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ABSTRACT 
 

In the present contribution a pendulum-based model is used to represent 

fluid-structure interactions. For this purpose, a theoretical and experimental 

analysis of the dynamic behavior of a viscously damped spherical non 

rotational single-degree-of-freedom pendulum was performed. The damping 

process is characterized according to two different regimes: in the first, it 

can be seen as a viscous low Reynolds’ number flow and, in the second, it 

can be considered as a viscously damped system. The pendulum was tested 

experimentally in a large reservoir containing a Newtonian fluid for 

validation purposes and good agreement was found between numerical and 

experimental results. 

 

Keywords: flow visualization, pendulum, damped system, drag coefficient. 

 

 

�OME�CLATURE 
 

Ap area of the sphere projected on a plane normal 

to the direction of its displacement, m² 

at acceleration in the tangential direction, m/s² 

B buoyancy, N 

Cd drag coefficiet 

eD  sphere diameter, m 

FD drag force, N 

Ft resultant force in the tangential direction, N 

g gravity acceleration, m/s² 

l  length of the pendulum cord, m 

me mass of the sphere, Kg 

DRe  Reynolds number based on the sphere 

diameter 

T tension force, N 

t time, s 

V velocity vector of the sphere, m/s 

eV  sphere volume, m³ 

W weight, N 

 

Greek symbols 
 

fν  kinematics viscosity of the fluid, m²/s 

θ  angle, degrees 

eρ  sphere density, Kg/m³ 

fρ  fluid density, Kg/m³ 

eω  angular velocity of the sphere, rad/s 

 

I�TRODUCTIO� 

 
The pendulum motion was first studied several 

centuries ago when Galileo Galilei (1564-1642) has 

established its periodicity. Newton has performed 

experiments for the oscillations of a pendulum 

immersed in different types of fluids and established 

that damping is proportional to the fluid density and 

viscosity (Newton, 1687). 

In the present work, a theoretical and 

experimental analysis of the dynamic behavior of a 

viscously damped pendulum was developed. A 

spherical non rotational single-degree-of-freedom 

pendulum was tested experimentally in a large 

reservoir containing a Newtonian fluid. The 

mathematical model is represented by two ordinary 

differential equations (ODE). This model was defined 

by using a drag coefficient correlation and a viscous 

damping concept. The viscous damping constant was 

determined experimentally and used in the model 

proposed. The ordinary differential equation (ODE) 

was solved by using a fourth-order Runge-Kutta 

method (Ruggiero and Lopes, 1988). 

The analysis of this simple dynamic system can 

be very useful to understand physical characteristics 

that are related to its dynamic behavior. The damping 

process, for instance, can be understood as being 

composed of two regimes: in the first, it can be seen 

as a viscous low Reynolds number flow and, in the 

second, it can be considered as a viscous damped 

system. As it will be seen later, the proposed 

combined mathematical model will take into account 

these two aspects. Another interesting point is that 

this can be considered as one of the simplest fluid 

structure interaction problems. As will be shown in 

the present paper, the flow over the spherical 

pendulum is very unstable, which creates strong 

interaction of the flow instabilities with the sphere 

movement. This means that this problem, in spite of 

its simplicity, contains important features regarding 

the dynamics of the system, both from the 

experimental and analytical viewpoints. It can be 

added that this problem could also be used for 

validating more complex fluid-structure 
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configurations whose modeling are based on partial 

differential equations (PDE).  

In the literature, many papers presenting results 

of analysis regarding the movement of a viscously 

damped pendulum are found (Stokes, 1850). A 

comparison between experimental and theoretical 

results of the pendulum motion was presented by 

Price (2003). In some papers, experimental results are 

used in the theoretical solutions, normally with a 

viscous term, which is added to the equation of 

motion of the pendulum (Thomsen, 2003). Other 

papers use a correlation for the drag coefficient 

(Nelson and Olsson, 1986) and the Stokes’ flow 

equation (Peters, 2003). In spite of the type of 

damping term used, it was observed, in many papers, 

a tendency for obtaining linear solutions, which 

represents a severe simplification of the problem 

(Fitzpatrick, 2006). In the present contribution, the 

non-linearity of the system is preserved and is taken 

into account along the analysis. 

Through the present work, the authors intend to 

contribute with other researchers that develop 

theoretical models and look for experimental results 

in the broad area of fluid-structure interaction. The 

proposed theoretical model is composed of two types 

of ODE. As mentioned above, the first one is based 

on the drag coefficient concept and the other is based 

on the viscous damping coefficient. The first model is 

applicable as far as a relative motion involving the 

sphere and the fluid occurs. Under this condition, the 

model leads to good results as compared with the 

experimental ones. However, the second model 

should be applied as the amplitude of the pendulum 

oscillations becomes small and the system exhibits a 

viscously damped behavior. In this case, the relative 

motion between the sphere and the fluid disappears. 

Consequently, this two-fold model gives a good 

representation of the entire experiment: in the 

beginning, the pendulum oscillations amplitude is 

large; later on, due to the damping effect, the 

amplitude values are reduced and tend to zero. This 

represents an asymptotical behavior, which is not 

simple to be modeled by using an ODE model, 

because the drag force tends to zero more rapidly 

than the amplitude of the pendulum oscillation. 

The experimental part of the present work is 

based on a very simple and low cost image capturing 

process. A standard digital camera recorder is used 

together with image post-processing software. The 

experiment was developed inside a small glass-made 

water reservoir, as shown in figure 1. 

 

 

Figure 1. Water reservoir containing an immersed 

sphere tethered by a very fine cord. 

 

For very small amplitudes of the 

oscillation ( )tθ , a viscous damping constant was 

determined from experimental results and was used 

in the mathematical model (viscous system), as will 

be described in the following. 

 

MATHEMATICAL MODEL A�D �UMERICAL 

METHODS 
 

The mathematical model was established by 

considering a one-dimensional displacement without 

taking into-account the rotation of the sphere. The 

sphere displaces only along the angle θ , as shown in 

figures 1 and 2. A drag coefficient correlation as a 

function of the Reynolds number was considered. 

 

MATHEMATICAL MODEL 

 
The mathematical model is based on the force 

diagram shown in Fig. 2, where T is the tension 

force, FD is the drag force, W is the weight, B is the 

buoyancy and V represents the velocity vector of the 

sphere. As previously mentioned, the mathematical 

model encompasses two phases. In the first phase the 

value of the amplitude corresponding to the sphere 

displacements is in the interval ( ) °≤≤° 30tθ5,2  and 

the resulting ODE takes into account the drag 

coefficient. For small amplitudes, ( ) º5,2tθ < , 

however, a second phase is performed in which the 

model behaves like a viscously damped system. This 

means that the model based on the drag coefficient 

does not work satisfactorily in this regime of 

oscillation, which is characterized by a very low 

Reynolds’ number. 
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Figure 2. Force diagram for a spherical pendulum. 

 

There are three forces acting in the tangential 

direction, namely, the drag force, DF , and the 

projections of the weight and buoyancy forces on this 

direction. The weight, the buoyancy and the drag 

forces are given by Fox and McDonald (1988): 

 

ef VgρB = ,              (1) 

ee VgρW = ,              (2) 

( )
  

2

AlωρC
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efD
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where g  is the gravity acceleration, fρ  is the fluid 

density, eV  is the sphere volume, eρ  is the sphere 

density, DC  is the drag coefficient, eω  is the angular 

velocity of the sphere, l  is the length of the 

pendulum cord, 4/DπA
2
ep =  is the area of the 

sphere projected on a plane normal to the direction of 

its displacement and eD  is the sphere diameter. 

The drag coefficient can be calculated by using 

an experimental correlation as presented by White 

(1991). This correlation is given by: 
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where fν  is the kinematics viscosity of the fluid and 

DRe  is the Reynolds number (based on the sphere 

diameter) given by 
f

ee
D

ν

lDω
Re = . 

Newton’s second law gives for the tangential 

direction: 

 

tet amF =∑ ,              (5) 

 

where ∑ tF  and ta  are, respectively, the resultant 

force and the acceleration in the tangential direction, 

and em  is the mass of the sphere. Considering that: 
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and replacing Eqs. (1), (2), (3) and (6) in Eq. (5), 

yields: 
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The signal of the force DF  changes according to 

the motion of the sphere. If the motion is clockwise, 

then the drag force is positive, otherwise it is 

negative. 

Replacing B , W  and DF  in Eq. (7), and 

rewriting this equation one obtains: 
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It can be seen that dC  depends on the Reynolds’ 

number. In order to solve equation (8), ( )ReCd  given 

by equation (4), has to be used. The corresponding 

solution to the resulting equation gives the angular 

motion ( )tθ . Then, a simple derivation leads to: 

 

  e
dt

θd
ω = .            (11) 

 

The initial condition is given by ( ) 0θ0θ = , 

which is specified at the beginning of the simulation. 

The numerical procedure to solve this equation will 

be described later on. The following results show that 

this model works well for the cases in which the 

amplitude of the pendulum displacement is greater 

than 2.5º. The error between the theoretical results 

and the experimental ones increase as the amplitude 

of ( )tθ  decreases. 

Another type of model that the authors have 

studied is based on the concept of viscous damping, 
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which is valid for small amplitude oscillations. Using 

Newton’s second law and taking into account a 

damping force that is proportional to the velocity, the 

following equation is obtained (Thomsen, 2003): 

 

( ) 0
dt
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θd
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that can be rewritten as 
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It can be observed that the signal of the damping 

term is given by the derivative
dt

θd
. The models given 

by equations (8), (9) and (10) and by equations (13), 

(14) and (15) give the angular displacement, ( )tθ , of 

the pendulum. The criterion regarding the application 

of these two models will be discussed in the 

following. 

 

�UMERICAL METHODS 
 

Equations (8) and (13) were solved by using an 

explicit fourth-order Runge-Kutta method. First, 

these equations are decomposed in a system of two 

first-order equations, as given below: 

 

( )  e
e θ,ωf

dt

ωd
= ,            (16) 

( )  e tω
dt

θd e = ,            (17) 

 

where ( )θ,ωf e  is given, respectively, by equations 

(8) and (13), depending on the model used. This 

procedure leads, respectively, to equations (18) and 

(19). 

 

( ) ( )βθsinαθ,ωf e +−= , if °≥ 5.2θ ,         (18) 

( ) ( )ee βωθsinαθ,ωf +−= , if °< 5.2eθ .         (19) 

 

One must solve these two systems of equations 

in order to obtain simultaneously ( )tωe  and ( )tθ . The 

fourth-order Runge-Kutta method requires the 

calculation of four constants for each dependent 

variable ( )tθ  and ( )teω . These constants are named 

iK θ  and iK ω , with i = 1, 2, 3, 4. 

The recursive equations for ( )tθ  and ( )tωe  are 

written as: 
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where the constants are given by: 
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( )n
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It is worth emphasizing that the representative 

model switches from equation (18) to equation (19) 

depending on the amplitude of ( )tθe . 

 

RESULTS 
 

In this section, both numerical and experimental 

results will be shown and compared. 

 

�UMERICAL RESULTS 
 

The physical properties as well as the 

geometrical and operational parameters are specified 

in table 1. 
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Table 1. Physical, geometrical and operational 

characteristics. 

Specifications Values of the parameters 

Initial angle 30 degrees 

Cord length 0.1 m 

Fluid viscosity 1 x 10
-5

 m²/s 

Fluid density 1,000 kg/m
3
 

Sphere density 5,565.3 kg/m
3
 

Sphere diameter 0.02198 m 

 

Figure 3 shows the time evolution of the angular 

position ( )tθ . The amplitude of ( )tθ  oscillations 

decreases as the time increases. The displacement 

presents an asymptotical behavior. This figure was 

obtained by using the two models represented by 

equations (8) and (13), respectively. It is worth 

remembering that the model given by eq. (8) is based 

on the drag force concept and the model given by eq. 

(13) is based on the viscous damping effect. The time 

for which one switches from one model to the other 

will be discussed in the sequence of this paper. Figure 

4 shows the angular velocity evolution along time, 

which presents a similar behavior as compared 

with ( )tθ . 

Figure 5 presents the behavior of the Reynolds’ 

number as a function of time. This parameter 

assumes values that are high enough to the flow to 

become transitional to turbulence. The drag force 

distribution is shown in figure 6 (it tends to zero as 

the time increases). 

Figure 7 shows the four precedent quantities 

together (angular positions, Reynolds’ number, drag 

force and angular velocity). As expected, the 

behavior of these responses is coherent and 

physically consistent. When θ passes through zero, 

the drag force, the Reynolds’ number and the angular 

velocity, they all reach their maximum values. On the 

other hand, when θ  reach its maximum value these 

quantities are all equal to zero. 

 

 
Figure 3. Time response of the angular position of the 

pendulum. 

 

 
Figure 4. Time response of the angular velocity. 

 

 
Figure 5. Time response for the Reynolds’ number. 

 

 
Figure 6. Time response of the drag force. 

 

 
Figure 7. Time history regarding: the oscillation 

angle, the Reynolds’ number, the drag force and the 

angular velocity. 
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EXPERIME�TAL RESULTS 
 

In this session, both the visualization and the 

experimental measurements obtained for the 

phenomenon studied will be shown. 

 

VISUALIZATIO� 
 

The experiment was developed using a glass 

reservoir partially filled with water, as illustrated in 

figure 8. The dimensions of the reservoir are: 640 x 

350 x 350 cm. 

 

 
Figure 8. Glass reservoir filled with water. 

 

The sphere was attached to a fixed frame by a 

0.35 mm diameter nylon cord. The sphere was made 

of steel, with 21.98 mm of diameter. It can be 

considered that the sphere moves only in the θ  

direction. A sheet of paper with a scale for the angle 

θ  was placed on the backside of the reservoir, as 

illustrated in figure 1 (it can also be seen in the figure 

8). 

In order to obtain the time response of the 

sphere angular position, ( )tθ , a digital camera was 

used. In this way, it was possible to register the 

images of the moving sphere and its corresponding 

traveling time.  

To visualize qualitatively the fluid flow around 

the sphere, it was first embedded in red ink. Then, the 

sphere was carefully placed at its initial position in 

the reservoir and released from that position. The 

visualization of the fluid flow is shown in figure 9. 

This visualization shows that the flow is turbulent 

and that the sphere passes periodically through its 

own unstable stream. This flow is very different from 

the one that happens around a stationary sphere 

where the flow upwind may be statistically 

permanent. The eq. (4) was established for this type 

of situation. Table 2 gives the experimental set-up 

values. The pendulum time response, ( )tθ , will be 

presented in the next section. 

 

 

Table 2. Experimental set-up. 

Specifications Values of the parameters 

Initial angle 30 degrees 

Cord length 0.086 m 

Fluid viscosity 1.0 x 10
-5

 m²/s 

Fluid density 1,025.25 kg/m
3
 

Sphere density 5,565.3 kg/m
3
 

Sphere diameter 0.02198 m 

 

Figure 9. Visualization of the flow created by the 

sphere motion 

 

EXPERIME�TAL MEASUREME�TS 
 

The experimental measurement was obtained 

while the amplitude of ( )tθ  was larger than 2.5º (no 

accuracy could be granted for smaller angles). After 

this point the images recorded were used only to 

determine the time for which the pendulum attains 

the rest position. Table 3 shows the experimental data 

corresponding to the evolution of the pendulum – 

oscillation cycle, angle ( )θ , and time ( )s . It is 

possible to observe that, as expected, the amplitude of 

the oscillation decreases with time. It is worth 

mentioning that this table presents data that can be 

useful as a reference for validating theoretical results. 
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Table 3. Experimental amplitudes. 

Cycle 

Angle 

(º) Time (s) Cycle 

Angle 

(º) Time (s) 

0 30 0 13 5.600 8.58 

0.5 -25.250 0.33 13.5 -5.350 8.91 

1 21.750 0.66 14 5.200 9.24 

1.5 -19.125 0.99 14.5 -5.075 9.57 

2 17.550 1.32 15 4.987 9.9 

2.5 -16.75 1.65 15.5 -4.887 10.23 

3 15.500 1.98 16 4.800 10.56 

3.5 -14.250 2.31 16.5 -4.637 10.89 

4 12.875 2.64 17 4.475 11.22 

4.5 -12.250 2.97 17.5 -4.325 11.55 

5 11.700 3.3 18 4.200 11.88 

5.5 -10.875 3.63 18.5 -4.050 12.21 

6 10.375 3.96 19 3.825 12.54 

6.5 -9.875 4.29 19.5 -3.650 12.87 

7 9.375 4.62 20 3.425 13.2 

7.5 -8.625 4.95 20.5 -3.225 13.53 

8 8.075 5.28 21 3.000 13.86 

8.5 -7.750 5.61 21.5 -2.800 14.19 

9 7.550 5.94 22 2.672 14.52 

9.5 -7.350 6.27 22.5 -2.632 14.85 

10 7.175 6.6 23 2.585 15.18 

10.5 -6.925 6.93 23.5 -2.566 15.51 

11 6.675 7.26 24 2.550 15.84 

11.5 -6.475 7.59 24.5 -2.533 16.17 

12 6.200 7.92 25 2.520 16.5 

12.5 -5.925 8.25 25.5 -2.515 16.83 

 

Figure 10 shows a comparison between theoretical 

and experimental results. The experimental curve was 

obtained as a sequence of discrete experimental 

amplitudes. The theoretical curve shows numerical 

simulation results. For the theoretical solution, the 

simulation starts using the drag force concept model, 

which is valid as far as the error between numerical 

and experimental results is smaller than 1%, as 

illustrated in figure 11. Then, it is necessary to shift 

to the viscous-damped model, as the first one 

becomes then inappropriate to represent the dynamic 

behavior of the system, accordingly. The authors 

have chosen this criterion by considering the 

asymptotical behavior of the pendulum dynamics. 

 

 

Figure 10. Comparison between theoretical and 

experimental results. 

 

 

Figure 11. Time for which the error between 

theoretical and experimental results is smaller than 

1%. 

 

CO�CLUSIO� 
 

In the present work, the dynamics of the classical 

pendulum inserted in a water reservoir was modeled 

theoretically and a simple experiment was performed 

for validation purposes. The methodology presented 

aims at representing the fluid-structure interaction 

behavior of a spherical pendulum. The proposed 

theoretical model is composed of two types of 

ordinary differential equations: the first one is based 

on the drag coefficient concept and the other is based 

on the viscous damping coefficient. The drag force 

based model is applicable as far as a relative motion 

involving the sphere and the fluid occurs. Under this 

condition, the model leads to good results as 

compared with the experimental ones. However, the 

second model was applied as the amplitude of the 

pendulum oscillations became small and the system 

started to exhibit a viscously damped behavior. 

Consequently, this two-fold model was able to 

provide a good representation of the dynamic 

behavior of the system.  

The theoretical angular position of the pendulum was 

compared with experimental results showing very 

satisfactory agreement. The difference between 

simulation and experimental results was smaller than 

1.0 % for the amplitude values of the pendulum 
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oscillation. Also, an error of 1.53% was found for the 

period of the pendulum oscillation.  

Future research effort will continue in the sense of 

performing preliminary validation of computer fluid 

dynamic models, such those obtained from the 

immersed boundary methodology (Lima e Silva et al, 

2003), by using the present research work as a 

reference. 
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