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ABSTRACT

The goal of this paper is to investigate the interaction of water-air fronts with 
radionuclide plumes in unsaturated heterogeneous porous media. This 
problem is modeled by a system of equations that describes both water-air 
flow and radionuclide transport. The water-air flow problem is solved 
numerically by a mixed finite element combined with a non-oscillatory 
central difference scheme. For the radionuclide transport equation we use the 
Modified Method of Characteristics (MMOC).We present results of 
numerical simulations for heterogeneous permeability fields taking into 
account sorption effects.

Keywords: central difference scheme, Modified Method of Characteristics, 
mixed finite element method, radionuclide contamination, unsaturated 
porous media

NOMENCLATURE

3c radionuclide concentration, Bq/m

2D dispersion coefficient tensor, m /s
2g gravitational constant, m/s

h length of an grid element, m
2k absolute permeability, m /s

3k distribution coefficient, m /kgd
2k effective permeability, m /seff

2k relative permeability, m /sr
2M average absolute permeability, m /s

2p partial pressure, N/m
P global pressure
R retardation factor
s saturation
S strength of heterogeneity
t time, s
u flow velocity, m/s
x,y cartesian coordinates, m

Greek symbols

 edge of a grid element
 radionuclide decay constant, 1/s
 volumetric content
 total mobility

2 fluid kinematic viscosity, m /s
3 density, kg/m

 porosity

Subscripts

a air phase
s solid matrix phase
w water phase

INTRODUCTION

An important problem arises when a nuclear waste 
repository is located in subsurface media: the issue of an 
accidental release of radioactive material through the 
hydrological environment. Since this complex 
environment offers difficulties in the prediction of the 
movement of the radioactive contaminant, investigations 
concerning the radionuclide transport in unsaturated 
porous media must be performed to address adequately the 
problem.

We present a new numerical procedure developed 
for the problem of two-phase flow with radionuclide 
transport in an unsaturated two-dimensional porous 
medium. The immiscible and incompressible phases are 
water and air. The unsaturated flow and radionuclide 
transport problems can be described by two coupled sets of 
equations; one set models the two-phase flow and another 
set governs the contaminant transport within the water 
phase. This approach was used by Binning (1994).

The two-phase flow system is expressed in terms of 
an elliptic equation for a global pressure coupled to a 
nonlinear conservation law for the water saturation. We 
solve such system of equations using a precise numerical 
method which combines a mixed finite element method for 
the global pressure problem with a second order, non-
oscillatory, central finite difference scheme for the 
conservation law associated with the water saturation; this 
numerical procedure was carefully validated by Aquino 
(2003). The two-phase flow solution displays a sharp 
water-air front that represents the transient water 
infiltration in the unsaturated zone.

Contaminant transport is typically described by 
convection-diffusion equations that are dominated by their 
hyperbolic term. Numerical solution of hyperbolic 
equations by first order finite difference schemes may 
introduce numerical diffusion near sharp fronts; some 
other methods, based on straightforward higher-order 
finite differences may introduce oscillations in the 
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numerical solutions. In the case of radionuclide transport, a 
linear convection-diffusion equation is associated to the 
radionuclide concentration. We solve this equation using 
the original MMOC procedure (Douglas and Russell, 
1982) for the time discretization; a mixed finite element 
method is used in the approximation of the diffusive effect 
and domain decomposition iterations (Douglas et. al., 
1993) are used to handle the resulting linear algebraic 
problems.

In this paper we perform numerical experiments in 
order to investigate the interaction of sharp water-air fronts 
with radionuclide plumes. We will apply our numerical 
procedure to simulate a hypothetical scenario of an 
accident involving nuclear contamination. In this accident 
the radioactive material is dissolved in water and this 
contaminated solution is transported by the water 
infiltration in the unsaturated zone. The numerical 
experiments consider heterogeneous media and sorption 
effects of the porous medium on the radionuclide.

GOVERNING EQUATIONS

We study a model that describes water and air flow 
with contaminant transport in unsaturated heterogeneous 
porous media. In this section the governing equations are 
presented. We make the following assumptions:

• The fluids are immiscible and incompressible.
•The media are isothermal.
•The water-air flow is independent of the 

contaminant concentration.

Water-air Flow System

Let us describe our model for the water-air flow 
problem. The equation for the water-phase flow in 
unsaturated porous media takes the following form 
(Douglas et. al., 2000):

( ) 0sw wt
f

¶
+ Ñ × =

¶
u (1)

where     is the porosity and   s the water-phase saturation. w  

In Eq. (1) u  is the water-phase velocity, m/s, given by w

( )p g yw ww
kw rll Ñ - Ñ= -u (2)

2where k is the absolute permeability, m /s; g is the 
2gravitational constant, m/s ; p  is the water-phase partial w

2pressure, N/m ; and y is the soil depth, m. The total 
mobility is defined as                                    where k  is ra

2 2the relative permeability, m /s; m  is the viscosity, m /s; the a

relative mobility is defined as                        with                
(water) or a (air). We assume that the medium is saturated 
by water and air,                  .
                        Thus, a bit of algebraic manipulation with Eq. (1) 
leads to the global pressure equation (Douglas et al., 2000)

ra a rw wk kl m m= +

rka a al m l= wa =

1a ws s+ =

0Ñ × =u (3)

where

( )P g ya a w wk l r l rl é ùÑ - + Ñë û= -u (4)

where P is the global pressure. By neglecting capillary 
pressure forces, the saturation equation for the water phase 
can be written as

( ){ } 0w u k g yw a w a
s

t
f l ll r r+ - Ñé ùë û

¶
+ Ñ × =

¶
(5)

Radionuclide Transport Equation

We assume that a non-volatile radionuclide is 
transported only by the water phase. Thus, the governing 
equation of the radionuclide transport depends on the mass 
balance statement for the water phase.

Let  be the concentration of the radionuclide in the 
water phase and let be the concentration in the solid matrix. 
Then we can write two balance equations involving these 
concentrations (Bear, 1979). Within the water phase,

( ) ( ) ( )c c cw w w w w w w
cw

t
q gqq - Ñ × Ñ +

¶
+ Ñ ×

¶
u D

( ),c cw sf= - (6)

and on the solid matrix,

( ) ( ),c c c cs s s w ss s s
f

t
q r rgq

¶
+ =

¶
(7)

(8)

where      is the water volumetric content                    ;  
is the radioactive decay constant, 1/s;  D is the dispersion 

2coefficient tensor, m /s;     is the solid matrix volumetric 
content                    ;  is the density of the solid matrix,   

( )w wsq f=

( )1sq f= -
3kg/m ; and                 is the sorption term.

                   Assuming that the radionuclide concentration in 
water phase and the solid matrix are in equilibrium, this 
implies on                , where      is a distribution coefficient.
         The two equations above may now be simplified by 
adding them:

( ),w sf c c

s d wc k c=
dk

( ) ( ) ( )k c c cw s s d w w w w w
t

q q r qé ù+ - Ñ × Ñë û
¶

+ Ñ ×
¶

u D

( ) 0k cw s s d w
q q r g++ =

By expanding the derivatives in the first and second terms 
of the Eq. (8), one gets

( ) cw wc k cw s s dw w w w wt
c

t
q q r

q ¶
+ + + × Ñ

¶

¶
+ Ñ ×

¶
uu

( ) ( ) 0c k cw w w s s d w
q q q r gÑ +-Ñ × + =D (9)

By making use of the mass balance Eq. (1), the first and 
second terms in the above equation vanish, and then the 
radionuclide transport equation is given by

( ) ( )wR cw w ww w

c
c

t
q q- Ñ × Ñ

¶
+ × Ñ

¶
Du

( ) 0cw w
R q g+ = (10)

where                                    is defined as the retardation 
factor.

( )w w s s dR kq q q r= +
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NUMERICAL SOLUTION OF THE WATER-AIR 
FLOW PROBLEM

The water saturation equation (5) is solved by a 
conservative, non-oscillatory, central scheme. This 
scheme is able to solve problems that show sharp fronts in 
their solution, without solving Riemann problems. The 
global pressure equation (3) - (4) is discretized by mixed 
finite elements that are suitable to compute accurately the 
relevant fluxes in heterogeneous permeability fields. The 
resulting algebraic problems are solved by a 
preconditioned gradient conjugated method. An operator 
splitting technique is introduced allowing for a sequential 
solution of saturation and global pressure problems (see 
Douglas et. al. (1997); Douglas et. al. (2000)).

Operator Splitting

The development of our numerical method will 
start from Eqs. (3) - (5). As we do not consider here the 
diffusive part of the saturation equation (because 
capillarity is neglected), we will only split the pressure 
calculation from the saturation calculation and we will be 
led to time steps satisfying                 , where the subscripts 
p and s refer to pressure and saturation transport, 
respectively.

We employ locally conservative mixed finite 
elements to discretize Eqs. (3) - (4). The discrete equations 
arinsing from the application of the lowest index Raviart-
Thomas space over squares for one element are (see 
Douglas et. al. (1997); Raviart and Thomas (1977)):

p st tD ³ D

0ub
b

=å (11)

°,
[

effk
u P P

h

b b
bb

l
= -

( ) ]w w a agh y bl r l r n+ + Ñ × (12)

where b=L,R,B,T  indicate the four edges of an element,         
h=Dx=Dy     is    the   length   of   an   element   side,  
                               is the effective permeability between 
two elements. We use a preconditioned conjugate gradient 
(PCG) method to solve the global pressure equation. The 
symmetric successive over-relaxation (SSOR) is used for 
preconditioning the conjugate gradient iterations.
            Now let us turn to the Eq. (5). We present a numerical 
method to handle the model problem

% %( ), 2 /effk kk k kb bb = +

( ) ( ) 0
s

f s g s
t x y

f
¶ ¶ ¶

+ + =
¶ ¶ ¶

(13)

as we apply to solve Eq. (5). The numerical method 
developed by Nessyahu and Tadmor (1990) to solve this 
problem use a second-order, conservative, non-oscillatory, 
central finite differencing scheme. Such scheme satisfies 
both the Total Variation Diminishing (TVD) property and a 
cell entropy inequality. Since these properties guarantee 
the convergence to unique entropy solution, the numerical 
method is able to capture the physically correct solution of 
the problem. (See the related mathematical analysis in the 
above mentioned paper.)

After discretization this scheme takes the following 
preditor-corrector form

( )1
2 1

, , , ,2

n n n n
j k j k x x j k y y j ks s f ga a+ = - + (14)

( )1 1
2 2

1 1
, , 1 1, 1, 1, 4

n n n n n
j k j k j k j kj ks s s s s+

+ + + ++ + = + + +

( )1
, , 1 1, 1, 116

n n n n
x j k x j k x j k x j ks s s s+ + + ++ + - -

( )1
, , 1 1, 1, 116

n n n n
y j k y j k y j k y j ks s s s+ + + ++ + - -

( )1 1 1 1
2 2 2 2

, , 1 1, 1, 12
x n n n n

j k j k j k j kf f f f
a + + + +

+ + + ++ + - -

( )1 1 1 1
2 2 2 2

, , 1 1, 1, 12

y n n n n

j k j k j k j kg g g g
a + + + +

+ + + ++ + - -

(15)

where                       ,                      , and the numerical 
derivatives of the grid-functions              , for                   , 
are

t xx sa = D D y st ya = D D
,

n

j ky , ,s f gy =

( ) ( ),

1
, ,n

x j k j k nx y t O x
x x

y y
¶

= + D
D ¶

(16)

( ) ( ),

1
, ,n

y j k j k nx y t O y
y y

y y
¶

= + D
D ¶

(17)

To guarantee the desired non-oscillation property of these 
approximations our numerical derivatives should satisfy 
for every grid-function (Nessyahu and Tadmor, 1990)

( ), 1, ,[ ,n n n
x j k j k j kMinMody q y y+= -

( ) ( )1
1, , , 1,2

, ]n n n n
j k j k j k j ky y q y y+ -- -

(18)

where               stands for a nonlinear limiter; an analogous 
expression can be written for the y-direction; and the 
MinMod [.,.] stands for the usual limiter

( )0, 2q Î

[ ] ( ) ( )1
2

, sgn sgnMinMod x y x y= +é ùë û

( )| |, | |Min x y×
(19)

At each time level, we first reconstruct a piecewise-
l i n e a r    a p p r o x i m a t i o n     f r o m                        f o r  
                           and                              (here the over-bar 
denotes the cell average for                                  ); next, 
we evolve in time the piecewise-linear approximation  
            and, finally, the resulting solution is projected 
back into the space of original piecewise-constant 
grid-functions       .

( ) ,, , n
j ks x y t s=

1 1
2 2, ,j k j kx x x- +£ £ 1 1

2 2, ,j k j ky y y- +£ £

, 1, , 1,, ,j k j k j k j kx x y y+ +
é ù é ù´ë û ë û

1 1
2 2

1

,

n

j ks +

+ +

1
,

n
j ks +

N U M E R I C A L  S O L U T I O N  O F  T H E  
RADIONUCLIDE TRANSPORT

We split the linear convection-diffusion problem 
associated with the transport of the radionuclide into 
convective and diffusion parts, using the MMOC in the 
time discretization. Mixed finite elements are used in the 
spatial discretization of the diffusion problem; the linear 
algebraic problems are handled by a domain 
decomposition iteraction (Douglas et. al., 1995).

Modified Method of Characteristics

We rewrite the radionuclide transport equation (10) 
in the following form
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( ) ( )wR c cw ww w

c
g

t
q × Ñ - Ñ ×

¶
+ =

¶
vu (20)

where                     and                                .
            Considering that the flow is essentially along the 
character is t ic  associated  wi th  the  convect ion 
                                    , it  is  appropriate  to  introduce 
differentiation in this characteristic direction. Let

w wD cq= Ñv ( ) ( )w w wg c R cq g= -

( )w w w wR c t cq ¶ ¶ + ×Ñu

( )
1

222
w wRy qé ù= +

ë û
u (21)

and

( )1
w wR

t
y q

t

-¶ ¶é ù
= + ×Ñê ú¶ ¶ë û

u (22)

and note that the direction    is a function of the water 
volumetric content and the water volumetric flux, which 
vary in space and time. It follows easily that the 
radionuclide transport equation can be written in the form

t

( )w
w

c
v g c

t
y

¶
- Ñ × =

¶
(23)

The MMOC procedure for approximating the 
directional derivative           is based onwc

t
y

¶

¶

( ) ( )
( ) ( )1

1 1( )

n n
w wn nw

w

c cc
R

t t
y q

+

+ +
-¶

»
¶ D

x x
x (24)

which allows us to write a discretized form for the 
radionuclide transport equation

( )
( ) ( )

( )
1

1 1 1

n n
w wn n n

w w

c c
R v g c

t
q

+

+ + +
-

- Ñ × =
D

x x
(25)

where                               and1 1 1n n n
w wv cq+ + += ÑD

( )
1

1

n
wn

w

t

R q

+

+

D
= -x x u

q n+1
w

1n
w

+u

NUMERICAL EXPERIMENTS

           Our numerical experiments are performed in a two-
dimensional domain                               , with boundary 
conditions           on            ,                   on               , where  
v is a unit vector normal to the domain boundary. The value 
of                    on           has to be specified.

( ) ( )0, 0,x yL LW = ´
0p = yy L= 0n

¶W
× =u 0, xx L=

0n
¶W

× =u 0y =
          We present the results of numerical experiments for a 
physical domain having 16 m x 32 m discretized by a 64 x  
128 computational grid. Water from rainfall penetrates 

-8uniformly into the domain at a constant rate of 1.035 x 10  

m/s from the top. The following data are held fixed in our 
-5experiments: air viscosity          1.78 x 10  Pa.s, water 

-3 3viscosity          1.14 x 10  Pa.s, air density         1.23 Kg/m , 
3 3water density           1.0 10  Kg/m , porosity         0.37, air 

am =

wm =
ar =

ar = f =

ras =residual saturation           0.2 and water residual saturation 
         0.0716. The expressions of the relative permeability 
function for air and water can be found in Touma and 
Vauclin (1986).

rws =

               The radionuclide considered here is the cesium-
3237 with an initial concentration of 1.0 Bq/m  in a 4 m  x 

4 m region in the physical domain. This initial condition 
corresponds  to  a  situation  where  there  has  been  a 
contaminant  release  from  the  radioactive  waste 
repository below the soil surface. In the simulations we 
use the following parameters:  decay constant for the 

-10 -1cesium-237          7.33 x 10  s  and a constant dispersion 
-9 2coefficient  D= 1.5 x 10  m /s.

g =

The numerical experiments use s tochast ic
permeability fields to model heterogeneous formations. 
These permeability fields were taken to be realizations of 
self-similar (or fractal) Gaussian random fields (see 
Glimm et. al. (1993) and references therein for the 
generation of such fields). We consider               to be one 
realization of such random field, and a log-normal 
permeability field which is given by                        , where 
S is the strength of the heterogeneity and M is the average 
value for the absolute permeability. In all simulations we 

-14 2have          1.974 x 10  m .

( )xy

( ) ( )S x
k x Me

y
=

M =

Mass Balance Error

It is well known that the MMOC procedure is not 
able to conserve mass (Douglas et. al., 1997), however for 
miscible displacement problems it has produced accurate 
numerical solutions with small mass balance errors 
(Russell and Wheeler, 1983). In order to investigate the 
influence of water-air fronts on the mass balance of the 
radionuclide transport, we simulate three physical 
situations: homogeneous saturated medium and both 
homogeneous and heterogeneous unsaturated media. The 
computational domain for the simulations in unsaturated 
media contains initially 20% water and 80% air. We do not 
consider either sorption effects or radionuclide decay in 
this investigation.

The value of the relative mass balance error (å) as a 
function of the time is shown in the Fig. (1). Results for the 
homogeneous saturated medium show that the 
radionuclide mass is adequately conserved with a relative 
error close to zero. However, for the other situations 
considered here, the relative error has an increase initially, 
followed by a decrease in absolute value when the 
radionuclide plumes are far from the water-air fronts. After 
a long time this relative error converges to values less than 
20%.

The oscillation in the relative mass balance error 
occurs due to the delay in the radionuclide plume position 
when compared to the water-air front position (such 
behavior was also observed by Yeh et. al. (1993) and 
Douglas et. al. (1997)). Since the radionuclide mass is 
computed as the product of the water content by the 
radionuclide concentration, delayed plumes cause large 
errors in the mass balance. Such a delay is a consequence of 
the failure of the MMOC to locate precisely the position of 
the plume.
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Figure 1. The relative mass balance error curves.

Weakly Heterogeneous Unsaturated Medium

We investigate the interaction of water-air fronts 
with radionuclide plumes by considering a permeability 
field with small variations by setting the strength of the 
heterogeneity to be S = 0.5. We also consider that the 
radionuclide decay is present in this situation. The pictures 
of water-air fronts and radionuclide plumes are illustrated 
in the Fig. (2).

Highly Heterogeneous Unsaturated Medium

Now we simulate our problem considering large 
variations in the permeability field. For this, the strength of 
the heterogeneity is set to be S = 1.0 and we maintain the 
radionuclide decay.

The relative mass balance errors produced by the 
MMOC procedure are higher in this heterogeneous 
medium. Such a medium generates a highly non-uniform 
velocity field that introduces some interpolation errors 

Figure 2. Numerical solution in a heterogeneous medium (S = 0.5) at 365, 1460 and 3285 days without sorption effects. 
Left: water-air front. Rigth: radionuclide plume.
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 Figure 3. Numerical solution in a heterogeneous medium (S = 1.0) at 365, 1460 and 3285 days without sorption effects. 
Left: water-air front. Rigth: radionuclide plume.
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Figure 4. Numerical solution in a heterogeneous medium (S = 1.0) at 365, 1460 and 3285 days with sorption effects. Left: 
water-air front. Rigth: radionuclide plume.
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during the MMOC back tracking. This causes numerical 
diffusion in the radionuclide plume simulation (Yeh et. al., 
1993). Figure (3) displays the results of this study.

The Sorption Effect

Finally, we investigate the interaction of air-water 
fronts with radionuclide plumes considering 
heterogeneous unsaturated media, taking into account the 
sorption effect in the problem. In this simulation, the 
strength of the heterogeneity is S= 1.0 and the sorption 
term is k = 0.5. The result of the simulation is seen in the d

Fig. (4), where as expected we can observe that 
radionuclide plumes travel with a smaller velocity when 
the sorption effect is present.

SUMMARY AND CONCLUSIONS

A two-dimensional numerical method is described 
to simulate water-air flow and radionuclide transport in 
unsaturated porous media. Under transient water 
infiltration solutions of the water-air flow equations 
display sharp fronts which are propagated in the domain. 
As long as radionuclide plumes are reached by water-air 
fronts we find that the MMOC produces large mass balance 
errors.

To investigate the interaction of water-air fronts 
with radionuclide plumes numerical simulations were 
conducted considering heterogeneous permeability fields 
and sorption effects. Some conclusions based upon the 
various simulations can be summarized as follows:

• Our numerical scheme to solve the water-air flow 
problem is computationally efficient and is able to capture 
accurately sharp fronts in the solutions, even for large grid 
sizes (Aquino et. al., 2004). Thus, we can simulate sharp 
water-air fronts to investigate the behavior of radionuclide 
plumes;

• Under transient water infiltration the MMOC procedure 
produces large oscillations in the relative mass balance 
error due to the delay in the position of radionuclide 
plumes;

• We observed the highest relative mass balance errors for 
the simulations in highly heterogeneous media.

The authors are currently considering the following 
aspects of the problem at hand:

• The implementation of a Locally Conservative Eulerian-
Lagrangian Method (Douglas et. al., 2000) for the purpose 
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of conserving the mass locally for the problem of 
radionuclide transport;

• The impact on the radionuclide plume of the stability-
instability problem associated with water-air fronts subject 
to infiltration and evaporation; a stochastic framework is 
considered for heterogeneity modeling.
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