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ABSTRACT 
 
This paper presents a method of obtaining an analytic temperature solution 
for a two-layer heat conduction problem. Obtaining the temperature 
analytical solution for a multilayer heat conduction problem is not a direct 
method. The way to indentify the eigenvalues and to derive the Green 
function solution equation requires a different treatment since there are more 
than one domain to solve. This work presents a solution of a thermal two-
layer problem based on Green’s functions. 
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NOMENCLATURE 
 
Ki thermal conductivity in the i direction, 

i=1,2,3,…, W/(m.K) 
L length, m 
b  layer length, m 
q heat flux, W/m2 

T temperature, ºC 
t time, s 
N norm 
G Green function 
x,y,z cartesian coordinates, m 
 
Greek symbols 
 
 thermal diffusivity, m2/s 
β eigenvalue 
λ eigenvalue 
η eigenvalue 
 fluid kinematic viscosity, m2/s 
 density, kg/m3 
 
INTRODUCTION 
 

It is proposed here to obtain the analytical 
solution for a two-layer thermal conduction problem 
using the Green’s Functions (GF) method. An 
advantage in the use of integral solutions by GF is the 
possibility to build multidimensional solutions from 
1D cases without additional difficulties. It can be 
observed, in this sense, that 2D and 3D solutions are 
completely equivalent to 1D equation, and therefore 
they can be obtained from product solutions in 
different directions 1D (Fernandes, 2009). 

Analytical solutions are an important tool for 
solution of engineering problems, since they can be 

used: to validate approximate solutions; to facilitate 
the analysis and understanding of physical problems; 
in construction of physical problems; in construction 
of new numerical algorithms such as the transient 
method of surface element or in direct application in 
real problems reducing the computational cost and  
exact solutions of the model studied. (Fernandes, 
2009). 

 
THEORY 
 
One-dimensional Transient Thermal Problem X22 
 

Initially, it is presented the 1D transient problem 
X22 that is used as an auxiliar problem to solve the 
multilayer problem. This problem is shown on Fig. 1. 

 

 
 

Figure 1. Single layer plate subjected to the heat flux, 
q(t) at x = 0, while the opposite surface, x = L, is 

isolated. 
 

The problem represented by Fig. 1 is given by: 
  

2

2

1T T
x t

 


 
 (1a) 
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subject to the boundary conditions: 
  

0T
x x L







( );
0

T
x

k q t
x




 


 (1b) 

  
and to the initial condition  

  

0)()0,( TxFxT   (1c) 
  

The solution of Eqs. (1a)-(1c) can be obtained 
by using Green’s functions, it means 

  

 d
k
tqtxGTtxT t )(),0|,(),( 00   (2) 

  
Where ( , | 0, )G x t   is the Green function that 

is given by (Fernandes, 2009) 
  

 2

22
1

1( , | ,́ ) 1 2
m t
L

X
m

G x t x e
L

  


    
 




 


  

´cos cosm x m xx
L L
     

      
 

(3) 

  
It ca be observed that the problem described by 

the Eqs. (1) is equivalent to the problem with a 
volumetric heat source applied at 0x   that is 

( , ) ( ) ( 0)g x t q t x   with zero heat flux at 
0x   (Hahn and Ozisik, 2012). Therefore, the 

problem given by Eqs. (1) could be described by the 
following equations: 

  
2

2

1( , )T Tg x t
x t
 

 
 

 (4a) 

  
Subject to the boundary conditions 

  

0;
0

T
x

k
x




 


0T
x x L







 (4b) 

  
Using the Green function method, the solution 

of (4) is given by: 
  

0
0 0

( , ) ( , ', )
t L

T x t T G x t x       

( ) ( ' 0) 'q t x dx d
k

 
  (5) 

  
One-dimensional Transient Thermal Problem 
X2C12 
 

The problem of heat conduction 1D X2C12 
shown in Fig. 2 describes a two layer plate 
accounting for the heat flux by using 

( , ) ( ) ( 0)g x t q t x   with isolate condition at 
the ends and can be written as. 

The problem represented by Fig. 2 is given by: 
  

2
1 1

2

1( , )T Tg x t
x t

 
 

 
 (6a) 

  

 
 

Figure 2. Two-layer plate subjected to the heat flux, 
q(t) at x=0, while the opposite surface, x = L, is 

isolated. 
 

Subject to the boundary conditions: 
  

1
1 0;

0
T
x

k
x




 


2
2 0;T

x x L
k 

 
   (6b) 

  
and to the continuity conditions 

  

1 2| | ;x b x bT T  1 2
1 2

T T
x x

k k
x b x b

 
 

  
 

 (6b) 

  
and to the initial condition 

  

1 2 0( ,0) ( ,0) ( )T x T x F x T    (6d) 
  

The solution in each region i is then written as 
  

1

1

( , ) ( , | ',0) ( ') '
j

j

xM

i ij j
j x

T x t G x t x F x dx




 


    

1

0

( ', )
( , | ', ) '

j

j

xt
j

j ij
jx

g x
G x t x dx d

k


  
  


   (7) 

  
Where 1;j jx x x    to 1, 2,3,...,j M  are the 

limits of each layer, and ( , | ´, )ijG x t x   is the 
Green’s function for the two-layer body. 

If M = 1, the single layer solution can be given 
by Eq. (8) that is algebraically equal to Eq. (5). It 
means 
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2

1

11
1 1 11

(1)0

( ', )( , ) ( , | ', ) '
xt

x

g xT x t G x t x dx d
k


     (8) 

  
If 2M  , 0 x b   and ;b x L   the 

solutions for 1T  e 2T  given by Eqs. (9) and (10) 
respectively are given by 

  
2

1

1
1 1 (11)

10

( ', )( , ) ( , | ', ) '
xt

x

g xT x t G x t x dx d
k
      

3

2

2
2 12

20

( ', )( , | ', ) '
xt

x

g xG x t x dx d
k

      
(9) 

  
and 

  
2

1

1
2 1 (21)

10

( ', )( , ) ( , | ', ) '
xt

x

g xT x t G x t x dx d
k
      

3

2

2
2 22

20

( ', )( , | ', ) '
xt

x

g xG x t x dx d
k

      
(10) 

  
It can be observed that ( , ) ( ) ( 0)g x t q t x  , 

therefore the second term of the Eq.(9) and Eq.(10) 
are null. 

The Green function Gij is given by Haji-Sheikh 
and Beck (2002) 

  
2 ( )

1

1( , | ', ) ( ) ( '),n t
ij in jn

n x

G x t x e X x X x
N

 


 



 (11) 

  
where inX  and jnX  are the eigenfunctions and 

n are the eigenvalues. 

The xN  norm is defined by 
  

1
2

1
( ') '

j

j

xM

x jn
j x

N X x dx




      (12) 

  
Therefore, the temperature solution in the range 

 1 2;x x  has the following form: 
  

2
2

1

( )11
1 1

11 0

( , ) ( ')n

xt
tn

n
n x x

XT x t e X x
k N

  
 



     

( ) ( ' 0) 'q t x dx d    (13) 
2 ( )1 11

1
11 0

( ) (0)( , ) ( ) n

t
tn n

n x

X x XT x t q t e d
k N

 



 



    

 

and in the range  2 3;x x : 
  

2
2

1

( )21
2 1

11 0

( , ) ( ')n

xt
tn

n
n x x

XT x t e X x
k N

  
 



     

( ) ( ' 0) 'q t x dx d    (14) 
2 ( )2 11

2
11 0

( ) (0)( , ) ( ) n

t
tn n

n x

X x XT x t q t e d
k N

 



 



    

 
The eigenfunctions 

1 1 ( )nX X x  and 
2 2 ( )nX X x  

and respective eigenvalues are obtained using 
separation of variables method. In this sense, 
assuming a separation of ( , )T x t  in two spatially and 
time dependent functions of a single variable each in 
the form 

  

1 1 1( , ) ( ) ( )T x t X x t   (15a) 
  

2 2 2( , ) ( ) ( )T x t X x t   (15b) 
  

Substituing Eq. (15a) in Eqs. (6a) and Eq. (15a) in 
Eqs. (6b) yelds 

  
2

21
12 0;X X

x


 


 (16a) 

  
2

22
22 0X X

x


 


 (16b) 

  
where 
 
 
 

 
And the solutions for 1X  and 2X  are 

  

1 cos( ) ( );X A x Bsen x    (17a) 
  

2 cos( ) ( );X C x Dsen x    (17b) 
  

It can be observed that Eq. (17a) must satisfy 
the boundary condition at 0x  

  
1

1 0;
0

T
x

k
x




 


 (18) 

  
After substituting the eigenfunction 1X  Eq (17a) 

in Eq (18) and solving the expression, we obtain 
0B  and without loss of generality it is concluded 

that 1A  (Özi¸sik, 1993). Soon, 
  

2 2
2 2

1 2

;  
 

 
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1 cos( )X x  (19) 
  

Then the boundary conditions at x b  must be 
satisfied , it means 

  

1 2| | ;x b x bX X   (20a) 
  

1 2
1 2

X X
x x

k k
x b x b

 
 

  
 

 (20b) 

  
After substituting 1X  and 2X  in equation (20a)-

(20b) yelds 
  

cos( ) cos( ) ( ) 0b C b Dsen b      (21) 
  

and 
  

1

2

( ) ( ) cos( ) 0k sen b Csen b D b
k

   


  
     

  
(22) 

  
As the boundary condition at x L  is 

  
2

2 0;X
x x L

k 
 

   (23) 

  
after substituing 2X  in Eq. (23) , Eqs., (21), (22) and 
(23) , can be written in matrix form as 

  
cos( ) cos( ) ( ) 1 0

( ) ( ) cos( ) 0
0 ( ) cos( ) 0

b b sen b
Ksen b sen b b C

sen L L D

  
  

   

     
           
         

 (24) 

  
where 

  

1

2

kK
k




  
   

  
 

  
Coefficients C and D are then determined by 

solving the linear system given by equation (24). It 
means 

  

1

2

cos( )cos( ) ( ) ( )kC b b sen b sen b
k

   


  
   

  
 

1

2

cos( ) ( ) ( )cos( )kD b sen b sen b b
k

   


  
   

  
 

  
Since all coefficient have been calculated the 

eigenfunctions coefficients 1X  and 2X   are given by 
  

1 cos( )X x  (25) 

1
2

2

cos( )cos( ) ( ) ( ) cos( )kX b b sen b sen b x
k


    


   

    
   

 

 (26) 

1

2

cos( ) ( ) ( )cos( ) ( )kb sen b sen b b sen x
k


    


   

    
   

 

 
And the temperature solution can be given by 

  
2

1

( )11
1 1

11 0

( , ) ( ')n

xt
tn

n
n x x

XT x t e X x
k N

  
 



     

  
( ) ( ' 0) 'q t x dx d     

  

1 11
1

11

( ) (0)( , ) n n

n x

X x XT x t
k N
 



   
 

  

( )

0

( ) n

t
tq t e d     

 
  

1
1

11

cos( )cos(0)( , )
n x

xT x t
k N
 



   
 

  

( )

0

( ) n

t
tq t e d     

(27a) 
  

and 
  

2

1

( )21
2 1

11 0

( , ) ( ')n

xt
tn

n
n x x

XT x t e X x
k N

  
 



     

  
( ) ( ' 0) 'q t x dx d     

  

2 11
2

11

( ) (0)( , ) n n

n x

X x XT x t
k N
 



   
 

  

( )

0

( ) n

t
tq t e d     

 
  

1 1
2

11 2

1( , ) cos( )cos( )
n x

kT x t b b
k N k
  





     
 

  

  

( ) ( ) cos( )sen b sen b x   


 
  
  
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1

2

cos( ) ( ) ( )cos( )kb sen b sen b b
k

   


   
    

  
 

  

 ( )

0

( ) cos(0) ( ) n

t
tsen x q t e d      

(27b) 
  

where the norm, xN  is given by: 
  

   
32

1 2

2 2
1 2( ') ' ( ') '

xx

x n n
x x

N X x dx X x dx    

  

 2 1

20

cos( ') ' cos( )cos( )
b L

x
b

kN x dx b b
k

  
      

 
   

  

( ) ( ) cos( ')sen b sen b x   


 
  
  

 
 

  

1

2

cos( ) ( ) kb sen b
k

 


   
    

  
 

 
  

 2( ) cos( ) ( ') 'sen b b sen x dx    (28) 
  

The equation for determination of the 
eigenvalues is obtained from the requirement that in 
Eq. (24) the determinant of the coefficients should 
vanish. Then, the eigenvalues are roots of the 
following transcendental equation: 

  
cos( ) cos( ) ( )

( ) ( ) cos( ) 0
0 ( ) cos( )

b b sen b
Ksen b sen b b

sen L L

  
  

   
  



 

  
and 

  
tan( ) tan[ ( )]b K b L    (29) 

  
Equation (29) can be solved by using various 

mathematical methods. (Beck, 1992) and (Haji-Sheik 
and Beck, 2000) present solutions to the 
transcendental equation based on asymptotic 
approximations. For each eigenvalue, there are 
welldefined upper and lower values for  within which 
only one eigenvalue is located. These limits are the 
ordered locations of the asymptotes for the right side 
and for the left side of each equation. The asymptotes 
will be located where the denominators of the right 
side and of the left side become zero. Figure (3), 
shows the behavior of these asymptotes. 

 

 
 

Figure 3. Representation of the asymptotes curves for  . 
 

RESULTS AND DISCUSSION 
 

The solution of Eq. (27) is shown in Fig. 4 
considering the heat flux prescribed equal 

5
24 10 W

m
    

, 0 0 oT C    ,  25 10L m  ,  
2
Lb m , 

6
1 18,8 10   , 6

2 117 10   , 1 64 WK
mk
    

 and 

2 401 WK
mk
    

. 

 

 
 

Figure 4. Spatial temperature for three different times. 
Two-layer body. 

 
The two-layer solution can be verified by 

considering the one layer solution (Fig. 5). It means if 
both layers have the same thermal properties the 
thermal problem can be described as a one single 
layer problem. For comparison, a single layer 
solution is presented (Fig. 5). These results are then 
compared with the solution of two-layer case, but 
considering he same thermal properties (Fig. 6). 


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Figure 5. Spatial temperature for three different 
times. Single layer body. 

 
In both cases the same parameter are used. It 

means, 5
24 10 W

m
    

, 0 0 oT C    ,  25 10L m  , 

 
2
Lb m , 6

1 18,8 10   , 6
2 117 10   , 

1 64 WK
mk
    

 and 2 401 WK
mk
    

. The absolute 

deviate between the solutions of the problem  
(Fig. 5) and the problem 2 12X C  (Fig. 6) is shown in 
(Fig. 7). It can be observed a maximum difference of 
0,14( )oC  with a percentage error of 0,04%. 

 

 
 

Figure 6. Spatial temperature for three different 
times. Two-layer body with the same thermal 

properties. 

 
 

Figure 7. Absolute error between the problems X22 
and X2C12. 

 
CONCLUSIONS 
 

A temperature solution for a two-layer body has 
been presented. The analytical solution has been 
verified by using one layer case. Calculating the 
spatial eigenvalues is the main difficulty that one 
must consider when dealing with problems of this 
type. The procedure presented here can be extended 
for multilayer bodies. 
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