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ABSTRACT 
 

This paper presents the numerical solution by the Galerkin Finite Element 

Method, on the three-dimensional Laplace and Helmholtz equations, which 

represent the heat diffusion in solids. For the two applications proposed, the 

analytical solutions found in the literature review were used in comparison  

with the numerical solution. The results analysis was made based on the the 

L2 Norm (average error throughout the domain) and L∞ Norm (maximum 

error in the entire domain). The two application results, one of the Laplace 

equation and  the Helmholtz equation, are presented and discussed in order 

to to test  the efficiency of the method.  

 

Keywords: Finite Element Method, Galerkin Method, Diffusion, Solid, 

Poisson Equation, Helmholtz Equation. 

 

 

NOMENCLATURE 
 

f     source term 

k thermal conductivity  

Nj interpolation function 

Nnodes   number of nodes in each finite element 

T temperature 
e
jT̂  temperature approximation in the finite 

element 

v weight function 
e
iv  weight function in the element 

 

Greek symbols 
 

Ω  three-dimensional domain 
eΩ  three-dimensional domain in the element 

Γ  contour of a domain 
eΓ  contour of an element 

 

Subscripts 
 

node identification of a node 

 

 

 

1. INTRODUCTION  

 
The first publications in finite element method 

appeared in  1950´s  with the works written by 

Turner et al. (1956), Clough (1960) e Argyris 

(1963). These were used to solve problems in 

structural analysis. Some decades later, Zienkiewicz 

and Cheung (1965), Oden and Wellford (1972), 

Chung (1978) e Baker (1983), among other  

publications, treated the heat transfer and fluid flow 

problems solutions. The classical finite element 

method is known as Bubnov-Galerkin Finite 

Element Method (GFEM). There are other variants 

of the finite element such as those by Petrov-

Galerkin Finite Element Method and the Least-

Squares Finite Element Method (LSFEM), both 

developed in order to compensate the limitations of 

the GFEM when applied for heat transfer and fluid 

flow problems. The GFEM applied for this kind of 

problems generally produces oscillating solutions 

for high Péclet and Reynolds numbers. 

Recently, several authors have presented 

applications of the finite element method for two 

and tridimensional problems, among them Camprub 

et al. (2000), Romão et al. (2008a), Romão et al. 

(2008b) e Hannukainen et al. (2010). 
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In this work it is presented an application of 

Galerkin Finite Element Method to the numerical 

solution of Laplace tridimensional equations  for 

diffusion in solids and the Helmholtz´s equation for 

diffusion with generation dependable of  

temperature in solids. In this study, analytical 

solutions validate the numerical results by the 

analysis of the L2 Norm of the error that represents 

an average of the error in the solution and L∞ Norm 

that represents the maximum error in the solution. 

 

2. MODEL EQUATION 
 

It´s presented the tridimensional diffusion 

equation with generation dependable of the 

temperature in closed limited solid domains designed 

as 3ℜ⊂Ω . The model equation has the following 

form: 
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where k is a positive constant; ),,( yyxTT = , 

),,( zyxBB =  and ),,( zyxff =  are functions of the 

space ℜ∈ ,, zyx . The boundary conditions are of the 

first e second kind. 

 

2.1 Discretization – Galerkin Method 
 

The GFEM is applied for discretization of the 

integral equations. In this method an approximation 

of unknown variable is a function T̂  that when 

substituted in the Eq. (1) produces a null residual. So, 

the approximation  form is: 
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where nodesN  is number of nodes inside a finite 

element, jN  are the interpolation functions for the 

element and e
jT̂  are nodal values of T in the element. 

The residual is determined by substituting the 

approximation T̂  in Eq. (1) and is defined as:  

 

fTB
z

T
k

y

T
k

x

T
kR +⋅+

∂

∂
+

∂

∂
+

∂

∂
= ˆ

ˆˆˆ

2

2

2

2

2

2

           (3) 

 

The solution is found by forcing the pondered 

residual to be null. In other words, it must be found 

as a function of ee
VT ∈ˆ , )(

2 Ω∈ CV
e , such as:  
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=Ω∫Ωe
dvR e

i , ee
i Vv ∈∀ , nodesNi ,...,2,1=      (4) 

 

where 3ℜ⊂Ω  is a limited and closed domain. 

In the Galerkin Finite Element Method, the 

weight function is the same interpolation function, 

i.e., i
e
i Nv = , nodesNi ,...,2,1= . After integration of 

Eq. (4) the  result is an algebraic system of equations 

written in matricial form as follow: 

 

[ ]{ } { }FTK =ˆ                          (5) 

 

in which the matrix coefficients are; 
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with Nnodesji ,...,2,1, = . 

 

3. NUMERICAL APPLICATIONS 

 
The matrix coefficients are obtained by numerical 

integration using Gauss Method (Reddy, 1993) and 

mapping the real elements in the master element in 

the local coordinates ξ, η e ζ (-1 ≤ ξ,η,ζ ≤ 1). The 

interpolation functions and their derivatives for the 

hexahedral element can be found towards  Dhatt et al. 

(1984).  

The system of algebraic equations represent by 

Eq. (5) was solved by the Gauss-Seidel method and 

criteria of stop with maximum error Emax ≤ 10
-10

. The 

computational code was developed in FORTRAN 

language. The meshes were refined until the limit of 

the computer´s memory capacity. Both linear (eight 

nodes) and quadratic hexahedra (twenty seven nodes) 

were used, with h representing the size of the element 

(cubic element). 

The L2 norm of the error was defined like in 

(Zlhmal, 1978): 
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In this equation, Nnost is the total number of 

nodes in the mesh and || )()( iannumi TTe
i

−= , where 

T(num) is the result from the numerical solution and 

T(an) is the result form the analytical solution 

respectively. 

 

Application 1. Poisson Equation – Diffusion in 

Solids 
 

In this application the coefficient B in Eq. (3) is 

null and the domain is an unitary cube 3
]1,0[=Ω . 

The governing equation is reduced to; 
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where ),,( zyxTT = . 

The analytical solution of Eq. (7) is of the form: 
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Figure 1. L2 and L∞ Norms for meshes with 

hexahedral of 8 nodes – application 1. 

 

 

 
Figure 2. L2 and L∞ Norms for meshes with 

hexahedral of 27 nodes – application 1. 

 

These boundary conditions were chosen to satisfy 

the analytical solution of the proposed problem. The 

results for the medium and maximum errors by using 

linear and quadratic elements are presented in Figures 

1 and 2 respectively, where h represents the 

refinement of the mesh. It is observed that the errors 

are higher to gross meshes, as expected. 

 

 
Figure 3. Temperature profile in plane xz with y = 0,5 

by LSFEM from a mesh with 4913 nodes (h = 1/16) 

using hexaedrals with 8 nodes, Application 1. 

 

In Figure 3 is presented the temperature profile in 

a transversal section of the domain. 

 
Application 2. Helmholtz Equation – Diffusion 

with Generation in Solids 

 
In this application the coefficient B in Eq. (3) is 

non null and the domain is an unitary cube  
3

]1,0[=Ω . So the governing equation is of the form: 
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where ),,( zyxTT = . 

 

 
Figure 4. L2 and L∞ Norms for meshes with 

hexahedral of 8 nodes – application 2. 

The Eq. (9) has an analytical solution, this 

solution is: 

 

zyxzyxT sensensen),,( ++= .         (10) 
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Figure 5. L2 and L∞ Norms for meshes with 

hexahedral of 27 nodes – application 2. 

 

As seem in the Application 1, the boundary 

conditions were chosen to satisfy the analytical 

solution in the proposed problem. The results for the 

medium and maximum errors by using linear and 

quadratic elements are presented in Figures 4 and 5 

respectively, where h represents the refinement of the 

mesh. Similar to those results of Application 1, it is 

observed that the errors are higher to gross meshes, as 

expected. 

 

 

 
Figure 6. Temperature profile in plane xz with y = 0,5 

by LSFEM from a mesh with 4913 nodes (h = 1/16) 

utilizing hexaedrals with 8 nodes, Application 2. 

 

In Figure 3 is presented the temperature profile in 

a transversal section of the domain. 

 

4. CONCLUSION 

 
In the proposed applications, the Galerkin Finite 

Element Method shown good results, mainly when 

quadratic elements were used, even for the mesh with 

h = 1/4 the quadratic element  better results were 

reached than the linear element. For pure diffusion 

the quadratic mesh with h = 1/4 presents better results 

than the more refined mesh of linear elements with    

h = 1/32. The same behavior was obtained  in the 

Application 2, where neither the more refined mesh 

of linear elements presents better results than the       

h = 1/4 mesh of quadratic elements. 
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