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ABSTRACT 
 
This paper presents a review of correlations used for pressure drop 
calculation in narrow annular clearances with rotation of inner cylinder. 
Based on these review, a new general correlation is proposed to calculate 
pressure drop through such clearances. Results are compared with 
experimental data for different flow regimes: laminar, laminar with Taylor 
vortex, smooth and rough turbulent, with good agreement. The main 
objective is to develop a simple and general correlation that could be used 
for backflow calculation in twin-screw multiphase pumps. In this kind of 
pump, the volumetric efficiency is defined mainly by the backflow rate 
which occurs in the annular clearance between screw and casing. Usually, 
the backflow is calculated ignoring the influence of shaft rotation over 
pressure drop and does not consider the several possible flow regimes. 
Depending on operational conditions, this simplification can lead to 
significant errors. 
 
Keywords: annular channel, pressure drop, torque coefficient, rotating 
inner, screw pumps. 

 
 
NOMENCLATURE 
 
Latin Symbols 
 
CM torque coefficient 
Dh hydraulic diameter (m) 
e eccentricity (m) 
Fg geometric factor 
kan correction coefficient for flow in annulus 
kε correction coefficient for eccentricity 
krot correction coefficient for rotation 
kr roughness (m) 
l length (m) 
P pressure (bar) 
R radius (m) 
Re Reynolds number (Re=ρU2s/µ) 
s channel height (m) 
t time (s) 
Ta Taylor number (Ta= ρωRi

1/2s3/2/µ) 
U average axial velocity (m/s) 
 
Greek Symbols 
 
β experimental parameter in Eq. (3) 
∆ difference 
ε relative eccentricity 
λ axial friction coefficient  
µ dynamic viscosity (Pa.s) 
ν kinematic viscosity (m2/s) 
ρ specific mass (kg/m3) 
ω angular velocity (rad/s) 
 
Subscripts 

 
c casing 
D discharge 
e external 
f fluid 
ε eccentric 
i inner, internal 
k chamber k  
l laminar 
lv laminar with vortices 
m mean 
ml logarithmic mean 
θ tangential 
r rough, rotor 
rc rotor/casing 
s smooth 
S suction 
t turbulent 
z axial 
 
Superscripts 
 
• quantity per time unit (1/s) 
 
INTRODUCTION 
 

The evaluation of backflow rate in screw pumps 
depends fundamentally on the comprehension of the 
flow in annular channels in which the inner cylinder 
rotates. In screw pumps, the pressure difference 
between two consecutive chambers forces part of the 
working fluid through the peripheral clearance back 
to the suction region as shown in Fig. (1). Since the 
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geometry of this clearance recalls the geometry of 
narrow annular channels with rotation of inner 
cylinder, then the correct understanding of the 
phenomena involved in this kind of channel flow 
becomes extremely important when calculating pump 
performance. Besides, the required torque to move 
the inner cylinder is necessary for calculation of 
viscous losses in the pump periphery and, therefore, 
to correctly evaluate pump shaft power. 

The work described in this paper aimed a 
literature review and – based on this – a development 
of a general correlation to calculate friction 
coefficient and torque coefficient in the cited flow. 
The need of such correlation raised during the 
development of a thermo-hydraulic model of a twin-
screw multiphase pump (see Nakashima, Oliveira and 
Caetano (2002)). This kind of pump, which is been 
prototyped by Petrobras, is able to transport 
unprocessed petroleum (i.e. gas-liquid mixtures). 
Several models tried to calculate the backflow rate 
through the peripheral clearances using correlations 
for static annular channels. However, as it will be 
described in next items, the rotation of inner cylinder 
can have a significant influence on axial flow. 
 

PDSP

Pk Pk+1

Suction Discharge

kP Pk+1

Backflow
<

 
 

Figure 1. Backflow in the peripheral clearance of 
screw-pumps. 

  
FLOW IN ANNULAR CHANNELS WITH 
ROTATION OF INNER CYLINDER 
 
Introduction 
 

Generically, the flow between concentric 
cylinders with rotation of inner one can be considered 
a composition of three basic flows: Couette, 
Poiseuille and Taylor, which can be either laminar or 
turbulent. As illustrated in Fig. (2), the Couette flow 
is caused by rotation of inner cylinder and the 
Poiseuille flow takes place due to pressure difference 
between channel inlet and outlet. Taylor flow appears 
due to centrifugal forces after a critical rotation and is 
characterized by a sequence of toroidal vortexes. 
They are distributed tangentially and have alternate 
senses. 

Kaye and Elgar (1957) show experimentally that, 
depending on axial and tangential velocities, these 
basic flows will form four different regimes: laminar, 
laminar with Taylor vortexes, turbulent and turbulent 
with Taylor vortexes (see Fig. (3a)). When the flow is 

laminar, the axial and tangential components of the 
fluid velocity are independent of each other. In this 
case, it is clear that rotation will not influence axial 
friction losses. On the other hand, when the Taylor 
vortexes appear in the flow due to centrifugal forces 
– after a critical rotation – and when the flow is 
turbulent, the velocity components are not 
independent anymore. Consequently, in these 
regimes the rotation of the inner cylinder is expected 
to influence axial friction losses. Actually, several 
authors confirmed the influence of rotation over axial 
friction coefficient (λ). Figure (3b), for instance, 
shows experimental results from Yamada (1962) 
where there is clearly an increase on the friction 
coefficient as rotation, represented by Taylor number 
(Ta= ρωRi

1/2s3/2/µ) is raised. In this figure, horizontal 
lines represent friction coefficient values obtained 
with usual channel flow correlations. When the flow 
is laminar (Re = 1000 in Fig. (3b)) there is a sudden 
increase at a certain critical tangential velocity. At 
this point - that corresponds to the appearance of 
Taylor vortexes – the velocity components abruptly 
stop being independent of each other and the rotation 
of inner cylinder becomes important. For turbulent 
flow, velocity components are always dependent on 
each other and, therefore, the rotation influence is 
smoother than in laminar case. However, if axial 
velocity is large, the influence of rotation can only be 
noticed at high tangential velocities. 
 

Pi+1Pi

(c)(b)

(a)

 
Figure 2. Schematic illustration of possible flow 

types inside annular channels with rotation of inner 
cylinder: a) Couette flow, b) Taylor flow and c) 

Poiseuille flow. 
 
Pressure drop 
 

The relation between pressure drop and axial 
mean velocity in a channel can be given by: 
 

 ⎟
⎠
⎞

⎜
⎝
⎛=

s2
l

2
UP

2
z λρ∆  (1) 

 
According to Idelchik (1994), the friction 

coefficient in narrow static annular channels for 
laminar (λl), smooth (λs) and rough (λr) turbulent 
flows can be calculated respectively by: 
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 parameter determined 
n (3) can be directly 

sius equation for friction 
bulent flow. Despite a slight 
ient (0.3216 in Eq. (3) and 
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ction factor for rotational 
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osed a correlation (Eq. (4)) 
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ents to determine friction 

coefficient in several operational conditions and 
geometries. The comparison of his experimental data 
with Eqs. (3) and (4) showed that the values obtained 
with Eq. (4) have a good agreement in the turbulent 
region. In the laminar with Taylor vortexes region, 
the correlation shows poor agreement. It is possible 
to compare Eqs. (3) and (4) and realize that they are 
quite similar when β=1.0. 
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Other factor that can influence pressure drop and 

mean axial flow is the eccentricity between inner and 
outer cylinders. In screw-pumps operation, such 
eccentricity is expected to be caused either by design 
requirements or screw-shaft bending. 

For the non-rotating cases, the eccentricity will 
cause a reduction in pressure drop and an increase in 
axial flow as explained in Caetano, Shohan and Brill 
(1992) and Gunn and Darling (1963), respectively, 
for laminar and turbulent cases. When the flow is 
laminar, Eq. (5) can be analytically found for narrow 
(sp/Ri≈1) eccentric channels: 
 

 ( )2
l

l,
5.11 ε

λ
λε

+
=  (5) 

 
In the case of narrow channels with turbulent 

flow, many correlations were proposed by different 
researchers (Tao and Donovan (1953), Gunn and 
Darling (1963), Wincek (1992) and Idelchik (1994)). 
The comparison between the results for each equation 
in Fig. (4) shows similar results. Also in this figure, 
the results of Gunn and Darling (1963) equation for 
Re = 3000 and Re = 100000 evidence that the 
magnitude of axial Reynolds number has little 
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importance over friction coefficient. Therefore, the 
pressure drop reduction can be considered as a 
function of eccentricity only as in the laminar case. In 
this paper, only the equation of Tao and Donovan 
(1955) will be presented because it can be used either 
for smooth or rough turbulent flow: 
 

 
 

Figure 4. Reduction in friction coefficient due to 
eccentricity in turbulent flow according to several 

authors. 
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When the inner cylinder rotates, the influence of 

eccentricity is similar to that found in static cases if 
narrow channels are considered. Ooms and 
Kampman-Reinhartz (1996) and Escudier et al. 
(2000) studied numerically and experimentally the 
influence of eccentricity in channels with inner 
cylinder rotation and laminar flow. They found that 
when there is rotation, the influence of eccentricity is 
different from the static case: friction coefficient 
increase is higher. However, as the relation between 
internal and external radii approaches 1.0, the results 
of rotating and static cases become almost the same. 
When the flow is turbulent, Tao and Donovan (1955) 
and Nouri and Whitelaw (1997) found that the 
influence of eccentricity is almost the same in 
rotating and static cases. 
 
Torque 
 

The studies about torque between two cylinders 
with rotation of the inner one usually consider only 
the case without axial flow and are shown below. The 
influence of axial flow over the needed torque to 
move the inner cylinder, that is expected when the 
velocity components are not independent of each 
other, was not found in the literature review. 

For laminar flow, the torque coefficient for 
concentric and eccentric cases can be calculated 
using the equation developed analytically by Diprima 
and Stuart (1972) for narrow channels: 
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When Taylor vortexes appear in the flow, there is 

an increase in the torque. Stuart (1958) studied the 
torque in this flow regime and found the following 
relation for the torque coefficient:  
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This equation is valid only for concentric cases. 
For turbulent flows, Schilichting (1968) proposed 

that the torque coefficient is proportional to the 
Taylor number: 
 
  (9) 2.0

t,t,M TakC −= ε

 
Table 1. Coefficients to be used with Eq. (9) for 
different eccentricities (after Nakabayashi et al. 
(1972)). 
 

ε  
0 0.25 0.50 0.75 

kε,t 0.02524 0.02904 0.03788 0.04920 
 

Experimental data obtained in the work of 
Nakabayashi et al. (1972) confirms this relationship. 
Based on his experimental data, Nakabayashi et al. 
(1972) calculated the proportionality coefficient to be 
used with Eq. (9) for different eccentricities as Tab. 
(1) shows. 
 
GENERALIZED CORRELATION FOR 
FRICTION COEFFICIENT 

 
In the laminar regime, Equation (2) together with 

Eq. (5) will give the correct values for concentric and 
eccentric cases. For turbulent flow, a generalized 
correlation for friction and coefficient was developed 
based on the correlations found in literature. The 
development shown below assumed narrow channels 
and moderate angular velocities because multiphase 
screw-pumps have inner to outer radii ratios higher 
than 0.99 and are expected to work with angular 
velocities lower than 5000 rpm. In this case, 
centrifugal forces due to rotation of inner cylinder 
will not be significant. 

Among all the correlations for smooth turbulent 
flow, Eq. (3) proposed by Suzuki (1929) was 
considered the most adequate. In spite of Eqs (3) and 
(4) have similar results for turbulent flow; Eq. (3) has 
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the parameter β that can be adjusted. Therefore, with 
the correct adjustment of β, Eq. (3) can be used in the 
laminar with vortexes region even though it was 
developed for smooth turbulent cases. 

Using experimental data from Yamada (1962), 
parameter β was curve fitted as follows: 
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 Also the coefficient of Eq. (3) was altered so that 

this equation will reduce to Blasius equation when 
inner cylinder is not rotating: 
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Figure (5) shows the results of this equation 

compared to experimental data of several authors. 
The results show sactisfactory agreement between 
predicted and experimental data. In Fig. (5a), where 
several geometries were studied, it is possible to 
realize that calculated data fit better data for narrower 
channels. This is expected since parameter β in Eq. 
(10) was obtained for these geometries. 

With these sactisfactory results, Eq. (15) can be 
re-written in the following manner: 
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Equation (16), therefore, can be considered as the 
Blasius equation with two correction factors: kan, 
because the flow is annular, and krot, due to rotation 
of inner cylinder. Considering the fact that Blasius 
equation and the universal law developed by Prandtl 
give similar results when Reynolds number is not 
extremely high (Re≤105), the same correction factors 
could be applied to this equation, as follows: 
 

 
(a) Yamada (1962) 

 
(b) Salhi et al (1992) 

 
Figure 5. Comparison of Eq. (17) with experimental 

data from several authors. 
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The next step to determine a general correlation 

is the calculation of the friction coefficient in the 
rough turbulent region. For this case, no correlation 
could be found in literature. Therefore, the same 
procedure used by Yamada (1962) was used. The 
only difference is the exponent of the power law, 
which was changed to 1/5 following Schilichting 
(1968). The result, written in terms of correction 
factors as in Eq. (19), is given by eq. (20). 
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Assuming that the transition between smooth and 

rough turbulent flows will occur in way similar to the 
transition given by the Colebrook and White 
equation, Equations (19) and (20) can be combined as 
shown in Eq. (22). 
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(a) ε = 0.25  

 
(b) ε = 0.75 

 
Figure 6. Comparison of Eq. (17) with experimental 

data from several authors. 
 

Eccentricity effects can be included if it is 
assumed that it influences rotating and static channels 
in the same way. Therefore, correction factors can be 
calculated by Eq. (6), which can be represented by 
polynomials for smooth and rough turbulent flows: 
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And the general equation for smooth or rough 

turbulent flows in concentric or eccentric cases will 
be given by: 
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Figure 6 show the results of Eq. (25) compared to 

experimental data of Yamada, Nakabayashi and 
Maeda (1969), which studied eccentric rotating 
channels. The agreement between experimental and 
calculated data is good. Experimental results for 
rough turbulent flow were not found for comparison. 
 
GENERALIZED CORRELATION FOR 
TORQUE COEFFICIENT 
 

The torque coefficient in the laminar flow can be 
given by Eq. (7). When the flow is not laminar, 
however, the axial flow will increase the torque 
coefficient. Although no study about the torque 
coefficient with axial flow could be found, the same 
methodology used by Suzuki (1929) can be applied to 
calculate tangential losses. Suzuki (1929) added the 
two velocity components assuming the 1/7th power 
law and used the resultant velocity to calculate shear 
stresses at the wall. The axial component of the shear 
stresses is used to calculated pressure drop as shown 
in Eq. (3) and, therefore, the tangent component 
could be used to calculate tangential losses 
represented by the torque coefficient. Using this 
approach, an expression for the torque coefficient for 
smooth turbulent flow can be deduced: 
 

 

⎪
⎭

⎪
⎬

⎫

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

⎪
⎩

⎪
⎨

⎧

+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

8
3

2
2

z

8
3

2
z

25.0s,M

Re2
Re

592.1

1
Re2

Re
592.1

Re
045.0C

ββ
θ

θθ  (26) 

 
Where the parameter β is the same of Eq. (3). 

Similarly to Eq. (15), Eq. (26) can be expressed in 
terms of correction factors: 
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 71'k =θ  (28) 
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For rough turbulent flow, the same approach 

used to deduce Eq. (21) will give the following 
expression: 
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The correction of torque coefficient due to 

eccentricity for the smooth turbulent flow through 
experimental data of Nakabayashi et al (1972) is 
shown in Tab. (1). Using their data a curve was fitted 
assuming that the increase of of torque coefficient 
with eccentricity has a similar behavior of the 
increase in laminar flow shown in Eq. (7). The 
correction factor due to eccentricity found with the 
curve fit is given by Eq. (31). 
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For the laminar with vortexes regime, no 

correction for the eccentricity was found. 
Experimental data from Nakabayashi et al (1972), 
however, evidences presence of Taylor vortexes is 
delayed by the eccentricity as shown in Fig. (7). For 
the laminar with Taylor vortexes regime, is assumed 
that the Taylor vortexes will appear in the flow at a 
fixed value for torque coefficient, which is 
approximately true as can be seen in Fig. (7). Using 
this approximation, it is possible to calculate the 
delayed Reynolds number using Eq. (7). The 
influence of Taylor vortexes becomes lower as 
eccentricity increases however it was not possible to 
take this fact into account. Therefore, the influence of 
vortexes in the laminar with vortexes region is 
considered the same (k’ε=1) for all eccentricities.  
Using the correction factors (Eqs (28), (29), (30) and 
(32)) and assuming that the influence of eccentricity 
is the same either in smooth or rough turbulent flows, 
it is possible to define a correlation similar to Eq. 
(25) as follows: 
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Figure 7. Influence of eccentricity over torque 
coefficient in the laminar with Taylor vortexes 

region. 
 

Figure (8) shows a comparison between this 
equation and experimental data from Stuart (1958) 
and Nakabayashi et al (1972). The results show a 
sactisfactory agreement for the concentric case. 
When the channel is eccentric, the agreement is good 
except for the region where Taylor vortexes appear. 
In this region, characterized by a sudden increase in 
the torque coefficient, there is a significant deviation. 

 
CONCLUSIONS 

 
Two generalized correlations for friction and 

torque coefficients were developed in this paper. 
These correlations are valid for laminar with 
vortexes, smooth and rough turbulent flows. Together 
with equations for laminar flow proposed by other 
authors (Eqs. (2), (5) and (7)), it is possible to 
evaluate axial and tangential losses in narrow annular 
channels with inner cylinder rotating at moderate 
velocities (0-5000 rpm). The proposed correlations 
were compared to experimental results found in 
literature. The results for friction coefficient have a 
good agreement for concentric and eccentric cases in 
either smooth turbulent or laminar with vortexes 
regimes. When results for torque coefficient were 
compared, agreement is good in for concentric cases. 
If there is eccentricity, the proposed correlation 
overestimates the torque coefficient in the laminar 
with vortexes region. No experimental data for 
comparison were found in the rough turbulent 
regime. 
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(a) ε = 0       (b) ε = 0,50 

 
Figure 8. Comparison between calculated and experimental data from Stuart (1958) and Nakabayashi et al 

(1972). 
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