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ABSTRACT 

 
The use of multiresolution techniques and wavelets has become 

increasingly popular in the development of numerical schemes for the 

solution of partial differential equations (PDEs). Therefore, the use of 

wavelet scaling functions as a basis in computational analysis holds some 

promise due to their compact support, orthogonality and localization 

properties. Daubechies and Deslauriers-Dubuc functions have been 

successfully used as basis functions in several schemes like the Wavelet-

Galerkin Method (WGM) and the Wavelet Finite Element Method 

(WFEM). Another possible advantage of their use is the fact that the 

calculation of integrals of inner products of wavelet scaling functions and 

their derivatives can be made by solving a linear system of equations, thus 

avoiding the problem of using approximations by some numerical method. 

These inner products were defined as connection coefficients and they are 

employed in the calculation of stiffness matrices and load vectors. In this 

work, some mathematical foundations regarding wavelet scaling functions, 

their derivatives and connection coefficients are reviewed. A scheme based 

on the Galerkin Method is proposed for the direct solution of Poisson's 

equation (potential problems) in a meshless formulation using interpolating 

wavelet scaling functions (Interpolets). The applicability of the proposed 

method and some convergence issues are illustrated by means of a few 

examples. 
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NOMENCLATURE 

 

A matrix of filter coefficients 

ak k
th

 Daubechies filter coefficient, dimensionless 

ck k
th

 Deslauriers-Dubuc filter coefficient, 

dimensionless 

d interpolation coefficient 

d vector of interpolation coefficients in 1D 

problems 

EA axial stiffness, kN 

F force, kN 

f load vector 

FDM Finite Differences Method 

g matrix of boundary conditions 

I identity matrix 

i wavelet translation 

j wavelet translation 

k stiffness matrix 

k wavelet translation, integer value 

M wavelet moments 

N wavelet order 

P matrix of filter coefficients 

R reaction force, kN 

u displacement, m 

WGM Wavelet-Galerkin Method 

 

Greek symbols  

 

 vector of wavelet connection coefficients 

 vector scaling function evaluations 

 vector of derivative values 

 vector of interpolation coefficients in 2D 

problems 

 Kronecker delta 

 dimensionless coordinate in y direction 

 scaling function 

 vector of Lagrange multipliers 

 variance 

 dimensionless coordinate in x direction 

 wavelet function 

 

Subscripts  

 

i index of summation 

j index of summation 

k index of summation 

p particular solution 

  

Superscripts  

 

j wavelet level of resolution 

m polynomial order 

n order of derivation 

 

INTRODUCTION  

 

The use of wavelet-based numerical schemes 

has become increasingly popular in the last three 

decades. Wavelet scaling functions have several 

properties that are especially useful for representing 

solutions of differential equations (DE’s), such as 

orthogonality, compact support and a certain number 
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of vanishing moments (exact representation of 

polynomials). Their capability of representing data at 

different levels of resolution allows the efficient and 

stable calculation of functions with high gradients or 

singularities and their incorporation in numerical 

methods.  

A complete basis of wavelets can be generated 

through dilation and translation of a mother scaling 

function. Although many applications use only the 

wavelet filter coefficients of the multiresolution 

analysis, there are some which explicitly require the 

values of the basis functions and their derivatives, 

such as the Wavelet Finite Element Method (WFEM) 

(Ma et al., 2003). 

Compactly supported wavelets and scaling 

functions have a finite number of derivatives which 

can be highly oscillatory. This makes the numerical 

evaluation of integrals of their inner products difficult 

and unstable. Those integrals are called connection 

coefficients and appear naturally when applying a 

numerical method for the solution of a DE. Due to 

some properties of scaling functions, these 

coefficients can be obtained by solving an eigenvalue 

problem using filter coefficients. 

The most commonly used wavelet family is the 

one developed by Ingrid Daubechies (1988). All the 

mathematical foundations were formulated for 

Daubechies wavelets and then extended to other 

families. Working with dyadically refined grids, 

Deslauriers and Dubuc (1989) obtained a new family 

of functions with interpolating properties, later called 

Interpolets. Unlike Daubechies, Interpolets are 

symmetric, which is especially interesting in 

numerical analysis.  

The use of Interpolets instead of Daubechies 

scaling functions greatly improves the method’s 

accuracy (Burgos et al., 2015). One and two 

dimensional examples were proposed and the 

convergence of the method was studied. 

 

WAVELET SCALING FUNCTIONS 

 

Multiresolution analysis using orthogonal, 

compactly supported wavelets has been successfully 

applied in numerical simulation. Wavelet basis are 

composed of two kinds of functions: scaling 

functions ()and wavelet functions (). The two 

combined form a complete Hilbert space of square 

integrable functions. The spaces generated by scaling 

and wavelet functions are complementary and both 

are based on the same mother function.  

In the following expressions, known as the two-

scale relation, ak are the scaling function filter 

coefficients and N is the wavelet order. 
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( ) (2 ) (2 )
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In general, there are no analytical expressions 

for wavelet scaling functions, which can be obtained 

using iterative procedures like Eqs. (1) and (2). In 

order to comply with the requirements of 

orthogonality and compact support, they present, in 

general, an irregular fractal-like shape. An example 

of this irregular shape is shown in Fig. 1, which 

presents Daubechies’ scaling function of order N = 4. 

 

Wavelet properties 

 

The set of properties summarized in the 

following expressions is valid for Daubechies 

wavelets but can be adapted to other wavelet 

families, such as Delauriers-Dubuc Interpolets. Some 

of these properties, like compact support and unit 

integral, are required for the use of the wavelet family 

in numerical methods. Others, like orthogonality, are 

desirable but not extremely necessary. 
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The last expression in Eq. (3) derives from the 

vanishing moments property, which states that a set 

of shifted and scaled Daubechies wavelets of order N 

is capable of representing exactly an N/2 − 1 degree 

polynomial. 

 

 
 

Figure 1. Daubechies scaling function of order N = 4. 

 

Wavelet derivatives 

 

In the process of solving a DE using numerical 

methods, derivatives of the basis functions tend to 

appear. As there are no analytical expressions for 

scaling functions, derivatives are obtained in dyadic 
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grid points and the refinement of the solution depends 

on the level of resolution needed (Lin et al., 2005). 

The scale relation can be differentiated n times, 

generating the following expression: 

  
1

( ) ( )

0

( ) 2 (2 )
N

n d n

i

i

x a x i 




   (4) 

  

Applying Eq. (4) to integer points results in the 

following system of equations shown in matrix form.  

  

 2 0 , 1
2 0,n n

i k i k N
a    

( )
( A - I)Λ = A =  (5) 

  

In Eq. (5), A represents the filter coefficients 

matrix, I is the identity matrix and 
(n)

 is the vector 

containing derivative values at integer points of the 

grid. Equation (5) is an eigenvalue problem which, 

for unique solution, has to be normalized using the 

so-called moment equation, derived from the 

property of exact polynomial representation. This 

equation is given by Latto et al. (1992) and provides 

a relation between derivative values at integer points.  
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(6) 

 

  

In Eq. (6), the coefficient M is the moment of 

the n
th

 derivative of the scaling function translation i. 

Once the derivative is obtained at integer values, the 

scale relation can be applied for any x = k/2
j
. 

 

Connection Coefficients 

 

The process of solving a DE requires the 

calculation of inner products of the basis functions 

and their derivatives (n1, n2). These inner products are 

defined as connection coefficients and are given by: 

  

1 2 1 2

1
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i j i j d         (7) 

  

Dilation and translation properties allow the 

calculation of connection coefficients within the 

interval [0 1] to be summarized by the solution of an 

eigenvalue problem based only on filter coefficients 

(Zhou and Zhang, 1998): 
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Since Eq. (8) leads to an infinite number of 

solutions, there is the need for a normalization rule 

that provides a unique eigenvector. This solution 

comes with the inclusion of an adapted version of the 

moment equation mentioned before: 
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Deslauriers-Dubuc Interpolating Wavelets 

 

The term interpolet was first used to designate 

wavelets with interpolating characteristics. The basic 

characteristics of interpolating wavelets require that 

the mother scaling function satisfies the following 

condition (Shi et al., 1999):  

  

0,
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( ) ,

0, 0
k

k
k k

k
 
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
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The filter coefficients ck for Deslauriers-Dubuc 

scaling function of order N can be obtained by an 

autocorrelation of the same order Daubechies’ filter 

coefficients (am). 
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(11) 
 

  

Interpolets satisfy the same requirements as 

other wavelets, specially the two-scale relation, 

which is fundamental for their use as interpolating 

functions in numerical methods. Figure 2 shows the 

Interpolet IN4. Its symmetry and interpolating 

properties are evident. There is only one integer 

abscissa which evaluates to a non-zero value. 

 

 
 

Figure 2. Interpolet IN4 scaling function. 

 

All expressions used for the calculation of 

derivatives, connection coefficients and moments of 
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Daubechies scaling functions can be applied to 

Interpolets. Of course, due to the correlation, the 

support [0; N−1] in the expressions for Daubechies 

becomes [1−N; N−1] for Interpolets. 

 

WAVELET-GALERKIN METHOD 

 

The numerical solution of differential equations 

is one of the possible applications of the wavelet 

theory. The Wavelet-Galerkin Method (WGM) 

results from the use of wavelet scaling functions as 

the interpolating basis in a traditional Galerkin 

scheme. In the following sections, the WGM will be 

applied to solve one and two-dimensional Poisson’s 

equations. 

 

Poisson’s equation in 1-D (Truss equation) 

 

The one-dimensional Poisson’s equation is 

equivalent to the differential equation of an axially 

loaded bar (truss element): 

  
2

2
( )

d u
f

d



  (12) 

  

Using interpolets as a function basis, 

multiplying by ( – i) and integrating in [0 1] gives: 
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(13) 

 

  

The system in Eq. (13) is in wavelet space and 

can be written in matrix form: 

  

, 02
kd = f k = Γ  (14) 

  

Vector f can have an analytical solution 

depending on the function f(). The matrix k is 

composed by connection coefficients, which are 

obtained analytically for interpolets. 

 

Boundary conditions 

 

Some algebraic transformation needs to be 

performed in order to impose essential boundary 

conditions. Usually, Lagrange multipliers can be 

employed and they may or may not have physical 

meaning. After integration by parts and 

simplification: 

  

T T (0)
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(0) ( )
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j
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 
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d
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(15) 
  

The values for u’(0) and u’(1) can be both 

unknown or not. If one of them is known then it can 

be passed to the right side of the equation. Suppose 

one knows the value for u’(1), then the system 

becomes: 

T T (1)
(0)

u
u

 
        

11
d

Γ Φ(0) f Φ(1)  (16) 

  

If this form is used, boundary conditions can be 

imposed in a similar form as in meshless methods 

(Nguyen et al., 2008), adding a transpose of each 

vector in order to obtain a square matrix. In this case, 

 is a vector of Lagrange multipliers. Another 

advantage of this form is that the basis only needs to 

have a first derivative. This allows the use of lower 

order wavelets. For most scaling functions (including 

Daubechies and Interpolets), the rank of the stiffness 

matrix is one unit less than its size, i. e., only one 

boundary condition needs to be imposed for the 

system to have a solution. Nevertheless, one needs to 

have at least two conditions for the system (for 

example, the displacement at one side and the 

derivative at the other). Denoting by g the matrix 

containing boundary conditions: 

  
T

00

     
     

    

11 d fΓ g

λg
 (17) 

  

In the case of a truss equation, the derivatives in 

Eq. (15) have physical meaning: they are the strains 

at x = 0 and x = 1, and therefore they are proportional 

to the stress at those points. In a truss, generally if a 

displacement is known, the applied force in its 

direction is unknown and vice-versa. For instance, in 

a truss with axial stiffness EA, with the left-end fixed 

(u(0)=0) and an applied compressive force F at the 

right-end (F=EAu’(1)), the reaction force R at  

x = 0 and the displacement at x = 1 are unknown. The 

system would become: 

  

TT

0
0
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11 d
f Φ(1)Γ Φ(0)

Φ(0)
 (18) 

  

In the more general case the system is obtained 

as in the following expression: 

  
T T

0 (0)(0)0

0 (1)(1)0

uu

uu

    
     

     
         

11
Γ Φ(0) fdΦ(1)

Φ(0)
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 (19) 

  

The last equations of the system in Eq. (19) are 

prescribed displacement equations. If interpolets are 

used, then the row and column of the correspondent 

degree of freedom can be removed, since the 

equations will become dj = u(0) and dj+1 = u(1). It’s 

important to emphasize that the system described 
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above is not the weak form of the DE: it is equivalent 

to the conventional strong form system and was 

obtained through integration by parts and not by 

using an energy approach. 

 

Poisson’s equation in 2-D 

 

For the solution of the two-dimensional 

Poisson’s equation in wavelet space, a similar 

procedure is adopted. Some extra algebraic 

transformations have to be performed, leading to 

some interesting findings. The two-dimensional 

equation is given by: 

  
2 2

2 2
( , )

u u
f  

 

 
 

 
 (20) 

  

Provided that function f is writable in separate 

variables and applying the same form of solution 

used in 1-D, the following can be written: 
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In Eq. (21), the symbol   indicates Kronecker 

product. Using the same integration by parts and 

rearranging the terms, the solution can be achieved 

by the following system: 
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EXAMPLES 

 

To validate the formulation, one and two-

dimensional examples were implemented and are 

shown in subsections below.  

 

1-D Poisson’s equation with analytical solution 

 

As a first example, the one-dimensional form of 

Poisson’s equation is solved. To test the capability of 

dealing with high order functions, a non-

homogeneous cubic function is used: 

2
2 3

2
1

d u
x x x

d
     (23) 

  

The particular solution for this equation is: 

  

 
2 3 4 5

2 6 12 20
p

x x x x
u x      (24) 

  

To simulate the behavior of a truss element 

subjected to a force given by Eq. (23), boundary 

conditions were set as u(0) = 0 and u’(1) = 0. The 

solution is given in Fig. 3. The convergence of the 

method was studied and compared to a Finite 

Differences (FDM) solution, as shown in Fig. 4. 

Interpolet IN4 was used in all examples. 
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Figure 3. Solution for Example 1. 
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Figure 4. Convergence rate for Example 1. 

 

1-D Poisson’s equation with random “noise” 

 

Normally, scattered data is provided by field 

measurements and a good way to subject this method 

to this kind of situation is to provide “noisy” data. 

The characteristics of this noise function are zero 

mean value and variances () that range from 0.001 

to 0.1. The Poisson’s equation to be solved was 
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obtained by using a constant unity non-homogeneous 

function: 

  
2

2
1

d u

d
  (25) 

  

Using a noise variance of  = 0.001, the 

constant function is represented by wavelet scaling 

functions as shown in Fig. 5. A spline representation 

was also used by means of comparison purpose. The 

solution of the differential equation is shown in Fig. 

6. It is clear that there is no distinction between 

analytical and numerical solutions. 

 

 
 

Figure 5. Representation of a constant function 

with added random noise ( = 0.001). 

 

 
 

Figure 6. Wavelet and exact solutions with  = 

0.001. 

 

Using a noise variance of  = 0.1, the constant 

function is represented by wavelet scaling functions 

as shown in Fig. 7. It is clear that wavelet 

representation is smoother than spline representation. 

The solution of the differential equation is shown in 

Fig. 8. Now there is a clear distinction between 

analytical and numerical solutions. 

 

 
 

Figure 7. Representation of a constant function 

with added random noise ( = 0.1). 

 

 
 

Figure 8. Wavelet and exact solutions with  = 0.1. 

 

2-D Poisson’s equation with trigonometric 

functions 

 

Finally, the formulation was extended to a two-

dimensional problem, in which the non-homogeneous 

term is given by a trigonometric function: 

  
2 2

2 2
cos sin cos sin
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 (26) 
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obtained is shown in Fig. 9. The non-homogeneous 

function is shown in Fig. 10. An arbitrary particular 

solution is given: 

3600 5 9 3600 11 11
sin sin sin sin

12289 24 10 20449 24 10

3600 11 9 3600 5 11
sin sin sin sin

14689 24 10 18049 24 10

x y x y
u

x y x y

 

 

 (27) 

 

 
 

Figure 9. Rectangular domain for 2D example. 
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Figure 10. Non-homogeneous term in Eq. (26). 

 

According to differential equations theory, any 

solution for Eq. (26) will contain Eq. (27). This 

particular solution is shown in Fig. 11.  

Dirichlet boundary conditions were used in a 

way that the homogeneous solution becomes null. 

This is done by imposing boundary values of the 

particular solution to the total solution. Figure 12 

shows a convergence study in which the error is 

measured using Euclidean Norm and compared to the 

errors given by the Finite Difference Method using 

second and fourth order formulations in spatial 

discretization. 
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Figure 11. Particular solution given in Eq. (27). 

 

CONCLUSIONS 

 

This work presented the formulation and 

validation of the Wavelet-Galerkin Method using 

Deslauriers-Dubuc Interpolets for the solution of 

potential problems, namely the Poisson’s equation.  

As in the traditional FEM and other numerical 

methods, the accuracy of the solution can be 

improved either by increasing the level of resolution 

or the function order. Sometimes, lower order scaling 

functions at higher resolution can give better results 

than higher order functions at lower resolutions. 
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Figure 12. Convergence study for 2D example. 

 

For two-dimensional problems, results were 

extremely good, although only regular geometry 

problems were studied. The extension of the method 

to irregular geometries remains a challenge.  

When noisy data is provided, the method 

showed a very impressive ability to represent the 

solution acceptably. This is almost impossible to 

obtain with methods that depend on regularly 

distributed data, like the FDM. To use FDM, some 

interpolation would have to be performed 

beforehand. 

Since the unknowns of the method are 

interpolation coefficients instead of nodal values, it is 

possible to obtain a smooth representation of 

solutions even with a reduced number of degrees of 

freedom.  

All matrices involved can be stored and 

operated in a sparse form, since most of their 

components are null, thus saving computer resources. 

Due to the compact support of scaling functions, the 

sparseness of matrices increases along with the level 

of resolution. 
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