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ABSTRACT 
 
In this contribution the issue of the stochastic reconstruction of 

particulatemedia from 2D photomicrographic images is addressed with 

particular reference to pore space connectivity. The reconstruction of porous 

bodies in 2D or 3D space was achieved by using simulated annealing 

techniques. Two methods were proposed to reconstruct a well connected 

pore space. The first, named PSA (Pixel-based Simulated Annealing), a 

pixel-movement based, three constraints were found to be necessary for the 

successful reconstruction of well connected pore space: the two-point 

correlation function, the d3-4 distance transform distribution and the lineal-

path function for the pore phase. The second, named OSA (Object-based 

Simulated Annealing), only constrains the two-point correlation function. 

Following several researches which tried to reconstruct porous media using 

pixel-movement based simulated techniques, we propose a new parameter 

to add a microstructure descriptor, but we also propose a new technique, 

based in moving the microstructure grains (spheres) instead of the pixels. 

Both methods were applied to reconstruct reservoir rocks microstructures, 

and the 2D and 3D results were compared with microstructures 

reconstructed by truncated Gaussian methods. The PSA resulted in 

microstructures characterized by poor pore space connectivity, and by 

artificial patterns, while the OSA reconstructed microstructures with good 

pore space connectivity. These results indicate that the OSA method can 

reconstruct better microstructures than the present methods. 

 
Keywords: Simulated annealing, Porous media, Microstructure 

reconstruction, Reservoir rocks. 

 

 

NOMENCLATURE 
 

d Euclidean dimension 

d34 chamfer metric 

E simulated annealing Energy 

L image linear size 

n number of spheres 

p simulated annealing probability 

r sphere radius 

T simulated annealing temperature 

t iteration counter 

 

INTRODUCTION  
 

The quantitative relationships between the 

microstructure of porous media and their 

macroscopic properties are of great theoretical and 

practical relevance to many fields of technology, 

including oil recovery, hydrology, catalysis, 

adsorption and membrane separation. These 

relationships cannot be determined theoretically 

without considering the chaotic nature of the pore 

space of real porous media (Adler 1992; Torquato 

2002; Sahimi 2003). Since variations in pore shape 

and pore space connectivity are intrinsic features of 

many porous media, a pore structure model capable 

of predicting the macroscopic properties must involve 

both geometric and topological descriptions of their 

complex microstructure. Recently, advanced 

techniques, such as X-ray computed 

microtomography (Spanne et al. 1994, Arns 2005) 

and magnetic resonance computed microtomography 

(Baldwin et al. 1996) have been introduced to obtain 

3D volume images of pore space. However these 

techniques may be limited by their resolution, so an 

attractive alternative is the 3D stochastic 

reconstruction of porous solids from statistical 

information produced by analysis of 2D 

photomicrographs. 

Provided that 2D photomicrographs of pore 

space are available, the main issue is to identify a set 

of microstructural descriptors that enable reliable 

reproduction of the pore space of the selected 

medium. The first reconstruction procedures were 

based on the thresholding of Gaussian random fields 

(TG). This approach, which has been widely studied 

(e.g. Quiblier 1984; Adler et al. 1990, Liang et al. 

1998), is limited by the void fraction (porosity) and 

autocorrelation function of the medium under 

consideration. It has been evaluated by several 
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researchers (Levitz 1998; Kainourgiakis et al. 2000; 

Hilfer 2000), all of whom found it incapable of 

reproducing the microstructure of particulatemedia, 

such as grain or sphere packs.  

Another reconstruction methods preserving a 

different parameter, the pore size distribution, is the 

superposed spheres (SS). Dos Santos et al. (2002) 

developed the method for reconstruct a medium 

upholding this statistic. The method calculates the 

number of spheres in order to reconstruct a given 

porous media, saving it’s the porosity. Each sphere 

superposes neighboring spheres according to a user-

defined parameter. This method presents good results 

for connectivity, although it does not preserves the 

autocorrelation function. 

A greater flexibility can be achieved by using 

the method of simulated annealing (SA) (Yeong and 

Torquato 1998a,b; Manwart et al. 2000; Talukdar and 

Torsaeter 2002; Talukdar et al. 2002a,b; Hamzehpour 

and Sahimi 2006, Arpat and Caers 2007, Capek et al. 

2008). Using this technique of optimization, arbitrary 

microstructural geometrical descriptors may be 

imposed (within computational limits) as constraints 

on the reconstruction procedure. Several porous 

materials, including sandstone and chalk, have been 

successfully reconstructed  by using a combination of 

various microstructural descriptors. Although this 

reconstruction procedure has been more successful, 

the resulting images do not always capture the 

longrange connectivity of pore space, namely for low 

porosity materials and particulatemedia as the 

reservoir rocks.  

The porous microstructures geometries of 

reservoir rocks can present a highly complicated 

configuration and, consequently, several geometric 

and physical properties can be use to characterize 

these materials. Among these properties we can 

mention the porosity, the pore size distribution and 

the permeability, usually obtained in laboratory 

experiments. They are often expensive, time 

consuming and sample destructive. This is very 

important, since for the reservoir rocks, these 

experiments are accomplished in large pieces of rock 

called testimonies extracted from the soil.  

Regard this scenario, the objective of this 

research is to present a technique for the porous 

media reconstruction in 3D using object-based and 

pixel-based simulated annealing methods. The main 

focus in the method is to preserve the connectivity 

and yet uphold desired geometrical parameters. The 

results will be compared with the TG method, which 

is the most used for this purpose and with some 

samples’ X-ray microtomographies obtained using a 

SKYSCAN 1172 X-Ray microtomograph equipment 

located at the Petrobras Research Facility (CENPES). 

The comparison method will be measuring the 

quadratic error to the autocorrelation function, 

measured in microtomographies or images acquired 

with optical microscopy. 

The paper is organized as follows: The chapter 

two explains the microstructure characterization and 

the reconstruction methods adopted. The chapter 

three shows the results when comparing the 

microstructure geometrical parameters. The chapter 

four presents some discussion about the results and 

the chapter five ends with conclusions. 

 

EXPERIMENTS 
 

This topic is divided into microstructure 

characterization and reconstruction. 

 

Microstructure characterization 
 

2D Characterization. One method to 

characterize the microstructure is to extract 2D 

information from the rock microstructure. The rocks’ 

testimonies are sawed and a piece of it called plug is 

extracted. This plug is impregnated with resin, it is 

sawed again and a slice is grinded until it reaches 

100µm thick. The microstructure images are obtained 

through optical microscopy and a sample result 

image is at Figure (1). 

 

 
Figure 1. Rock sample image acquired by 

optical microscopy. 

 

This image is segmented to find the porespace 

which is impregnated with the blue resin using the 

well-known HSI segmentation method (Gonzales & 

Woods, 1992). An example is shown in Figure (2) 

with the porespace in white. 

 

 
Figure 2. Binary image with porespace in White. 
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From the binary image it is possible to measure 

the desired parameters, as frequential autocorrelation 

(Liang et al, 2000), chord length distribution and 

distance transform distribution (Adler, 1992). These 

parameters are used by the reconstruction methods to 

recreate the porespace in 3D. 

 

Microstructure Reconstruction Methods 
 

The simulated annealing method was first 

developed by Cerny (1985) and Kirkpatrick et. al. 

(1983) to solve optimization problems (Aarts and 

Korst 1989). Stochastic reconstruction by the SA 

algorithm involves the gradual transformation of a 

high-energy configuration of pore and solid voxels 

into a minimum-energy configuration. The objective 

function (“energy” of the digitized system) This 

energy is usually defined as the sum of squared 

deviations between an arbitrary number of reference 

correlation functions, experimentally determined, and 

correlation functions calculated for 2D/3D replicas of 

a porous medium.  

In order to use the simulated annealing 

algorithm, one has first to define a set of solutions, 

generally large, representing the solutions of an 

optimization problem. Then a neighborhood structure 

is defined. To find a good solution we move from a 

solution to one of its neighbors in accordance to the 

Metropolis probabilistic criterion shown by Eq. (1). 
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where p is the acceptance probability, Et is the 

energy for the iteration t and 1( )/t tE E T
e − −

 is the 

Boltzmann probability which decreases as the 

Temperature T decreases. 

If the cost decreases then the solution is 

changed and the move is accepted. Otherwise, the 

move is accepted only with a probability depending 

on the cost increase and a control parameter called 

temperature. Classically, the probability to accept bad 

moves, i.e. moves with increase in terms of cost, is 

high at the beginning to allow the algorithm to escape 

from local minimum. This probability decreases in a 

progressive way by reducing the temperature. The 

method used to decrease the temperature is generally 

called cooling schedule. Some of the most common 

cooling schedules are the geometric and the 

adaptative (Ben-Ameur, 2004). This research adopted 

the geometric cooling schedule exposed at Eq. (2), 

descreasing the temperature after 1000 iterations. 

 

1 0,99t tT T+ = ⋅  (2) 

 

Pixel-based method (PSA). This method 

preserves the well-known autocorrelation function, 

chord length distribution (Torquato, 2000) and d34 

distance transform distribution. This last parameter is 

obtained by measuring the d34 distance transform 

distribution as in Chassery & Montanvert (1991) and 

calculating each distance frequency along the entire 

image. Several authors (Hazlett, 1997, Yeong and 

Torquato, 1998a and Manwart et al., 2000) exposed 

that the autocorrelation function isn’t enough for 

describing the porous media, so this research also 

adopted the above mentioned parameters expecting to 

conserve connectivity in the 3D reconstruction. 

The process begins with a completely random 

image which has the same porosity as the porosity 

measured in the original images. Two randomly 

chosen pixels, one pore (1) and one solid (0), have 

their position exchanged and the desired parameters 

are calculated in the modified image. The acceptance 

rule presented above is used to admit or reject the 

exchange. The process goes on until a desired error or 

a time limit is achieved. The error target was 10
-5

 and 

the time limit was 24h using a computer with a 

2.2GHz frequency processor. 

Object-based method (OSA). This method 

preserves only the autocorrelation function. It uses 

the grain size distribution as start point. For each 

sphere radius from up to down, it is calculated a 

number of spheres which fits inside the image using 

the Eq. (3): 
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where d is the dimension (2 or 3), L is the image 

linear size and r is the desired radius. This generates a 

spheres distribution which will be randomly disposed 

inside the porous media, allowing superposition.  

After all the spheres are randomly disposed 

along the image and the process begins randomly 

selecting two spheres and exchanging their centers’ 

positions. The autocorrelation is calculated in the 

modified image and the previous acceptance criterion 

is adopted. The process goes on the same way with 

the same error targets as the PSA method. 

 

RESULTS AND DISCUSSION 
 

The results obtained from both methods 

proposed here will be compared with Truncated 

Gaussian (Liang et al., 1998) and Superposed 

Spheres (dos Santos et al., 2002) results. The first 

method was also evaluated with reduced resolution. 

The resulting reconstructed images were generated 

with reduced resolution with factors of 2, 3 and 4, 

i.e., if the primary image had a 1µm resolution, the 

reconstructed image with amplification factor of 2 

will have 2µm resolution. 

 

2D results 
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2D results are compared focusing the 

autocorrelation error. Figure (3) shows the binary 

primary image, referred in Table 1 as sample 1. 

Figures (4) and (5) show the reconstructed images 

using the PSA and OSA methods, respectively. 

 

 
Figure 3. Primary sandstone microstructure image 

with 7.8µm resolution. 

 

 
Figure 4. Sandstone microstructure image 

reconstructed using PSA with 7.8µm resolution. 

 

 
Figure 5. Sandstone microstructure image 

reconstructed using OSA with 7.8µm resolution. 

 

It was analyzed the quadratic error for 8 

samples. The data is presented in Table 1. The light 

gray shows the result with the least error. The dark 

gray shows the point where the TG method was 

better than both simulated annealing methods. The 

last column shows which method minimizes best the 

samples autocorrelation function quadratic error. This 

comparison was realized among the TG, PSA and 

OSA methods, since the TG method is the classical 

method for preserving autocorrelation function. The 

parenthesis for each TG cell indicates the factor that 

better reproduced the autocorrelation function. 

 

Table 1 –Comparison of autocorrelation function 

quadratic error for 2D reconstruction methods 

researched in this work. 

 
 

Autocorrelation Function Quadratic Error 

Samples Porosity PSA OSA TG-Best Minimal 

01 13.24% 1.85E-03 4.75E-03 1.80E-03 (2) TG-F2 

02 13.80% 7.74E-04 6.08E-06 4.10E-05 (3) OSA 

03 15.66% 1.89E-03 6.56E-05 1.16E-04 (4) OSA 

04 18.84% 5.98E-04 1.84E-05 1.74E-04 (4) OSA 

05 19.50% 1.53E-02 2.12E-05 1.67E-03 (4) OSA 

06 20.84% 1.28E-03 7.85E-05 4.11E-04 (4) OSA 

07 23.93% 2.93E-03 2.45E-05 3.57E-04 (2) OSA 

08 26.81% 2.99E-02 2.82E-05 4.27E-04 (3) OSA 

 

As one can see, the OSA method showed better 

results than the other analyzed methods. These results 

show the method potential even within the presented 

porosity range. 

 

3D results 
 

The 3D results are compared focusing the error 

in the autocorrelation function. Table 2 shows that 

the OSA method had the least square error among the 

measured. The error was calculated considering the 

autocorrelation function for all 2D sections of the 

reconstructed 3D reconstruction. The best 3D 

reconstruction is shown in Figure (6b) in comparison 

with a microtomography sample Figure (6a). 

The tomography measurements were 

accomplished with the following scan conditions: 

60kV, 167µA, Al filter (1 mm), each 5 frames 

averaged, 1475 ms integration time per frame, 180o 

total rotation angle with 0.45o step size of rotation 

angle. 815 images of sample slices were 

reconstructed with 5 µm spatial resolution. The 

microtomography used for the experiments was a 

Skycan model 1072 located at the Petrobras research 

facility.  

All the samples analyzed at this research were 

sandstones without clay. Due to confidentiality, the 

samples are referred as numbers. 
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(a) (b) 

Figure 6. (a) Sample 09 microtomographic image 

with pore space in gray (1003 voxels) and (b) OSA 

3D reconstruction result with 100
3
 voxels. Both 

sample have 5.01µm spatial resolution. 

 

Table 2 –Comparison of autocorrelation function 

quadratic errors for the 3D reconstruction methods 

researched in this work. 

  Autocorrelation Function Quadratic Error 

Sample Porosity PSA OSA TG-Best (AF) Minimal 

09 28.14% 3.54E-02 5.11E-05 6.01E-04 (1) OSA 

10 14.68%  7.00E-04 3.52E-05 (3) 
TG-
AF3 

11 09.30%  1.78E-04 7.54E-05 (1) TG-AF1 

12 14.64%  1.90E-05 1.10E-03 (4) OSA 

 

Other important issue is to analyze the 2D 

sections of each 3D reconstruction. We analyzed the 

pore and grain size distributions using d34 (for 2D) 

and d345 (for 3D) chamfer metrics (Chassery & 

Montanvert, 1991). This parameter, together with the 

connected porosity, shows how connected the pores 

are and how the porosity is distributed along the 

media. This will be very important to determine 

physical properties. 

Table 3 exposes the pore and grain size 

distribution quadratic error for each 2D section of 

each reconstruction method. The error is calculated 

considering the microtomographic image for each 

sample. 

 

Table 3 – d34 pore and grain size distributions 

quadratic error for each reconstruction method. 

 
d34 Pore Size Dist. 

Error 

d34 Grain Size 

Dist. Error 

Sample OSA SS OSA SS 

09 6.12E-02 7.86E-03 5.29E-03 1.30E-01 

10 4.36E-03 1.28E-02 2.92E-02 2.62E-03 

11 3.31E-03 2.68E-03 8.39E-03 2.64E-02 

12 7.78E-03 8.47E-02 4.90E-03 8.33E-03 

 

Table 4 exposes the pore and grain size 

distribution for each 3D reconstruction method. 

 

 

Table 4 – d345 pore and grain size distributions 

quadratic error for each reconstruction method. 

 
d345 Pore Size Dist. 

Error 

d345 Grain Size Dist. 

Error 

Sample OSA SS OSA SS 

09 5.92E-02 4.69E-02 3.24E-03 6.67E-03 

10 1.86E-02 3.11E-02 1.11E-02 1.22E-02 

11 1.66E-02 2.21E-01 9.95E-03 5.69E-03 

12 3.71E-02 1.71E-01 5.38E-03 7.58E-03 

 

Table 5 shows another important parameter: the 

connected porosity. This parameter was calculated by 

eliminating the objects (pores) which don’t percolate 

the media and by measuring the porosity after the 

elimination. The importance of this parameter comes 

from the necessity of the pore phase to percolate the 

media if ones intend to simulate a physical property 

like permeability. The Truncated Gaussian 

reconstructions were omitted since the method did 

not have good results in reproducing the connected 

porosity. 

 

Table 5 –Connected porosity for each sample and 

reconstructions. 

Sample Porosity OSA SS Minimal 

09 28.14% 28.37% 27.99% SS 

10 14.67% 14.97% 14.46% SS 

11 9.30% 8.87% 8.36% OSA 

12 14.64% 15.33% 12.09% OSA 

 

Table 6 shows the time consumption of each 

reconstruction method in reconstructing a 

microstructure with 80
3
 voxels using a 2.2 GHz 

processor computer. 

 

Table 6 –Time for each reconstruction method. 

 

Table 7 shows results for the permeability 

determination for each reconstructed media and the 

µ-CT. The permeability determination method is a 

lattice-Bolztmann method and the algorithm the used 

by dos Santos (2002). Again, the PSA and the SS 

methods are omitted due to bad results. 

 

Table 7 –Permeability determination for each sample 

and reconstructed media. 

 Permeability (mD) 

Sample µ-CT OSA TG-Best 

09 4,223 1,779 1.829 (1) 

10 1,347 1,215 1 (3) 

11 226 577 1 (1) 

12 1,022 825 93 (2) 

 

Method Time (s) 

PSA 302,200 

OSA 1,100 

TG 0.1 

SS 4 
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As shown in Table 1, the OSA method was the 

one which better represented the autocorrelation 

function for 7 samples. 

The PSA method is very slow and produces 

better reconstructions than the TG method for the 

same resolutions in most cases, but when the TG 

resolution is decreased, the microstructure is better 

represented by the latter method. However, while the 

TG reconstruction is performed in just a few seconds, 

the PSA takes several hours for 2D images and many 

days for 3D microstructures. This point is 

discouraging, but if someone develop faster 

parameters describing the microstructure this method 

can generate better reconstructions. We only had one 

3D result for this method, as it is very time 

consuming. This result, however, didn’t connect any 

porosity, so it was discarded as a 3D method for this 

research. 

The OSA results are very encouraging. Even 

though the resulting image isn’t visually similar to 

the primary one, the autocorrelation function error 

was effectively minimized, having the least quadratic 

error for 7 from 8 samples. The method is still very 

time-consuming. Indeed the 3D algorithm runs faster 

than the PSA, but still much slower than the TG or 

the SS. There is still a problem for correcting the 

grain size distribution measured in 2D images to fit a 

3D grain size distribution. Several authors as DeHoff 

& Rhines (1968) and Edwards (1980) presented 

solutions for these measurements and their methods 

will be analyzed in a future work for 2D grain size 

distribution correction. The 3D results were obtained 

measuring the microtomography pore size 

distribution for the analyzed samples. 

Other point is that although some 3D mean 

quadratic errors were greater in the OSA, the 

summed quadratic errors were mainly smaller. This 

means that the OSA generated images are more 

homogeneous than the images generated with other 

methods. This is very important when simulating 

physical properties. The pore and grain size 

distributions errors were also smaller in the majority 

of the analyzed cases. This is also important, as this 

parameter is not considered during the optimization 

stage, but even so, it is indirectly optimized during 

the process. 

The TG method didn’t present good results, as 

in most cases, it demands a resolution reduction for 

reducing the autocorrelation error and even so, it had 

no better results than the OSA or the SS methods. 

The SS method was very good for connecting 

the porosity, but it isn’t designed to preserve the 

autocorrelation function, so it produced poorly results 

and wasn’t even compared to the other methods. This 

method yet has another advantage, which is being 

very fast, if compared to the OSA and PSA methods. 

The OSA method tended to have better 

permeability determination results than the other 

methods. This wasn’t true for the sample 09, which 

had greater porosity. 

CONCLUSIONS 
 

The PSA method are not able to reconstruct 

connected porous media in 3D, although it generates 

images with small autocorrelation quadratic errors. 

This shows that the autocorrelation function and the 

chord distribution functions aren’t enough to 

guarantee the microstructure 3D connectivity. 

The OSA method achieved the objective the 

PSA hasn’t. It reconstructs microstructures with 

reasonable connectivity preserving only the 

autocorrelation function. This happened because the 

way the object movement is realized. Instead of 

moving isolated voxels, the method moves objects, 

and this improves the final connectivity. Even 

without considering the d34 pore and grain size 

distributions errors during the optimization stage, 

these parameters were mainly preserved. This was 

confirmed by comparing the pore size distribution 

with SS reconstructed media. 

The permeability determination results were 

also encouraging. The OSA method tended to 

reproduce better the permeability than the other 

methods. 

The time is still a barrier, as both methods are 

very time consuming. Even more if compared with 

the SS method, which offer similar results when the 

connectivity is compared. The next step in this 

research is to determine electric parameters in all 

these 3D microstructure reconstructions and in the 

microtomographic images and compare the results. 
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