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ABSTRACT 
 
In this work an error analysis for numerical solution of 3D convection-
diffusion equation by finite difference methods has been done. The 
backward, the forward and the central difference schemes are applied for 
three applications: a case with diffusion dominant corresponding to high 
diffusion coefficients and two cases with convection dominant or with low 
diffusion coefficients. In the second application the convective coefficients 
are function only of the diffusion coefficient that in dimensionless form is 
named Reynolds numbers. In the third application the convective 
coefficients are function of both the Reynolds number and of the space. The 
three applications have analytical solutions to facilitate numerical 
comparisons of the solutions. 
 
 
Keywords: Finite Difference Method, Error Analysis, Reynolds Numbers, 
Convection-Diffusion. 

 
 
NOMENCLATURE 
 
x,y,z space coordinates 
f source 
u temperature 
L2 Global norm 
L∞ Maximum error 
ℜ  real numbers 
Re Reynolds number 
 
Greek symbols 
 
Ω  three-dimensional domain 
 
Subscripts 
 
i,i+1 position of node in discretization 
 
1. INTRODUCTION 

 
The Finite Difference Method (FDM) is a 

powerful tool to solve fluid mechanics and heat 
transfer problems. Several authors already presented 
excellent results from the application of FDM in 1D, 
2D and 3D problems of Fluid mechanics and Heat 
Transfer.  

In Hsu (2006) the 3D inverse non-Fourier heat 
conduction problem are solved by Finite Difference 
Method and showing excellent results because it is 
purely diffusive problems. Excellent results are also 

presented in Yang et all (2002), were one particular 
integral formulations are presented for 2D and 3D 
transient potential flow (heat conduction) analysis. 
The results of the analysis are compared with an 
alternative formulation developed using the volume 
integral conversion approach, obtained excellent 
results.  

Among them Gupta and Zhang (2000) utilized an 
explicit fourth order finite difference scheme for the 
solution of 3D convection-diffusion equation. In 
Romão et all (2008) a FDM was applied to numerical 
solution of 1D transient diffusion equation obtaining 
good results. In Chung (2002) several problems of 
Fluid Mechanics were solved by the application of 
FDM, including solution of the Laplace and the 
Burgers equations. In Hon and Chen (2003) a 
numerical solution of a convection-diffusion equation 
by the Boundary Knot Method is compared with its 
analytical solution. 

In this work, three variants of the Finite 
Difference Method (FDM) are applied to an error 
analysis in the solution of the convection-diffusion 
equation. They are the backward, the forward and 
central difference schemes. Three applications are 
considered: one with diffusion predominant and the 
other two with convection predominant, a case with 
convective coefficients function only of the Reynolds 
number and another with convective coefficients 
depending on the Reynolds number and the position. 
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The performance of each scheme is analyzed and 
discussed. 

In this work we consider the solution of a 3D 
convection-diffusion problem modeled by the general 
equation: 
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with a = a(x,y,z), b = b(x,y,z), c = c(x,y,z),                  
d = d(x,y,z), e = e(x,y,z), g = g(x,y,z), h = h(x,y,z) and       
u = u(x,y,z). 

 
2. FINITE DIFFERENCE METHOD 

 
The basic idea of finite difference methods is 

simple: derivatives in differential equations are 
written in terms of discrete quantities of dependent 
and independent variables, resulting in simultaneous 
algebraic equations with all unknowns prescribed at 
discrete mesh points for the entire domain. 

In this item, we present three variants of the finite 
difference method (Chung (2002), Smith (1971) and 
Fortuna (2000)) for deriving equations. 

 
2.1 Taylor Series – Finite Difference Methods 

 
Consider a function )(xu  and its derivative at 

point x, 
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If )( xxu Δ+  is expanded in Taylor Series around 
)(xu , we obtain 
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Substituting (3) into (2) yields 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

∂
∂Δ

+
∂

∂
=

∂
∂

→Δ
...)(

2
)(lim)(

2

2

0 x
xux

x
xu

x
xu

x
       (4) 

 
Or it is seen from (3) that 
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The derivative ∂u(x)/∂x in (5) is of first order in 

xΔ , indicating that the truncation error )( xO Δ  goes 

to zero like the first power in xΔ . The finite 
difference form given by (2), (4) and (5) is said to be 
of the first order accuracy. 

We may write u in Taylor series at i+1 and i-1, 
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Rearranging Eq. (6) and after neglecting terms of 
order greater than 2, we arrive at the forward 
difference: 
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Likewise, from (7), we have the backward 

difference: 
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A central difference is obtained by subtracting 

(7) from (6): 
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It is seen that the truncation errors for the forward 

and backward differences are first order, whereas the 
central difference yields a second order truncation 
error (Chung, 2000). 

Finally, by adding (6) and (7), we have 
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This leads to the finite difference formula for the 
second derivative with second order accuracy, 
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3. DERIVATION OF FINITE DIFFERENCE 
SCHEME EQUATIONS 

 
In that follows, the mathematical formulation by 

FDM in three considered variants is presented for the 
convection-diffusion Equation (1). 
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3.1 Forward Difference Scheme - FDS 
 

By substitution of Eqs. (8) and (12) in  Eq. (1), we 
obtain the forward difference scheme as 
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3.2 Backward Difference Scheme - BDS 

 
In a similar way, by substituting the Eqs. (9) and 

(12) in (1), we obtain the backward difference 
scheme 
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3.3 Central Difference Scheme - CDS 

 
The central difference scheme is obtained by 

combination of Esq. (10), (12) and Eq. (1) 
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4. NUMERICAL APPLICATIONS 
 

The numerical solution of the linear Equations 
(13), (14) and (15) was obtained by the utilization of 
the Gauss-Seidel Method with error ≤ 10-7 (Barroso 
et. all, 1987). In the utilization of this method only 
the non zeroes coefficients of the matrix need to be 
stored. In all applications the delta are all of the same 
size: Δx = Δy = Δz = h, and the domain will be an 
hexahedra of unitary side. 

The first application is a case of convection-
diffusion equation in which all coefficients are 
unitary constants in the whole domain. The L2-norm 
of the error is calculated (Dhatt and Touzot (1984), 
Romão et all (2008)) in order to analyze the errors in 
the numerical solution. Also the maximum error is 
analyzed by the evaluation of the L∞-norm. The L2 
norm of the error was defined like in (Zlhmal, 1978):  
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In this equation, Nnost is the total number of 
nodes in the mesh and || )()( iannumi TTe

i
−= , where 

T(num) is the result from the numerical solution and 
T(an) is the result form the analytical solution 
respectively. The L2 norm presented a overview of 
error, while the L∞ norm a view point of error. 

The same is done in the second and third 
applications, but the coefficients of the convective 
terms are functions of number Reynolds, so that the 
third application the coefficients also depend on the 
space. The results of second application are compared 
with results from Gupta and Zhang (2000). The same 
size h of discretization of Gupta was used in this 
work. The applications 1 at 3 are defined in domain 
Ω = [0,1]3, with Ω ∈ ℜ. 

 
Application 1. In this case, the convection-

diffusion equation simplifies to: 
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subject to the Dirichlet boundary condition.  

The analytical solution for the above equation is 
(Hon and Chen, 2003), 

 
zyx eeezyxu −−− ++=),,(  

 
The calculated norms are presented in Tables 1 

and 2. The first column of the tables is the size the 
spatial discretization; the second column show the 
number of non zeros coefficients in the linear system; 
the third the number of points in the domain and the 
last three columns are the norms of the errors. 
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Table 1. L2-norm of the errors in the numerical 
solutions of the three FDM considered. 

 
L2

 Norm h NCNN Nnodes 
FDS BCS CDS 

1/5 600 216 2,87E-03 3,74E-03 1,08E-04

1/8 2787 729 2,16E-03 2,55E-03 4,90E-05

1/10 5705 1331 1,83E-03 2,09E-03 3,29E-05

1/16 25163 4913 1,25E-03 1,36E-03 1,43E-05

1/20 50415 9261 1,02E-03 1,10E-03 1,00E-05

1/32 214683 35937 6,68E-04 7,03E-04 6,84E-06

1/64 1774907 274625 3,34E-04 3,68E-04 1,46E-05

1/100 6852095 1030301 1,70E-04 2,82E-04 5,57E-05
 

By inspection of tables 1 and 2, as expected, the 
mesh refinement reduce the value of the error, the 
central difference yielding to better results which 
with h = 0,2 already presents a maximum error and a 
L2-norm of order 10-4. In this first application 
convection and diffusion are of the same order of 
importance. In the next two applications the 
convection is predominant in order to analyze the 
robustness of the methods. Convective dominant 
problems present difficulties to numerical methods in 
general. 

 
Table 2. L∞-norm of the errors in the numerical 

solutions of the three FDM considered. 
 

L2
 Norm h NCNN Nnodes 

FDS BCS CDS 
1/5 600 216 8,62E-03 1,13E-02 3,27E-04

1/8 2787 729 5,70E-03 6,76E-03 1,29E-04

1/10 5705 1331 4,78E-03 5,47E-03 8,60E-05

1/16 25163 4913 3,12E-03 3,39E-03 3,62E-05

1/20 50415 9261 2,51E-03 2,69E-03 2,55E-05

1/32 214683 35937 1,59E-03 1,67E-03 1,85E-05

1/64 1774907 274625 7,69E-04 8,66E-04 4,25E-05

1/100 6852095 1030301 3,58E-04 6,88E-04 1,62E-04
 
In the routine used to solve the linear system, only 

non zero coefficients (NCNN – number of 
coefficients non nulls) need to be storage. For 
example, in a mesh with h = 0,05, NCNN = 50.415 
and Nnodes = 9.261 (Nnodes = number of nodes)  if 
a full matrix was assembled, for the linear systems 
(13), (14) and (15) one would have in a 9.261x9.261,  
85.766.121 coefficients to be storage. Storing only 
the nonzero elements, the number of coefficients to 
be storage reduces to 50.415, less than 1 percent of 
the full matrix, with a significant reduction in the 
computational cost. 

We also noted in tables 1 and 2, that when using a 
mesh with h = 1/100, the results begin to be less than 
the precision of mesh h = 1/64, though not presented 
in this work, for a mesh h = 1/200 precision now falls 
to values close to 10-3, demonstrating that excessive 

refinement do not always have better results (for 
CDS). 

 
 
Application 2. In this application the convective 

coefficients are function of the Reynolds numbers 
and the equation considered is of the form: 
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with º35=α , º45=β  and subject to the Dirichlet 
boundary condition. 

The analytical solution is (Gupta and Zhang, 
2000), 

 
zyxzyxu ...),,( πππ sensensen ⋅⋅= . 

 
 

Table 3. Maximum error to Re = 1. 
 

h FDS BDS CDS 
Gupta 
2000, 

standard 
upwind 

1/16 2,15E-02 1,44E-02 3,43E-03 1,45E-02 
1/32 9,85E-03 8,10E-03 7,97E-04 8,09E-03 
1/64 4,67E-03 4,31E-03 1,62E-04 4,28E-03 

 
Table 4. Maximum error to Re = 10. 

 

h FDS BDS CDS 
Gupta 
2000, 

standard 
upwind 

1/16 1,70E-01 1,27E-01 4,32E-03 1,28E-01 
1/32 7,88E-02 6,81E-02 3,50E-04 6,82E-02 
1/64 3,79E-02 1,19E-02 2,66E-04 3,54E-02 

 

Table 5. Maximum error to Re = 100. 
 

h FDS BDS CDS 
Gupta 
2000, 

standard 
upwind 

1/16 8,47E-01 2,71E-01 6,11E-03 2,71E-01 
1/32 1,11E-01 1,48E-01 1,52E-03 1,48E-01 
1/64 8,87E-02 7,82E-02 3,81E-04 7,82E-02 

 

Tables 3 to 5 show the results of the present 
simulation compared with the analytical solution 
from Gupta (2000). Although, the present results are 
less accurated than the results from Gupta (2000), we 
have used only first order discretization (FDS and 
BDS) and second order discretization (CDS), while 
Gupta has used an upwind scheme with identical 
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results to those presented this work backward 
scheme. 

In tables 3 to 5, it can be observed that when the 
Reynolds number increases the errors of the present 
simulations are of the same (or better) order of 
accuracy of the results from Gupta (2000), being 
better at CDS. For this Reynolds number the 
convection already predominate over the diffusion.  

 
Table 6. L2 Norm of error to Re = 1. 

 
h FDS BDS CDS 

1/16 6,97E-03 4,68E-03 1,04E-03 
1/32 3,33E-03 2,74E-03 2,69E-04 
1/64 1,61E-03 1,49E-03 5,56E-05 

 
Table 7. L2 Norm of error to Re = 10. 

 
h FDS BDS CDS 

1/16 5,38E-02 4,03E-02 1,34E-03 
1/32 2,59E-02 2,25E-02 1,08E-03 
1/64 1,27E-02 3,53E-02 8,68E-05 

 
Table 8. L2 Norm of error to Re = 100. 

 
h FDS BDS CDS 

1/16 1,04E-01 8,17E-02 1,96E-03 
1/32 6,30E-02 4,63E-02 5,11E-04 
1/64 2,76E-02 2,47E-02 1,30E-04 

 
In tables 6 to 8, one notes that the average error 

introduced by the L2 norm is around the same order 
of accuracy of the maximum error introduced by the 
L∞ norm. 

 
 
Application 3. In this application the convective 

coefficients are function of the Reynolds number as 
well as of the space (x, y, z) and the equation is of the 
form:  
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with f = f(x,y,z). The analytical solution is, 

 
)864cos(),,( zyxzyxu ++= . 

 
Table 9. Maximum error to Re = 1. 

 
h FDS BDS CDS 

1/8 6,52E-02 9,33E-02 7,72E-02 
1/16 1,44E-02 2,81E-02 1,90E-02 
1/32 2,99E-03 9,49E-03 4,72E-03 
1/64 1,67E-03 3,67E-03 1,15E-03 

 
 
 

Table 10. L2 Norm of error to Re = 1. 
 

h FDS BDS CDS 
1/8 2,36E-02 3,42E-02 2,87E-02 
1/16 5,18E-03 1,06E-02 7,69E-03 
1/32 1,00E-03 3,53E-03 2,00E-03 
1/64 4,78E-04 1,31E-03 5,09E-04 

 
In tables 9, 11 and 13 are presented the norms L∞ 

of error while tables 10, 12 and 14 are presented L2 
norms of error for values of h equal to 1/8, 1/16, 1/32 
and 1/64 for the three schemes proposed in this paper. 
Again, the CDS stands before the other two schemes, 
but for the L2 norm the FDS has order of accuracy 
consistent with the results of the CDS in almost all 
the refinements. 

 
Table 11. Maximum error to Re = 10. 

 
h FDS BDS CDS 

1/8 1,34E-01 3,52E-01 9,28E-02 
1/16 8,44E-02 1,39E-01 2,27E-02 
1/32 4,76E-02 6,10E-02 5,74E-03 
1/64 2,53E-02 2,86E-02 1,42E-03 

 
Table 12. L2 Norm of error to Re = 10. 

 
h FDS BDS CDS 

1/8 3,43E-02 9,40E-02 3,37E-02 
1/16 2,28E-02 3,93E-02 9,04E-03 
1/32 1,36E-02 1,79E-02 2,35E-03 
1/64 7,46E-03 8,57E-03 6,02E-04 

 
The highlight negative is that the BDS, using the 

Gauss-Seidel to solve the linear system, showed no 
convergence results for meshes with h equal to 1/8 
and 1/16 for a  Re = 100 . For meshes with h equal to 
1/32 and 1/64, in turn, the method converged 
normally. 

 
Table 13. Maximum error to Re = 100. 

 
h FDS BDS CDS 

1/8 5,01E-01 Not converge 2,14E-01 
1/16 2,72E-01 Not converge 4,98E-02 
1/32 1,48E-01 2,06E-01 1,25E-02 
1/64 7,79E-02 8,87E-02 3,13E-03 

 
Table 14. L2 Norm of error to Re = 100. 

 
h FDS BDS CDS 

1/8 1,57E-01 Not converge 7,02E-02 
1/16 9,35E-02 Not converge 1,81E-02 
1/32 5,15E-02 6,15E-02 4,67E-03 
1/64 2,72E-02 2,95E-02 1,19E-03 
 
For this case, was tested meshes with h equal to 

1/100 and 1/200, but the results are worse than the 
precision shown for the mesh h = 1/64 for the three 
variations of the Reynolds number, thus showing that 
not always the constant refinement of the mesh 
always present better results. 
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5. CONCLUSIONS AND FUTURE WORK 
 
The Finite Difference method is a powerful tool 

in solution of convection-diffusion problems. The 
numerical solution of this kind of problem generally 
is affected by numerical oscillations when the 
Reynolds number increases. The obtained results 
demonstrated that for error of order 10-2 or 10-3, 
discretization of first or second order already can be 
satisfactory. With this order of error the simulations 
are relatively of low cost and of easy implementation, 
for example, in Fortran language. 

In next works, more general problems to which 
analytical solutions are not known will be analyzed. 
With computers of great capacity of RAM, more 
refined meshes shall be considered and more realistic 
problems where the velocity field needs to be 
obtained also will be considered. 
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