Q’TI;‘}?“’
1019 7390 35.0700 66.7300 | 4.4870 D];V?'hl
avis

9.6480 | 35.4161 | 68.6208| 4.5350 | Fresent
work

9.6313[ 34.7716 | 68.3291 | 4.5395 | Bravo et al.

io - |34.7132|68.5383 | 4.5256 H--‘-’":}‘-m et
80 Val
9.6440( 34.8100 | 68.2200 | 4.5100 D}ﬁ)__we,}hml
avis

Table 3. Numerical results for Ra = 10°.

X —
| Wl | Yo Vaas Nu Ref.
Y
17.5359| 67.68371 | 223.1483 | 9.4874 Frosent
work
18.7810| 63.9505 | 209.7110 | 8.7817 Bm;f“
40 _
x| - |633710 223412094217 Hortman
10 et al.
De Vahl
17.6130| 67.1900 | 2063200 | 88100 -~
Davis
17.0268| 656252 | 2189173 | 89752 Fresent
work
16.6521| 64.0822 | 214.1256 | 8.8410 B“zf“
% Hortman
x| - | 649944 2183112(89772 —
80 , et al.
\/?
16.9610| 653300 | 216.7500 | 8.7980 DB-'-E‘m
avis

Figure 5. U/Umax velocity profile on the cavity vertical

0.0
U/Umax

central line for the different Rayleigh numbers
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V/Vmax

X

Figure 6. V/Vmax velocity profile on the cavity
horizontal central line for the different Rayleigh numbers

CONCLUSIONS

This work has shown a numeric study of thermal
and fluid dynamics behavior of natural air convection in a
bi-dimensional square cavity, in a laminar flow, where two
walls are heated at different temperatures and two walls are
isolated, the Boussinesq approximation was used and the
Prandtl number was kept stable. The numeric simulations
were performed for several Rayleigh numbers, 10* Ra 10°,
and the results of average Nusselt number were compared
with those reported in the literature, converging for the
similar solutions. The flow and isotherm lines were shown
for different Rayleigh numbers and they were analyzed.
The dimensionless velocity profiles U and ¥ on the vertical
and horizontal central lines, respectively, were illustrated
with the variation of Rayleigh number.

ACKNOWLEDGEMENTS

The authors would like to acknowledge CAPES for
the scholarship provided to the second author of this paper.

REFERENCES

Aydin, O., Unal, A. and Ayhan, T., 1997,
“Numerical Solutions for Buoyancy-Driven Flow ina 2-D
Square Enclosure Heated from One Side and Cooled from
Above”, Proceedings of the Advances in Computational
Heat Transfer Symposium, Begell House, New York, pp.
387394.

Bravo, E. O. A., Claeyssen, J. C. and Rubio, O.,

2000, “Numerical Simulation for the Natural Convection
Flow”, Revista de Pesquisa ¢ Pos-Graduagdo, Erechim,
RS, Brasil, 1, pp. 237-254.
Chu, H. H. S., Churchill, S. W. and Patterson, C. V. S.,
1976, “The Effect of Heater Size, Location, Aspect Ratio,
and Boundary Conditions on Two-Dimensional, Laminar,
Natural Convection in Rectangular Channels”. Trans. of
the ASME J. of Heat Transfer, pp. 194-201.

Corcione, M., 2003, “Effects of the Thermal
Boundary Conditions at the Sidewalls Upon Natural
Convection in Rectangular Enclosures Heated from Below

Engenharia Térmica (Thermal Engineering), Vol. 5 - N° 01 - July 2006 71



Ciéncia/Science

and Cooled from Above”, International Journal of Thermal
Sciences, 42, pp. 199208.

Davis, G. de V., 1983, “Natural Convection of Air in
a Square Cavity: A Benchmark Solution”, International
Journal for Numerical Methods in Fluids, 3, pp. 249-264.

Ding, H., Shu, C., Yeo, K. S. and Xu, D., 2004,
“Development of Least-Square-Based Two-Dimensional
Finite-Difference Schemes and their Application to
Simulate Natural Convection in a Cavity”, Computers &
Fluids, 33, pp. 137-154.

Doescher, E., Velho, H. F. de C. and Ramos, F. M.,
2003, “Isothermal and Natural Convection Flows in
Fractal Cavities”, Applied Numerical Mathematics, 47, pp.
407419.

Hortmann, M., Peric, M. and Scheuerer, G., 1990,
“Finite Volume multigrid prediction of laminar natural
convection: benchmark solutions”, International Journal
for Numerical Methods in Fluids, 11, pp. 189-207.

Le Quéré, P., 1991, “Accurate Solutions to the
Square Thermally Driven Cavity at High Rayleigh
Number”, Computers & Fluids, 20, pp. 29-41.

Maliska, C. R., 1995, “Transferéncia de Calor e
Mecanica dos Fluidos Computacional - Fundamentos e
Coordenadas Generalizadas”, LTC, Rio de Janeiro, 424 p.

Oh, J. Y., Ha, M. Y. and Kim, K. C., 1997,
“Numerical Study of Heat Transfer and Flow of Natural
Convection in an Enclosure with a Heat-Generating
Conduction Body”, Numerical Heat Transfer, Part A, 31,
pp- 289-303.

Ostrach, S., 1988, “Natural Convection in
Enclosures”, Journal Heat Transfer, 110, pp. 1175-1190.

Patankar, S. V., 1980, “Numerical Heat Transfer
and Fluid Flow”, Hemisphere Washington, DC, 197, 197 p.

Peng, Y., Shu, C. and Chew, Y. T., 2003, “A 3D
Incompressible Thermal Lattice Boltzmann Model and its
Application to Simulate Natural Convection in a Cubic
Cavity”, Journal of Computational Physics, 193, pp.
260274.

Reinehr, E. L., Ulson de Souza, A. A. and Guellli U.
S., S. M. A.,, 2000, “Solucdo do Escoamento
Hidrodindmico em Ambientes Confinados com
Convecc¢do Mista”, Anais do VIII Encontro Brasileiro de
Ciéncias Térmicas e Engenharia, Porto Alegre, pp. 1-10.

Engenharia Térmica (Thermal Engineering), Vol. 5 - N° 01 - July 2006

Mariani and Belo et al. Numerical Studies of ...

72



	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33



