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ABSTRACT 
 
This work presents a study on the effective thermal conductivity in material 
with heterogeneous composition in two dimensions. The Boundary 
Elements Method (BEM) is used to solve the steady state potential 
equations. The sub regions technique was implemented in order to take into 
account the effects of these inclusions inside the domain. In the numerical 
implementation, the inclusions are randomly generated in a Representative 
Volume Element (RVE) domain. The Average Field Theory is used to 
predict the effective properties (macroscopic) of the material with 
heterogeneous composition. The material is characterized by a specified 
volume fraction as well as the inclusion’s size. The samples are composed 
of square domains with defined number of randomly distributed inclusions 
and submitted to a condition of unidirectional heat conduction. Each set of 
samples is analyzed several times in order to guarantee statistical stability of 
the result. 
 
 
Keywords: boundary elements, representative volume element, thermal 
conductivity 

  
 
NOMENCLATURE 
 
A       coefficient matrix 
B        right-hand side vector 
C        shape factor  
d        diameter of the inclusions, mm 
G        boundary elements G matrix 
H        boundary elements H matrix 
K        thermal conductivity coefficient, W/m.K 
L        distance between cooled and heated edges, mm 
n         number of inclusions inserted 
NE     number of elements  
q         heat flux, W/m² 
r         distance between collocation and field points 
R        percentage of area occupied by the inclusions 
T        prescribed temperature 
u         temperature, K 
 
Greek symbols 
 
Γ boundary of the domain 
η outward normal 
λ unknown vector 
Ω domain 
 
Subscripts 
 
c cooled edge 
eff effective 
h heated edge 
 
Superscripts 
 
* fundamental solution 
- prescribed boundary condition 

 
INTRODUCTION 
 

The technological advances in recent times 
reveal an increasing demand for advanced materials 
that provide high performance and efficiency. The 
development of optimized “tailor-made” materials for 
specific applications, which may require certain 
values of determined mechanical properties, has been 
quite a requested field of research lately. 

Samantray et al. (2006) present a study on the 
development of correlational relations to determine 
the effective thermal conductivity of two-phase 
materials. Based on experimental data, it succeeded 
in developing correlational relations for three specific 
two-phased problems. This work points out the need 
for more accurate and efficient methods for 
prediction of the thermal properties of heterogeneous 
composition materials. 

Wang and Pan (2008) evince that most of the 
available methods for the prediction of material 
properties are based on idealized periodic 
constructions. Therefore, it proposes a computational 
modelling of open-cell foams with random cell 
generation and growth, making possible the analysis 
of more complex and realistic porous structures.  

At a microstructural level, materials are 
typically heterogeneous with many possible 
constitutional elements, each with its own physical 
properties. Starting at a microstructural observation 
scale, a volume element contains just a few 
microstructural components, therefore the effective 
properties of this element are largely influenced by 
the properties of the individual microstructural 
components within it. When increased the 
observation scale, approaching to a macrostructural 
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scale, the influence of a single microstructural 
component over the volume element effective 
properties is reduced, as more components now 
compose it. In this way, as the observational scale is 
increased, increasing the number of microstructural 
components in the observed volume element, it is 
also noticed a variation of its effective properties. 
This behavior persists until a certain scale is reached 
and the observed effective properties approximate the 
material’s macroscopic properties. In Terada and 
Kikuchi (1996) it is proposed a homogenization 
method of materials with heterogeneous composition, 
the representative volume element method. It consists 
in determining a characteristic length for the 
observed volume element at which the effective 
properties measured over the volume element 
boundaries approach the macroscopic properties of 
the material. This volume element with the 
characteristic length is named as the representative 
volume element (RVE). 

An industrial application of the effective 
properties concept is presented in Kwon et al. (2009). 
This work proposes a study of the effective thermal 
conductivities of porous materials applied on the 
fabrication of Vacuum Insulation Panels (VIPs) using 
simplified cell models. Also considering other heat 
transfer mechanisms, such as gaseous and radiative 
conductivities, the elaborated mathematical models 
provided relatively accurate results compared to 
experimental data for every studied type of material, 
except for powders. This evinces the limitation of 
simplified models and the need for other methods for 
modeling materials with complex microstructures. 

The boundary elements method (BEM) 
represents an efficient tool for the modelling of linear 
problems such as heat transfer by conduction or even 
the mechanical behavior of materials in elastic 
regimen. It is based on integrals evaluated over the 
boundaries, reducing the discretization process only 
to the domain’s boundaries. In this sense, a reduced 
number of elements are required to the problem in 
comparison with other methods such as the finite 
element method (FEM), which requires the whole 
domain to be discretized. Due to its ability to analyze 
problems considering only information over the 
domain’s boundaries, the BEM has a natural 
compatibility with the RVE method. 

This natural compatibility is explored in Buroni 
and Marczak (2008) and Zarichta (2008) where both 
methods, the BEM and RVE, are brought together to 
elaborate methodologies for the prediction of 
effective properties of micro-porous materials. The 
first one, Buroni and Marczak (2008), focuses in the 
elastic effective properties of isotropic and 
orthotropic porous materials determining the RVE 
conditions through statistical analysis. In the same 
way, Zarichta (2008) applies a similar methodology 
now turned to the analysis of permanent potential 
problems and the determination of the effective 
thermal conductivity coefficient for micro-porous 

materials. 
Dondero et al. (2011) present a modelling of a 

bidimensional heat transfer problem of plate with 
several random generated holes to simulate a RVE 
condition for a micro porous material. The numerical 
analysis proceeds using a “Fast Multipole” BEM 
formulation for increased computational efficiency. 
This work also presents an experimental analysis 
based on thermo graphical imaging in order to 
validate the obtained numerical results. The 
confrontation between numerical and experimental 
results showed a difference below 5%, indicating a 
good performance of the presented predictive 
methodology. 

Instead of micro-porosity, this work presents a 
RVE study of the effective thermal conductivity 
property of materials composed by two different 
micro-constituents with different overall properties. 
The study bases itself on a numerical analysis using 
BEM with a formulation that considers the 
intersection between two different sub-regions 
representing the micro-constituents that compose the 
domain. 
 
THEORY 
 
BEM formulation for potential heat transfer 
 

The modelling of potential heat transfer 
problems in boundary elements is, perhaps, the most 
widely diffused BEM modelling case, and its 
complete detailed elaboration can be found in many 
books, as Wrobel (2002) and Kane (1994). 

  
2 ( ) 0u x∇ =         x∀ ∈Ω  (1) 

  
A brief review on the boundary element method 

using constant elements is summarized in this work. 
An initial domain depicted in Fig.1 is established 
with boundary conditions prescribed on its boundary. 
Considering a Laplace equation governing a 2D 
potential problems presented as Eq. (1). 

 

 
 

Figure 1. Domain and Ω its boundary Γ. 
 

For a potential problem, three kinds of boundary 



Tecnologia/Technology Oberg, et al. Using BEM to Predict the Effective … 
 

Engenharia Térmica (Thermal Engineering), Vol. 14 • No. 1 • June 2015 • p. 09-15 11 
 

conditions may be imposed: Dirichlet, Neumann 
and/or Robin. For this presentation, the first and 
second boundary conditions are imposed as: 

where u is the potential field in domain Ω, Γ is the 
boundary of Ω, n is the outward normal. Note that the 
barred quantities are the values imposed by the 
boundary conditions. The solution of Eq. (2) under 
boundary conditions is given by: 

  

( )*

*
*

1( , ) ln
2

( , ) 1( , )
( ) 2

u x y r

u x y rq x y
y r

π

η π η

=

∂ ∂
= =

∂ ∂

 (3) 

  

where *( , )u x y  and *( , )q x y  are the Green’s 
functions for 2D problems. And r represents the 
distance between the collocation point x and the field 
point y, as depicted in Fig. 1. Taking x to the 
boundary, the classic boundary integral equation 
(BIE) formulation of BEM is obtained x∀ ∈Ω : 

  
* *( ) ( ) ( , ) ( ) ( , ) ( ) ( )C x u x u x y q y q x y u y d y

Γ

= − Γ∫  (4) 

  
If the boundary is smooth at the collocation 

point x, the coefficient C(x) = 1/2. The next step 
consists in discretizing the boundary Γ using N 
constant elements. The discretized equation of BIE is 
now presented as: 

  

1 1

1
2

N N

i ij j ij j
j j

u G q H u
= =

= −∑ ∑       1, 2,3,...,i N=  (5) 

  
where the   and   (j = 1,2,…,N) are the nodal values 
of the u and q at the element ΔΓj, respectively. 
Applying the boundary conditions at each node and 
switching the columns for grouping the unknown 
variables, one finds: 

  
BA =λ  (6) 

  
where A is the coefficient matrix, λ the unknown 
vector and B the known right-hand side vector. 
 
BEM with sub-regions 
 

Specifically for this case, the sub-regions are 
delimited by a closed boundary region placed inside a 
main domain, as shown in Fig 2. The boundary 
elements applied to discretize the sub-region are 

shared with the main domain. For a better illustration 
of the problem, it is assumed a simpler case, as 
shown in Fig. 3, where two different regions have 
only one element in common. The sub-region 'Ω  is 
placed in the interior of Ω . The elements applied for 
the discretization of the inner boundary are common 
to both 'Ω  and Ω . Each of these common elements 
adds two new unknown variables to the linear 
system. To deal with these added unknown variables 
and couple the related regions it is necessary to 
impose a pair of equations that enforce the continuity 
condition. Therefore, for each shared elements: 

  
' 0
' 0

u u
q q
− =
+ =

 (7) 

  
where the variables u  and q are the variables of the 
shared element related to one region and u’ and q’ are 
the same variables related to the equivalent element 
in the second sub-region. 

 

 
 

Figure 3. Sub-regions problem dealt as separated 
regions coupled by the continuity equations. The 

elements i and i’ are coincident. 

  
( ) ( );

( ) ( ) ( )
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Figure 2.  Example of a problem of sub-regions. 
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Effective thermal conductivity using BEM 
 

Following a similar approach used in Zarichta 
(2008) for the determination of the effective thermal 
conductivity, it is supposed a unidirectional heat 
conduction problem in a square domain as illustrated 
in Fig. 4. To achieve the unidirectional heat flux 
condition the top and bottom edges are considered 
insulated and one of the remaining edges is uniformly 
heated as the other is uniformly cooled. The heated 
and cooled edges boundary conditions are achieved 
by imposing prescribed temperatures. 

 

 
 

Figure 4. Scheme of the unidirectional heat flux 
problem on a square domain. 

 
For the presented case, the thermal effective 

conductivity in the x direction can be calculated 
through the following equation, also presented in 
Zarichta (2008) and Wang and Pan (2008): 

  
.

( )eff
h c

q LK
T T

=
−

 (8) 

  
where q represents the heat flux per area unity 
between the non-insulated edges, and are the 
temperatures along the heated and cooled edges 
respectively, and L is the distance between these two 
edges. 

Equation (8) considers a condition of constant 
heat flux along the “y” axis, which is no longer truth 
when inclusions of different materials become 
present inside the domain. These inclusions may be 
more or less conductive than the material that 
composes the rest of the domain, disturbing the 
originally unidirectional heat flux. In order to take 
into account this phenomenon, the effective thermal 
conductivity is calculated considering the sum of the 
individual contributions of every single element used 
to discretize one of the non-insulated edges. 
Therefore, considering a modelling with constant 
boundary elements, the Eq.(8) is rewritten as: 

 

1 ( )
i i

NE
i

eff
i h c

qLK
NE T T=

 =   − 
∑  (9) 

  
In Eq. (9), “ iq ” represents the calculated heat flux in 
the “i-th” element on one of the non-insulated edges. 
“

ihT ” is the temperature calculated on the “i-th” 

element on the heated edge and “
icT ” is the 

temperature calculated on the element that matches 
its “y” coordinate value on the opposed edge. Last, 
“NE” is the number of elements used to discretize 
one of the edges of the square domain. 
 
RVE modelling and determination 
 

When macroscopically observed, some 
materials, such as steel, present predominantly 
isotropic properties.  However, if we reduce the 
observational scale to a microscopic level, the sample 
homogeneity and the isotropic behavior tend to 
disappear. In this scale, the sample has a typically 
heterogeneous nature, greatly influenced by its 
microstructural composition. The geometry, the 
positioning and the frequency of the present 
heterogeneous micro constituents are directly related 
to the observed domain’s effective properties. For 
smaller observational scales the influence of a single 
micro constituent properties on the domain’s overall 
properties is increased. This is caused by the presence 
of fewer micro constituents in such observed 
domains. 

The Average Field Theory, as well known as the 
Representative Volume Element (RVE) consists in 
the search for the smallest observational scale on 
which the domain’s effective properties of given set 
of samples converge to an isotropic behavior. This 
convergence is verified through the analysis of the 
dispersion of the physical effective properties of 
different samples on a same observational scale. 

Based on Zarichta (2008) and Buroni and 
Marczak (2008) it is proposed a numerical modelling 
of a heterogeneous material composed by a main 
material matrix with several same-sized circular 
inclusions of a different material randomly 
distributed. To determine the RVE condition the 
percentage of area occupied by the inclusions, “R” is 
kept constant while the number of present inclusions 
is increased. This approach promotes an effect 
analogous to the increase of the observational scale, 
as shown on Fig. 5. The value of "R" is defined as: 

  
2

2

4
100

dn
R

L

π 
 
 =  

(10) 

  
where n  stands for the number of inclusions inserted 
and d for its diameters. 
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Figure 5. Procedure to determinate the RVE 
condition. 

 
NUMERICAL RESULTS 
 

For this study, it was considered a hypothetical 
material with a thermal conductivity coefficient of 
100 W/m.K with inclusions of 25 W/m.K. The heated 
edge was kept at 100º C while the cooled edge at 0º 
C. To avoid singularity issues during the positioning 
of the randomly generated inclusions it was set a 
minimum distance between two inclusions to 3mm. 
This same limit was adopted for the distances 
between the inclusions and the domain`s external 
boundaries. 

The square domain outer boundaries were 
discretized using 22 constant boundary elements per 

edge, while 24 were used for each of the inclusions. 
For each number of inclusions at a given fixed 

R, the effective heat conductivity coefficient is 
calculated for different 34 samples in order to obtain 
a statistically consistent result and a measure of its 
relative dispersion. From these 34 samples a mean 
effective thermal conductivity is calculated to 
measure the convergence as more inclusions are 
inserted. Additionally, the standard deviation is used 
as a measure of the results dispersion associated to 
each number of inclusions. 

This same analysis was repeated for R of: 10, 
15, 20 and 25%. The results are graphically exhibited 
in Fig. 6. Straight lines unite the calculated mean 
values. Error bars represent the dispersions associated 
to each mean effective thermal conductivity. 

From the graphical analysis, it is noticeable that 
for small quantities of inclusions, the calculated mean 
thermal conductivity values show already a relative 
small variation. However, it is also highlighted that 
fewer inclusions are associated with larger dispersion 
values, pointing to bigger possibility intervals. As 
more inclusions are present, this dispersion, given by 
the standard deviation, reduces. From around 37 
inclusions, the variation of the dispersion associated 
to the increase of the number of inclusions is 
relatively small regardless the percentage of area 
occupied by the inclusions. Therefore, in face of this 
stabilization, the configuration with 37 can already be 
considered as the RVE. 

The graphics exhibited on Fig. 10 depicts the 
influence of the percentage of area occupied by the 
inclusions on the effective thermal conductivity 
calculated for the RVE configurations obtained from 
the previous analysis. The alignment of the calculated 
points suggests a linear relation between the 
percentage of area occupied by the inclusions and the 
effective thermal conductivity of the RVEs. A similar 
linear relation was found in Zarichta (2008) for 
porous RVEs. 

 

 
 

Figure 6. Mean effective thermal conductivity vs. 
number of inclusions inserted for: R = 10%. 
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Figure 7.  Mean effective thermal conductivity vs. 
number of inclusions inserted for: R = 15%. 

 
 

 
 

Figure 8.  Mean effective thermal conductivity vs. 
number of inclusions inserted for: R = 20%. 

 
 

 
 

Figure 9.  Mean effective thermal conductivity vs. 
number of inclusions inserted for: R = 25%. 

 

 
 

Figure 10. Mean effective thermal conductivity of 
the RVEs for different values of R. 

 
CONCLUSIONS 
 

This work presented a study on the effective 
thermal conductivity in materials with heterogeneous 
composition in two dimensions. The initial focus was 
on the determination of the RVE condition for 
materials composed by two different constituents 
with different thermal properties. In order to take into 
account the disturbance on the heat flux promoted by 
the presence of the material inclusions, a BEM 
formulation with sub-regions was used to solve the 
steady state potential problem. At a first moment, the 
percentage of area occupied by the circular inclusions 
was kept constant as the number of inclusions inside 
the domain was varied. The random positioning of 
the inclusions inside the domain caused a variation of 
the calculated effective thermal conductivity for 
configurations of same number of inclusions. In face 
of this behavior, the results were statically analyzed 
in order to measure its dispersion and convergence as 
more inclusions were inserted. This same procedure 
was repeated for different fractions of area occupied 
by the inclusions as exposed in Figs. 6 to 9. From the 
results of convergence, and the stabilization of its 
dispersion, observed in all the studied cases it was 
possible to conclude that a configuration of 37 
inclusions can already be considered a RVE. The 
effective thermal conductivities obtained from the 
studied RVEs were graphically analyzed in Fig. 10. 
The observed linear behavior agreed to the similar 
results shown in Zarichta (2008) for porous materials, 
showing the feasibility of the presented methodology. 
The BEM formulation proved itself as a versatile and 
efficient tool for analysis of problems that involve 
sub-regions. 
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