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ABSTRACT 
 
In this work, the Analytical Discrete Ordinate method (ADO method) is 
used to solve deep-penetration transport problems in one-dimensional 
Cartesian geometry, subject to isotropic and linear anisotropic scattering 
effects. The regime is considered permanent, the media are homogeneous, 
and the fluxes are caused by sources located on the boundaries of the 
domain. In addition, the energy fluctuations will be considered as not 
significant, characterizing the phenomena as monoenergetic problems. In 
order to validate the code, method and provide benchmark results, some 
test problems will be treated and results will be discussed. In particular, 
the ADO method generated fairly accurate results when compared to 
other methods based on SN approaches, at a relatively low computational 
cost. 
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NOMENCLATURE 
 
A,D eigenvalue problem matrices 
Aj homogeneous solution coefficient 
N SN quadrature order 
R reflectance coefficient  
T transmittance coefficient 
U, V auxiliary functions 
wk quadrature weights 
x spatial variable, m 
 
Greek symbols 
 
λj  eigenvalues of the homogeneous problem  
µ directional variable 
µk quadrature points 
νj separation constants 
Φ elementary solutions 
φ scalar flux on x, n/m2.s 
Ψ angular flux on x and µ, n/cm2.s 
σs0 isotropic macroscopic cross section, cm-1 
σs1 linearly anisotropic cross section, cm-1 
σt total macroscopic cross section, cm-1 
 
Subscripts 
 
i, k directions indexes 
j separation constant index 
 

INTRODUCTION 
 
Deep-penetration problems, characterized by 

domains with several mean free paths (mfp) of 
extension, correspond to one of the most important 
class of problems in particle transport area, mainly due 
to their applicability on the processes involved in 
nuclear reactors. In particular, the potential application 
is in radiological protection issues, more precisely on 
shielding calculations (Oliveira, 2007), very important 
for personnel, equipment and the environment 
protection. 

In this sense, the mathematical modeling of the 
involved physical phenomena and the development of 
more efficient methods for their treatment are 
important points that allow a better analysis and 
predicting processes, at a low operational cost. 

There are several methods in the literature which 
approach may follow a probabilistic or deterministic 
way to solve these problems, but they usually have 
limitations as to the geometry complexity or precision 
method, therefore increasing the processing costs, 
independently of computing capacity and parallel 
processing resources. 

Among the deterministic methods (considered 
most suitable for the treatment of deep-penetration 
problems (Yang et. al., 2018)), the Analytical Discrete 
Ordinates Method (ADO method) is presented here. 
Formulations based on the ADO method (Barichello 
and Siewert, 1999) have been intensively and 
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successfully used for solving, in an accurate and 
concise way, a wide range of Rarefied Gas Dynamics 
problems (Scherer et al., 2009), transport problems in 
one-dimensional media (Prolo Filho and Rodrigues, 
2017) and in different geometries (Barichello et al., 
2002; Ferreira et al., 2015). Besides providing closed 
form solutions for the discrete-ordinates version of the 
integro-differential transport equation (analytical in 
terms of the spatial variable), the independence of 
iterative schemes and computational meshes can be 
mentioned. The reduced size of the associated 
eigenvalues problem in comparison to other 
methodologies inspired by the SN approach, also make 
this formulation more efficient in the computational 
point of view. 

Thus, the ADO method will be used here to 
study a class of neutron transport problems in non-
multiplicative media, in one-dimensional Cartesian 
geometry, under permanent regime, that suffer 
isotropic and linear anisotropic scattering effects, 
subject to constant sources located at the domain 
boundaries. In particular, phenomena that involve 
some anisotropic degree are directly related to reactor-
core reactions (Poveshchenko, 2016). 

According to ADO method, from the integro-
differential transport equation, a discrete-ordinate 
version is generated using the half-range Gauss-
Legendre quadrature set (Sykes, 1951; Barichello and 
Siewert, 1999; Prolo Filho and Ribeiro, 2018). For the 
resultant ordinary differential equations system, an 
expression for the neutron angular fluxes in terms of 
decreasing exponentials is proposed. In the process, 
elementary solutions and separation constants are 
obtained through a reduced eigenvalue problem. The 
expressions for the angular neutron fluxes, analytical 
in terms of the spatial variable, are written. In the end, 
boundary conditions imposed for the problems are 
used to determine certain coefficients of the general 
solution. 

This way, the next sections are dedicated to 
presenting the discrete-ordinates solution based on 
ADO method for some test cases that can be related to 
deep-penetration problems, as well as discussing the 
physical parameters effect on the interest quantities. 
Some benchmark results are presented, and new ones 
are provided. 
 
MATHEMATICAL MODEL 
 

According Barichello (1992), the monoenergetic 
neutron transport equation in permanent regime for a 
one-dimensional Cartesian geometry, applied to a 
homogeneous medium with linearly anisotropic 
scattering, is written as 

 

=+ Ψ(x,μ)σΨ(x,μ)
dx
d

μ t
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with x [cm] and µ corresponding, respectively, to the 
spatial and directional variables wherein the angular 
fluxes Ψ(x,µ) [n/cm2.s] are evaluated, σt [cm-1], σs0 
[cm-1] and σs1 [cm-1] are the total, the isotropic and the 
linearly anisotropic macroscopic cross sections. Here, 
there is an interest in dealing with transport problems 
without inner sources, Fig. 1, so that the fluxes are 
caused by prescribed non-homogeneous boundary 
conditions and particular solutions are not necessary. 
 

 
 

Figure 1. Domain of the homogeneous neutron 
transport problems. 

 
In order to apply the ADO method, a quadrature 

scheme is applied, making it possible to write a 
discrete ordinates version of Eq. (1), such as 
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where i=1,…,N, being N the number of discrete 
directions of the Gauss-Legendre quadrature set 
(Stroud and Secrest, 1966) mapped within [0, 1] 
interval, with quadrature points µk associated with 
weights wk. Moreover, µi represents the positive 
directions, while -µi represents the negative ones. 

Is important to highlight that, despite the 
versatility of the ADO method for quadratures, the use 
of a half-range scheme provides better results than 
full-range Gauss-Legendre (Bell and Glasstone, 1979), 
which causes a poor representation of the angular 
fluxes near the contours, especially when µ is closer to 
zero, or under free surface boundary conditions. To 
facilitate the distinction between the different 
formulations presented here, the ADO method 
associated with half-range quadrature will be indicated 
as ADO2N. 
 
THE ADO METHOD 

 
Following some basic steps of the ADO method 

(Barichello and Siewert, 1999), a homogeneous 
solution for the transport problem described by Eqs. 
(2)-(3) is proposed in the form 
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x/ν)eμΦ(ν,)μΨ(x, ii
−±=±  (4) 

 
for i=1,…,N, where the separation constant ν is 
associated with elementary solutions Φ(ν,±µi). 

This way, substituting Eq. (4) into Eqs. (2)-(3), 
the coupled algebraic system is obtained 
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for i=1,…,N. 

Now, two auxiliary functions are defined as 
 

)μΦ(ν,)Φ(ν,μU iii −+=),( µν , (7) 
  

)μΦ(ν,)Φ(ν,μV iii −+=),( µν , (8) 
 
such that, if Eqs. (5)-(6) are added, the expression 
 

 
is obtained. On the other hand, subtracting Eq. (6) 
from Eq. (5), another relation between U(ν,µi) and 
V(ν,µi) is given by 
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From Eqs. (9)-(10), after some manipulations, an 

eigenvalue problem in terms of U(ν,µi) is obtained, in 
the form 
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for i=1,…,N. The matrix representation of Eq. (11) is 
given by 
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where U is a vector with components U(ν,µi), 
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and the matrices of dimension N x N for Eq. (12) are 
such that 
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for i,k=1,…,N. 

With the eigenvalues problem solved, the values 
of λj for j=1,…,N are used to calculate the separation 
constants νj by Eq. (13) and, from Eqs. (7)-(8), the 
elementary solutions can be written as 
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for i,j=1,…,N. 

Since the separation constants occur in pairs, 
{±νj}, with real values, the symmetry is imposed in 
order to build a linearly independent basis of 
elementary solutions. For that 
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for i,j=1,…,N. 
Thus, the solution for Eqs. (2)-(3), in an explicit 

form, is given by 
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for i=1,…,N. 

Here, the arbitrary constants Aj are to be 
determined, and they depend on the conditions 
imposed for the problems. 

It is important to observe that, in this 
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formulation, from a set of 2N discrete ordinates 
equations, an eigenvalue problem of order N was 
derived, which means a relevant gain in comparison to 
other similar discrete ordinates approaches, where 
characteristic equations or eigensystems of order 2N 
are obtained, for a similar quadrature scheme (Vilhena 
and Barichello, 1991; Nunes and Barros, 2009). 
 
COUPLING SYSTEM 
 

Despite the ADO2N method having proven to be 
effective in dealing with more general boundary 
conditions, here it will be focused on problems with 
prescribed boundary conditions. So, in order to 
explicitly define the solution for a class of problems 
proposed here, the following 
 

F),μΨ(x i =0 , (22) 
  

G)μ,Ψ(x i =−1 , (23) 
 

will be used for i=1,…,N, being F and G constant 
incident fluxes. 

Equations (20)-(23) lead to a 2N x 2N system 
which solution provides the value of all coefficients Aj  
and, consequently, makes Eqs. (20)-(21) fully 
established, which makes it possible to analyze some 
quantities of interest. 
 
NUMERICAL RESULTS AND 
COMPUTATIONAL ASPECTS 

 
For the method presented here, some test cases 

are described on Tab. 1, where the ADO2N method is 
compared with other analytical and numerical 
methods for validation. 

In order to generate some numerical results, 
quantities of interest were chosen, such as: 

 
a) Scalar flux or total flux (Bell and Glasstone, 

1979), given by 
 

∫−=
1

1
Ψ(x,μ')dμ'(x)φ , (24) 

 
corresponding to the mean of the angular flux in terms 
of the directional variable; 
 

b) Reflectance or reflection coefficient where, 
following Clements and Özisik (1983), is 
defined as 
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that makes the relation between the incident and 
reflected radiation on a surface at x = x0; 
 

c) Transmittance or transmission coefficient 
(Clements and Özisik, 1983), which 
measures the fraction of incident radiation 
that is transmitted through the medium, 
established at x = x1, as 

 

∫
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Table 1. Physical parameters used for each test case in this work. 

Problem Quantity of 
Interest  Characteristics σt σs0 σs1 F G [x0,x1] 

1 Scalar 
Flux 

Homogeneous 
Isotropic 1.00 0.97 0.00 2.00 2.00 [0.0,50.0] 

2 Scalar 
Flux 

Homogeneous 
Anisotropic 1.00 0.99 0.80 1.00 0.00 [0.0,100.0] 

3 
Reflectance 
Transmittan

ce 

Homogeneous 
Isotropic 1.00 Select 

cases 0.00 1.00 0.00 Select 
Cases 

4 Scalar 
Flux 

Homogeneous 
Anisotropic 1.00 0.50 Select 

Cases 1.00 0.00 [0.0,10.0] 

 
In Nunes and Barros (2009), Problem 1 was 

solved by using three different numerical methods: 
Diamond Difference (DD), Step and CN method. All 
of them, besides using the discrete ordinate version of 
the transport equation, subdivide the domain into cells, 
where average angular fluxes are established. The 
numeric aspects consist in how the relationship 
between neighboring cells is, and an iterative process 
is used to compute them. 

The ADO2N method, on the other hand, does not 
need iterative methods or interpolation processes and, 

when applied to homogeneous media, does not require 
the domain to be split into cells. The expressions for 
the solutions are analytical in terms of the spatial 
variable, making it simple to obtain the scalar fluxes 
in any spatial position of interest. 

In terms of agreement (Tab. 2) the ADO2N 
method becomes closer to DD, getting almost all 
significant digits tabled. The ADO2N results presented 
on Tab. 2 with N = 4 are convergent and the resulting 
symmetry agrees with the proposed parameters and 
phenomenon. 
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It is emphasized here that convergence is faster 
in problems involving only isotropic effects, and it is 
not necessary to use higher quadrature orders to obtain 
good results. 
 
Table 2. Problem 1 - Convergence analysis and results 
validation for Scalar flux profiles. 

 ADO2N DD Step CN 
x N = 4 N = 8 N =8 N = 8 

0.0 1.704731 1.704731 1.703435 1.704683 
5.0 0.366806 - - - 

10.0 0.083341 - - - 
15.0 0.018983 - - - 
20.0 0.004523 - - - 
25.0 0.001954 0.001956 0.002012 0.001958 
30.0 0.004523 - - - 
35.0 0.018983 - - - 
40.0 0.083341 - - - 
45.0 0.366806 - - - 
50.0 1.704731 1.704731 1.703435 1.704683 

 
In Barichello (1992), results for Problem 2 (Tab. 

3) were generated by LTSN method, which consists in 
an approach based on Laplace Transform, and profiles 
were compared with SGFN method (Barros and 
Larsen, 1990). 

The LTSN formulation is a semi-analytical 
method (as ADO2N method) where, after the discrete 

ordinates approximation of the Eq. (1), an algebraic 
system is generated by the application of Laplace 
Transform on x variable, making it necessary to deal 
with imaginary values. The SGFN method works like 
the numerical methods reported on Problem 1. 
However, the source terms are treated analytically. 

The formulation presented here, besides the good 
features as the analyticity of the solutions, does not 
use complex variable techniques, once all parameters 
that arise during the process are real.  

Regarding the agreement of the results (Tab. 3) 
all methods show similar values, presenting 
differences, eventually, in the last two digits. The 
shape of the profiles agrees with the proposed 
parameters and the deep-penetration phenomenon, in 
the sense of the scalar flux decay as it moves away 
from the source. 

This same problem was recently studied by 
Barbosa (2018), who used a version of ADO method 
associated with full-range Gauss-Legendre quadrature 
(which will be referred here as ADON), and also 
compared their results with those obtained by LTSN 
and SGFN. There, using N = 8, the same agreement 
with the literature in terms of significant digits was 
obtained and, only with N = 64 it was able to 
reproduce the values obtained here by ADO2N with N 
= 8 (this work). Thus, it can be said that the results for 
ADO2N with N = 8 are convergent and reliable. 

 

Table 3. Problem 2 - Convergence analysis and results validation for Scalar flux profiles computed by 
ADO2N method and the literature (Barichello, 1992; Barros and Larsen, 1990). 

 
x 

 
N = 4 

ADO2N 
N = 6 

 
N = 8 

LTSN 
N = 8 

SFGN 
N = 8 

0.0 0.82299 0.82299 0.82299 0.82284 0.82284 
10.0 0.36023 0.36023 0.36023 - - 
20.0 0.16653 0.16654 0.16654 - - 
30.0 0.76992x10-1 0.76993x10-1 0.76993x10-1 - - 
40.0 0.35593x10-1 0.35593x10-1 0.35593x10-1 - - 
50.0 0.16452x10-1 0.16452x10-1 0.16452x10-1 0.16471x10-1 0.16470x10-1 
60.0 0.75988x10-2 0.75989x10-2 0.75989x10-2 - - 
70.0 0.34977x10-2 0.34977x10-2 0.34977x10-2 - - 
80.0 0.15838x10-2 0.15838x10-2 0.15838x10-2 - - 
90.0 0.66037x10-3 0.66037x10-3 0.66037x10-3 - - 

100.0 0.12221x10-3 0.12222x10-3 0.12222x10-3 0.12251x10-3 0.12250x10-3 

Results for Problem 3 were generated here and 
compared to Schulz (2014). The difference between 
both formulations lies on the treatment of the spatial 
variable in the dimensionless form, τ = σt x. However, 
considering a medium with σt = 1.0, both are 
equivalent (x and τ) and comparisons can be 
performed without any difficulties. 

During the simulations, a serie of values for 
reflectance and transmittance were obtained, and some 
could be verified within the literature. A very good 
agreement was obtained, sometimes differing in the 
last significant digit, depending on the length of the 
domain or the isotropic scattering coefficient. 

 

Table 4. Problem 3 - Reflection coefficient computed 
by ADO2N method (this work) using N = 50. 

x1 σs0 = 0.20 σs0 = 0.50 σs0 = 0.99 
0.04 0.00685247 0.01757597 0.03634189 
0.05 0.00831499 0.02143109 0.04469452 
0.07 0.01101701 0.02865066 0.06072115 
0.10 0.01460163 0.03843267 0.08329296 
0.33 0.03121851 0.08768257 0.21809644 
0.45 0.03573454 0.10271706 0.27102243 
0.49 0.03688701 0.10673589 0.28683488 
0.50 0.03715297 0.10767608 0.29066267 
1.00 0.04393448 0.13416516 0.43596159 
2.00 0.04607244 0.14508538 0.58800003 
5.00 0.04626466 0.14654094 0.73750699 
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In the analysis of results on Tables 4-5, it was 
possible to observe that both reflectance and 
transmittance maintains a direct relation with the 
isotropic scattering parameter, so that higher values of 
R and T are obtained for greater values of σs0. 
 
Table 5. Problem 3 – Transmission coefficient 
computed by ADO2N method (this work) using N = 50. 

x1 σs0 = 0.20 σs0 = 0.50 σs0 = 0.99 
0.04 0.93347421 0.94415819 0.96285882 
0.05 0.91810777 0.93115585 0.95430656 
0.07 0.88858229 0.90606388 0.93788086 
0.10 0.84695598 0.87043785 0.91471092 
0.33 0.60110334 0.65304658 0.77533943 
0.45 0.50803024 0.56686834 0.72004243 
0.49 0.48085205 0.54119699 0.70344155 
0.50 0.47432335 0.53499287 0.69941681 
1.00 0.24626874 0.30670882 0.54435238 
2.00 0.07274150 0.10705530 0.37334749 
5.00 0.00244613 0.00528758 0.17315224 

 
On the other hand, this behavior does not last in 

relation to domain length since the increase of  
x1 leads to higher values of R, but reduces the value of 
T. Moreover, as can be seen in Figs. 2-3, these 
behaviors are not linear and reflectance tends to 
stabilize for longer domains. 

 

 
 

Figure 2. Problem 3 - Reflection coefficients 
computed by ADO2N based on Tab. 4. 

 

 
 

Figure 3. Problem 3 - Transmission coefficients 
computed by ADO2N based on Tab. 5. 

In the results of Problem 4 (Tab. 6 and Fig. 4), 
the effects of the anisotropy factor on the scalar flux 
profiles are observed. First, independently of σs1 value, 
it is verified that the profiles maintain the expected 
exponential decay for the deep-penetration 
phenomenon. 
 

 
 

Figure 4. Problem 4 - Scalar flux profiles computed by 
ADO2N based on Tab. 6. 

 
Table 6. Problem 4 - Scalar flux profiles computed 
by ADO2N method (this work) using N = 20. 

x σs1 = 0.01 σs1 = 0.50 σs1 = 0.99 
0.0 0.5848157 0.5190318 0.2688959 
1.0 0.1456423 0.1699366 0.1004884 
2.0 0.0490466 0.0773185 0.0844114 
3.0 0.0174581 0.0367612 0.0768457 
4.0 0.0063741 0.0177487 0.0713892 
5.0 0.0023611 0.0086275 0.0669800 
6.0 0.0008826 0.0042084 0.0633603 
7.0 0.0003319 0.0020574 0.0604427 
8.0 0.0001252 0.0010087 0.0581929 
9.0 0.0000468 0.0004982 0.0566082 

10.0 0.0000144 0.0002379 0.0535436 
 

In addition, profiles with higher anisotropic 
scattering coefficients have lower initial values (closer 
to the source) and lower decay along the domain, 
providing the graphic a flattened shape. 
 
CONCLUSIONS 

 
The present work showed the viability and 

performance of the ADO method on the solution of 
typical deep-penetration neutron transport problems, 
in one-dimensional Cartesian geometry, where it was 
possible to compare some results with the available 
literature and provide some benchmark profiles. On 
the tables presented in this study, convergence of the 
results is noted when changing the quadrature order. 
The increasing number of quadrature points leads to 
better representation of the integral term, despite also 
increasing the number of discrete directions. In 
particular, it could be observed in Problem 2 that the 
use of a half-range quadrature scheme contributes to 
accelerating the convergence of the results, even for 
media with linear anisotropy effects. In general, the 
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profiles presented a good agreement with the 
literature, approximately three to five significant 
digits, depending on the problem’s class and the 
involved parameters. 

During the simulations, it was observed that the 
anisotropy factor of the medium causes convergence 
difficulties, but more accurate results can be obtained 
by simply increasing the number of Gauss-Legendre 
quadrature points. Here, some good features of the 
ADO2N method can be highlighted, hence no iterative 
schemes were used and the computational effort was 
relatively low, spending less than 2 seconds (in a 3.10 
GHz Intel Core I7 processor with 8GB of RAM) for 
each profile. Part of this performance was due to the 
reduced order eigenvalue system and the explicit form 
of the solutions, analytical in terms of the spatial 
variable. The code, which implementation is simple, 
was developed making use of the free software Octave 
4.2.1, using a half-range Gauss Legendre quadrature 
set, working with any quadrature order. Furthermore, 
all profiles showed compatible physical behavior in 
terms of the parameters, proposal of solutions and 
boundary conditions used. 

For future works, the authors intend to vary the 
anisotropy degree and change the geometry 
configuration of the problem in order to represent 
transport phenomena in heterogeneous layered media. 
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