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ABSTRACT 
 
The fast progress has been observed in the development of numerical and 

analytical techniques for solving convection-diffusion and fluid mechanics 

problems. Here, a numerical approach, based in Galerkin Finite Element 

Method with Finite Difference Method is presented for the solution of a 

class of non-linear transient convection-diffusion problems. Using the 

analytical solutions and the L2 and L∞ error norms, some applications is 

carried and valuated with the literature.  

 

Keywords: Numerical simulation, Burgers’ equation, Galerkin Finite 
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NOMENCLATURE 
 

x e y space coordinates 

t time coordinate 

Nj interpolation function 

Nnodes number of nodes in each finite element 

u velocity 
e
jû  velocity approximation in the finite element 

 

Greek symbols 
 

Ω  one-dimensional domain 
eΩ  one-dimensional domain in the element 

α  coefficient of Crank-Nicholson Method 

ξ  local coordinate 

 

Subscripts 
 

node identification of a node 

 

 

1. INTRODUCTION 

 

The majority of problems in fluid mechanics and 

heat transfer are represented by nonlinear partial 

differential equations. A classical nonlinear first-

order hyperbolic equation inicially proposed by 

Bateman in 1915, later on was treated by Burgers in 

1948, after whom this equation is widely referred to 

as Burgers’ equation, a important role in the study of 

nonlinear waves since it can be used as mathematical 

model of free turbulence (Kevorkian, 1990). Besides, 

is also a model example for important applications in 

physical phenomena such as acoustics, continuous 

stochastic processes, dispersive water waves, gas 

dynamics, heat conduction, longitudinalelastic waves 

in an isotropic solid, number theory, shock waves, 

turbulence and so forth (Polyanin and Zaitsev, 2004). 

In recent years, many researchers have proposed 

various kinds of numerical methods for Burgers’ 

equation (Dogan, 2004; Dag et al., 2005; Zhang et 
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al., 2009; Xu et al., 2011), mainly concerned with the 

development of computational algorithms where, in a 

continuous drive to demonstrate the superior 

accuracy and stability properties of their latest 

numerical method, for numerical solution. 

It is one of a few well-known nonlinear partial 

differential equations, which can be solved 

analytically on the restricted initial conditions (Guo-

Zhong et al., 2010).  

The Burgers’ equation is give by 
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In 1950 and 1951, E. Hopf and J. D. Cole 

independently showed that Eq. (1) can be 

transformed in the linear diffusion equation 

(Kevorkian, 1990). Thus, we can rewrite the Eq.(1) as 

follows 
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where
2

2

1
uE =  (Hoffmann and Chiang, 2000). This 

technique to linearize the equation has been widely 

used in finite difference method, here will be used 

with the finite element method. 

 

2. DISCRETIZATION OF GOVERNING 

EQUATION 
 

For the temporal discretization, considering the 

parabolic equation given by Eq. (2), we use the 

method called α family of approximation (Reddy, 
1993), in which a weighted average of the time 

derivative of a dependent variable is approximated on 

two consecutive time steps by linear interpolation of 
the values of the variable at two steps: 
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where 10 ≤≤ α , ],[
1+∈ nn

ttt , mtn ,...,2,1,0= , 

where mt is the number of steps in time, and { }
n
 

refers to the value of the enclosed quantity at time n 

and ∆tn+1= tn+1- tn is the (n+1) ith time step. For 

different values of α , we obtain well-known 

numerical integration schemes, described in (Reddy, 

1993). 

On this manner, in the temporal discretization 

give by Eq. (1), we can approximate the function u by 

u~ , and obtain 
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The first term on the right side of Eq. (5), was 

discretized using the Forward Difference Formula 

with second order accuracy for 2,...,2,1 −= Nnosti , 

x
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43 21  (Chung, 2002) and the 

Backward Difference Formula with second order 

accuracy for 1−= Nnosti  and Nnosti = , 

x

EEE

x
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2

43 21  (Chung, 2002), where 

Nnost is total number of nodes in the mesh and ∆x the 
distance between the nodes, which, in this work, was 

adopted as the same for all neighboring mesh points. 
Now, for the second term on the right side of Eq. 

(5), was used the Finite Element approximation, as 

follows 
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for Nnosti ,...,2,1=  and Nnodes is the number of 

nodes in element and N are the Lagrange 
interpolation functions (Dhatt and Touzot, 1984). 

For the spatial discretization, using the Galerkin 

Method, we have 
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Using integration by parts to lower the order of 

the highest derivatives contained in the integrand 

(Dhatt and Touzot, 1984), we obtain 
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Approximating the function u~  by 
eû , in element, 

we have ∑ =
=≈

Nnodes

i

e
ii

e uNuu
1

ˆˆ~ . Then, incorporating 

this in Eq. (7), we have 
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with i,j=1,2,…,Nnodes, 
eΩ  and 

eΓ  the domain and 

boundary element, respectively. 

Since the boundary conditions proposed for this 

problem are invariants in time, then 
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Notice that the term 
Γ∂

∂
x

u
N i

~

Re

1
 is related with 

the boundary conditions of this problem and has the 
following properties: 
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where 
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From the Eq. (8), we obtain the following 
matricial system: 
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To transform the global for local coordinates, we 

have that  
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being Ωd  and ξd  the differential elements in the 

global and local coordinates systems, respectively, 

and J is the Jacobian matrix of the transformation 

(Reddy, 1993). Hence,  
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where e
iΩ  is the global coordinate of the ith node of 

the element eΩ  and e
iN  are the Lagrange 

interpolation functions of degree Nnodes-1, being Nnodes 

is the nodes number in each element. Also, defining 

the differential transformation of interpolation 

function in relation to the global for the local 

coordinate, as follow, 
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Using the Eq.(13) and (15), the Eq. (12) can be 

rewritten in the form,  
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3. NUMERICAL EXAMPLES 
 

In this section, are presented two numerical 

applications of Eq. (1). At first, from the analytical 

solution, is made a point-by-point analysis, i.e., a 

comparison, for some grid points, between the 

analytical with numerical solution. Also, an error 

analysis is made using two norms defined later. In the 

second application, which, a priori, has no analytical 

solution, is made an analysis through graphical 

results, showing the velocity profiles for a few 

moments of time. 

 

3.1 Application 1 
 

    Considering the Burgers’ equation defined by Eq. 

(1) with Re=100, the particular solution of Burgers’ 

equation is given by (Ali et al., 1992; Dogan, 2004; 
Dag et al., 2005; Xu et al., 2011): 

η
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where η=γ.R.(x-µt-β). It was chosen that the 
arbitrary constants γ, µ and β have  0.6, 0.4 and 
0.125 as their respective values.  
     The Crank-Nicolson scheme was adopted with 

α=0.5. 
     The initial condition is found from Eq.(17) 
when t=0. The boundary conditions are u(0,t)=1, 

u(1,t)=0.2, t ≥ 0 (Ali et al., 1992).  
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     To measure the accuracy of the methodology, we 

compute the error using the L2 norm, which is the 

average error throughout the domain, defined by 
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|| )()( iannumi TTe
i
−= , in which the term T(num) and 

T(an) is the result from the numerical solution and the 

result from the analytical solution, respectively, and 

the L∞ norm, defined by ||e||∞=|T(num) - T(an)|, which is 
the maximum error in the entire domain. 

     The numerical results for this example are 

presented in Table 1 and are compared with the 

analytical solution. 

 

 

Table 1. Comparison of Application 1 at different time and mesh with 500 elements. 

 

x 
Nnos (∆∆∆∆t = 0,01) Nnos (∆∆∆∆t = 0,005) Nnos (∆∆∆∆t = 0,001) Nnos (∆∆∆∆t = 0,0005) Analytical 

solution 2 3 2 3 2 3 2 3 

0.02 0.999923 0.999934 0.999999 0.999843 0.999992 0.999758 0.999995 0.999738 0.998913 

0.05 0.100066 0.999136 0.999968 0.998472 0.999746 0.997910 0.999810 0.997787 0.996403 

0.10 0.996726 0.984126 0.993343 0.979667 0.991163 0.976042 0.991945 0.975262 0.974164 

0.15 0.929348 0.857383 0.911468 0.849411 0.904881 0.842986 0.912147 0.841394 0.841747 

0.20 0.409301 0.465109 0.423914 0.475435 0.431388 0.483200 0.423133 0.484627 0.483475 

0.25 0.227536 0.249012 0.227737 0.251834 0.225856 0.254814 0.223171 0.255741 0.255311 

0.30 0.203609 0.207140 0.203570 0.207465 0.203277 0.207857 0.202942 0.208019 0.207961 

0.35 0.200485 0.200983 0.200478 0.201022 0.200439 0.201071 0.200394 0.201094 0.201087 

0.40 0.200065 0.200133 0.200064 0.200138 0.200059 0.200145 0.200053 0.200148 0.200147 

0.50 0.200001 0.200002 0.200001 0.200002 0.200001 0.200002 0.200000 0.200002 0.200003 

||||||||e||||||||2 8.87E-02 1.86E-02 6.99E-02 8.53E-03 6.51E-02 1.94E-03 7.42E-02 1.55E-03  

||||||||e||||||||∞∞∞∞ 2.30E-02 5.53E-03 1.93E-02 2.72E-03 1.85E-02 6.27E-04 2.09E-02 4.79E-04 

 
    

It is noted from Table 1, that the Galerkin method, 

when used with two nodes by element, i.e., using 

linear interpolation functions, does not suffer 

significant improvement in results, even with the 

refinement of ∆t. The same is not true we used them 
to three nodes by element, when the refinement in the 

spacing of time results in improved outcomes, 

especially regarding the L2 norm of the error, which 
represents the average error committed in all parts of 

the mesh. 

 

3.2 Application 2 
 

     The Eq.(1) is now solved considering Re=1, i.e.,  
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and the following initial condition 1)0,( =xu  and the 

boundary conditions 1),0( =tu  and 1,0),1( =tu  for 

t > 0. As before, was adopted α=0.5 in the Crank-
Nicolson scheme. Here, 500 nodes are distributed 

uniformly in the domain, ∆t = 0.01 and was used 3 
nodes for each element. 

    The Fig. 1 illustrates the numerical results at 
different time. In order to demonstrate the stability of 

the method, the profiles of u at times 0.01, 0.05, 0.1, 

0.2, 0.4 and 0.6 are shown, which exhibit the correct 

physical behavior of the problem. 

 

 
Figure 1. The profiles of u at different times for 

Re=1. 

 

    In Fig. (1), the curves showed no numerical 

oscillations and, for t = 0.6, the velocity profile is 

almost linear. 
 

4. CONCLUSIONS 
 

In this paper, we develop a numerical algorithm 

for solving Burgers’ equation based on the Crank-

Nicolson scheme for the temporal discretization and 

the Finite Element Method via Standard Galerkin's 

for the spatial discretization and the Difference 

Formula with second order accuracy for 

discretization of the nonlinear term of the Burgers’ 

equation. The numerical examples show that our 

scheme could produce high accurate solution, 

demonstrating that this method can be extended to 2D 

and 3D domains. 
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