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NOMENCLATURE Greek Symbols
A parameter for the Cp model, J/kg.K o burning law estimated parameter
B parameter for the Cp model, J/kg. K2 B burning law estimated parameter, m/s.Pa®
C parameter for the Cp model, J.K/kg A load density, kg/m?
COV variance-covariance matrix D sum of squared residuals, Pa’
Cp heat capacity at constant P, J/K n co-volume, m¥/kg
Cp  specific heat capacity, J/kg.K 0 form factor
DO  propellant web, m p density, kg/m?
dQ increment of heat inputs to the system, J
dU  increment of system’s internal energy, J Subscripts
dW  increment of work performed, J
f remaining web fraction 0 initial
f specific force, J/kg g gas
H enthalpy, J s solid
H specific enthalpy, J/kg
k burning law estimated parameter, m/s Superscripts
M average molecular weight, kg/mol
m mass, kg 298  temperature reference (298 K)
P pressure c calculated
Pmax maximum pressure achieved, Pa e experimental
R gas universal constant, J/mol.K
S superficial burning area, m? INTRODUCTION
Sy2 variance estimator, Pa?
T temperature, K Closed vessels have being used for the
t time, s regression of ballistic parameters for the past six
A% volume, m? decades. They are employed, in most cases, to
z burnt volume fraction estimate lumped or comparative parameters like

quickness or maximum pressure achieved.
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Additionally, they are employed as quality control
tools, dictating whether the propellant (gun
powder) is within established patterns or must be
re-processed.

For that, a known mass of the propellant
under study is put in the vessel (which is a robust
pressure vessel); it is closed and the propellant is
remotely ignited by a computer, which also
performs the pressure data acquisition. Figure 1
shows an schematic view of the equipment, which
can be considered, by all means, a chemical reactor.

Figure 1. Schematic view of the Closed Vessel.

However, for the design and simulation of
artefacts that use propellants (rifles, guns, rockets,
mortars, howitzers and cannons), it would rather
be of interest to use the thousands of pressure versus
time points generated in each shot for the estimation
of as many as ballistic (thermodynamic and kinetic)
parameters as possible.

Some of these parameters can be calculated
through thermodynamic procedures, as
Hirschfelder-Sherman (1942, 1943) method.
However, this approach requires the knowledge of
the chemical composition of the propellant instead
of using experimental information of a real shot.
Besides, the propellant “ages” by loss of volatile
components and, for the prediction of gun behavior,
frequent chemical compositional analysis would
be required, for which analytical methods are still
not well established.

The present work is devoted to the
development of two models for the functioning of
the closed vessel: the first one, a most complete
one, complies material and energy balances inside
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the vessel and results in a system with a differential
equation for the time evolution of propellant mass
and another one for the temperature; the second
one, which is simpler, executes only a material
balance and weaves an hypothesis on the
temperature of the gases. Both models have their
parameters estimated by maximum likelihood
procedures and are analyzed in terms of its
variances and co-variances.

THEORY
Model with Energy Balance

Even in this first model, that takes into
account the energy balance, two hypotheses have
to be used: the system is adiabatic (there is not
enough time for thermal exchanges, due to the
quick combustion dynamic) and an exothermic
reaction of decomposition occurs within the vessel
in the form:

Solid — Gas + Energy (1)

The second hypothesis [Eq. (1)] is a
consequence of the fact that it is not possible or
not of interest to describe the chemical composition
of the gaseous products but only the
thermochemical behavior of the gas phase.

By the first law of the thermodynamics, we
have:

dQ = dU +dw ()

respectively increments of heat inputs to the
system, in its internal energy and of work
performed by the system. Here and henceforth,
every entity will be assumed to be in ST units. Once
the vessel experiences no deformation and due to
the adiabaticity:

dUu=0 (3)

where one can see that the energy envelope of the
system is closed. Thus, the energy, in any instant,
is distributed between solid (subscript s) and gas
(subscript g) phases:

du, | Y,

=0 +
dtdt )
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The unique information regarding energy
production in the reaction is acquired through a
Parr bomb, which measures enthalpy of reaction.
So, it is convenient to relate energy and enthalpy
variations:

dU _dH _dV dP
e e Ve 5)
dt dt dt dt

where P stands for the pressure in the vessel, V for
its volume, H for system enthalpy and t for the time
since the ignition. The derivative of the enthalpy,
for each subsystem (s and g) can be written as
(Smith and Van Ness, 1993):

é g _
dt dt @ Q H 'Pﬂ dt dt

where Cp is the heat capacity at constant P, H is the
specific enthalpy and m the mass of each
subsystem.

Denoting by Cp, the specific heat capacity

of the solid, one can be calculate its specific
enthalpy from its reference value H_** at 298 K.
Neglecting its thermal expansion coefficient and
denoting its density by ps, we are left with:

dUS = C_ps.msd_T - Pi% +
dt dt rg dt

g T g

£—298 N — _~dm (7)
+€ + u S

éHS nCdeTu "

é 298 1

Analogous procedure, carried out for the
gas phase, leads to:

du UV, o dvy  —
Co o g dP p 0%, Cp .mgd—T+
dt ¢HuT 2, dt dt £ % dt
A T
+gﬁ298 + RCp dTg—dmg
e T NPTy ®)
é 298 (

In ballistic studies, it is a common practice
to adopt the equation of Nobel-Abel to describe P-
V-T behavior of the gas phase (Vincent, 1987):
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Q

Em, 0 M )

where M is the co-volume and M is the average
molecular weight of the gas phase. This equation
will be used to calculate the derivative of V with
respect to T with P fixed, in Eq. (8). Once total
mass and volume are constant, Eq. (9) can be used
to calculate the time derivative of P [necessary in
Eq. (8)] as a function of the time derivative of T:

dP_ RT 1dmg

z

dt (Vg -hmg)M dt

3@ m, 41
Q(Vg - hmg)%r_s
R.mg dT
"MV, - hmg) dt (10)

-I-OOOx

[/}
—1l:J+
f

Combining Equations (7) to (10), one can
express the time derivative of T as:

dT — Rzmng

— = ~ém,.Cp, +m,Cp, +
¢ Pg T Ms™Ps P.Mzihmg-vgi

celow
(]

a1 _
=1 fi(cr, - o Je - 01 +
f208
(R'T)ng Errllg(1/rs - h)
PM2(hm,, -V, )g [V, - hm, )

ﬂ? dmg
uu

(11

where p**® is the enthalpy variation in the

combustion reaction, measured, in standard
conditions, by a Parr bomb. Much simpler, the rate
of propellant consumption is given by Vielle/
Moraour/Saint-Robert law (Vincent, 1987;
Moraour, 1947) as:

dmg a
— = -SkP

dt (12)
where S is the superficial burning area and k and o
are parameters subject to estimation procedures.
Area S at any moment of the combustion reaction
can be related to the remaining mass merely with
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geometric arguments. This treatment will not be
carried out once we used ribbon shaped propellant
(constant area). The last required models are those
for the calorific capacities and will be used in the
traditional form (Smith and Van Ness, 1993):

— C
Cp:A+B.T+T—2 (13)

where parameters A, B and C are considered known
for the solid (they have small influence in the results
and can be considered to be equal to the ones of
thermoplastic polymers) and, for the gases, are
subject of estimation. In this form, the set of
parameters to be estimated in this model (and which
describes the ballistic behavior - thermodynamic
and kinetic - of the powder) is given by k, a, A,
Bg, Cg, M and 1.

The simulation of this model in terms of
time evolution of ms and T is subject to initial
conditions given by the mass of solid initially
present in the vessel (ms0) and by the ambient
temperature. Such can be done by any integration
method; the present work has used Euler Method
in its vectorial version with a time increment equal
to the digital sampling of the equipment.

Simplified Model

In this second model, one admits that, since
the ignition, the gas is in its adiabatic flame
temperature (TO). That is justified by the enormous
volume of gas generated in comparison with the
initial air mass present in the vessel and due to the
high reaction rates.

This model description is started by
defining D as the propellant web which is a
characteristic path that must be burnt for total
consumption of the propellant grain: in a ribbon,
the thickness; in a long pipe, the thickness of the
wall; in a long cylinder, the diameter and so on.
The remaining web fraction and the burnt volume
fraction (v) will be denoted by f'and z, respectively:

D(1)

v0 - v(t)
DO v0

f(t) = and z(t) = (14)
where “0” denotes initial values for each entity.
It is a common practice to relate z and f

with the so called form function:

z=(1-1)(1+qf) (15)
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where 0 is the form factor, which is characteristic
of'each geometry and also obtained with geometric
arguments (zero for ribbons, thickness-to-length
ratio for pipes, unitary for long cylinders, etc).

At the end of burning, all the propellant
mass is burnt to gaseous products, the pressure is
at its maximum registered level (Pmax), the
temperature is TO and the gas fills the whole vessel
volume (v) from which, Eq. (9) leads to:

Pmax _ ¥+ pmax.h (16)

where A is the load density of the bomb (ms0/V)
and t = rT/M Is the so called specific force, a very
useful entity in the design of armaments and in
propellants ballistic evaluation. In this format, linear
fittings for Pmax/A versus Pmax can be carried out
with, at least, 3 shots at different load densities; 7 is
the linear coefficient and 1 is the angular one.

In each individual shot, the dynamic
information can be used, as the (nonlinear) fittings
of the previous model, for the regression of
parameters of combustion tax. In this model,
because of its algebraic simplicity and in order to
introduce a way to fit even 0, the law of Vielle/
Moraour/Saint-Robert will be used in the following
format, also available in literature:

V——DOd

— bPa
" (17)

If the gas phase behaves as Eq. (9), we have:

P(t)[Vg(t) - mg(t)h] = my(H)f (18)

where V, is the volume of the gas and m, its mass,
followmg the adopted notation (g for gas s for
solid). It is worth standing out that the time
dependence will be suppressed by notation
simplicity and once it is obvious which entities vary
with time and which are (considered) constant.
Thus, once again because total volume and
the mass are constant and shared by solid and
gaseous phases and by the definition of z, we have:

e -
pgy - mso-(1-2)

ﬂ —
¢ - mgp.zhy = myg.zf (19)
€ rs u
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which leads to:

émso g
P/ _V\
I T
molpd 1 nd 0)
gcls =
From Eq. (15), we have:
o 2
o= (@-D°Y(@-D -4q(z- 1 1)

2q

Using Eq. (20) in (21) and taking its time
derivative to include in Eq. (17), we are left with:

dP _ b a(K2P- K3

dt DO  K3K1+K2

K1P+K3

3 [(g=12 -4g>t T2
\/(q S 4Kz k3 (22)

with K1 = msO.n — V, K2 = ms0(1/ps — n) and
K3 = msOf and to be integrated directly for a
pressure profile, also by Euler’s method, in its
scalar version. Its worth saying that the choice of
signal in Eq. (21) was made forcing the pressure
to rise monotonically in Eq. (22). In this second
model, only B, o and 0 are, non-linearly, estimated.

Maximum Likelihood Procedure

In both models, pressures are generated by
simulation (which is dependent of each model
concerning parameters) on the same times of
experimental samples and stocked in the vectorial
variable Pc; its experimental equivalent will be
denoted by Pe. Using a weight matrix W to give each
experimental point a different importance, one can
calculate the weighted sum of squared residuals as:

P p) wler -p) 3)

The non-linear minimization of ® with
numerical parameter of each model manipulation
is the method of the maximum likelihood (Britt
and Luecke, 1973). Such manipulation was
implemented, in this work, by a Newton-like
algorithm, with a Hessian matrix BFGS update
(Edgar and Himmelblau, 1988).
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RESULTS AND DISCUSSION

The procedures described for simulation and
regression were executed for each model, being the
simpler model fitted in two steps: first, a linear one,
with 3 shots being required, than a non-linear one.

The first model results are shown in Tab. 1
and the second, in Tab. 2, where the error (after the
symbol t) must be understood as the standard
deviation of the related quantity. Model variance
estimator is denoted by Sy2 and the variance-
covariance matrix by COV; once itis a 7 x 7 entity,
it is depicted at the end of this work.

Figure 2 represents the confidence region
of the parameters estimated in the first fitting
(linear) and Fig. 3 the second one (nonlinear), both
of the second model. The first model, for making
use of 7 parameters, turns the representation of
related confidence regions into an impossible task
(7-D ellipsoids). Figure 4 shows a typical model-
to-data adherence:
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Figure 2. Confidence region (level 99%) of m
and (second model).
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Figure 3. Confidence region (level 99%) of'b,
a e q (second model).
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Figure 4. Data fitting (typical result).

Table 1. First model fitting.

Entity Value

k  ]0.0387+0.1218 m/s

o |0.4567+0.1143

M [0.0288 + 0.0601 kg/mol
Ag [1.1973 107 £211.2399 J/kg.K
Bg | 1.2606 +2.4832 J/kg.K>

Cg |0.9752+8.7465 10° J. K/kg

n o |9.55210%+0.0014 m’/kg

S,”  |2.2538 10" Pa’

Table 2. Second model fitting

Entity Value
0.0012 + 1.3781 10 m’/kg

n

F 1(107.73+2.8678) 10* J/kg

a |0.9196 +1.0673 10™

B |(232.03 +8.0821)10™" m/s.Pa”

0 0.0296 + 0.0131
11392107 55731075 —9.76781077
5573107 653210721 —1.045710712

COV |1 _976781077 —1.04571072 —9.7678107

S.2 [2.0472 10" pa?

CONCLUSIONS

Two models were built for the description
of'atypical Closed Vessel experiment; the first one
takes into account the energy balance and the other,
a simpler one, considers that the gaseous mixture
is, since the ignition, at the adiabatic flame
temperature. Both are constituted of dynamic
balances in the form of differential equations, with
obvious initial conditions. Their simulations were
carried out by Euler’s method and related results
were statistically compared to experimental data,
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being ballistic parameters manipulated by the
method of the maximum likelihood.

Both models had shown high adherence to the
experimental data; however, the most complete model
showed prohibitive uncertainties associated to its
parameters, as it can be noticed in its variances and
covariances matrix. This model happens to describe in
amore complete way the thermodynamic behavior of
the gaseous products, although myopically. The use of
equations of state more adequate for higher pressures,
such as Peng-Robinson, Redlich-Kwong or Virial can
diminish the uncertainties. This is being done by the
authors, but is beyond the scope of the present work.
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APPENDIX — Variance-Covariance Matrix of the
First Model

0.0148 ~0.0139 0.0071 7.414 02041 1.0537.10° 12022107
~0.0139 0.0131 ~00064  -62631  —02691 -9.9552.107 —1.0272.107*
0.0071 ~0.0064 0.0036 41285 01488 4.8387.007  7.1951107°
COvV=| 7414 - 62631 41285 4462210 1672035 49351101 0.0940
0.2941 - 02691 0.1488 1672035 61664  2.0377.10° 00029
10537.10°  —9.9552.10"  4.8387.107 49351.10'° 2.0377.10° 7.6502.10"7  7.5904.10°
120221074 -1.0272.107 71951107 0.0940 00029  7.5904.10°  1.8487.107°
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