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ABSTRACT

The study of external incompressible flows around bluff bodies finds extensive applicability
to real-life problems. Such flows are characterized by unsteady flow separation for high
values of the Reynolds number, where a Von Karman-type periodic wake is formed. The
prediction of these flows is very difficult, and one has usually to rely on specific
experimental data to calculate the aerodynamic forces on the body. In order to numerically
simulate this flow, this paper uses a new mesh-free two-dimensional Discrete Vortex Method
associated with a Panel Method to calculate the lift and drag coefficients, as well as the
pressure coefficient on a square cylinder, for a high Reynolds number flow. Lamb vortices
are generated along the cylinder surface, whose strengths are determined to ensure that
the no-slip condition is satisfied and that circulation is conserved. The impermeability
condition is imposed through a source panel method, so that mass conservation is explicitly
enforced. The dynamics of the body wake is computed using the convection-diffusion
splitting algorithm, where the diffusion process is simulated using the random walk method,
and the convection process is carried out with a lagrangian second-order time-marching
scheme. Results for the aerodynamic forces and pressure distribution are presented.

Keywords: Vortex methods, panel method, high Reynolds number, aerodynamical
forces.

INTRODUCTION

The study of external incompressible flows
at high Reynolds numbers around bluff bodies finds
extensive applicability to real-life problems, in
addition to the recently renewed scientific interest
as a means for testing numerical algorithms. Such
flows are characterized by several different regimes
that depend on the value of the Reynolds number,
ranging from steady Stokes-type flows to strongly
unsteady turbulent flows. For a wide range of
Reynolds numbers a Von Karman-type periodic
wake is formed. In most cases the occurrence of
separation makes the prediction of these flows very
difficult, and one has to rely on specific
experimental data to calculate the aerodynamic
forces on the body. Many attempts to numerically
simulate most of the flow details have been reported
in the literature, and a variety of both mesh-based
and mesh-free methods have been used (Fusen and
Su, 1998; Taylor and Vezza, 1999).

In this work, we use the Vortex Method
associated to the Panel Method to simulate the flow
past a square cylinder. The flow field is calculated
as the summation of a uniform flow, a cloud of
vortices that model the boundary layer and wake
vorticity in a lagrangian manner, and a series of
potential flow singularities (sources in our case)
distributed on panels arranged along the body

surface. The panel distribution forms a closed
polygon with a shape that approximates, as nearly
as possible, the actual shape of the bluff body. The
panel method is a technique intended to solve
potential flow over 2-D and 3-D geometries, where
the governing Laplace’s equation is recast into an
integral equation. The body surface is divided into
panels or “boundary elements”, and the integral is
approximated by an algebraic expression on each
of these panels (Moran, 1984). A system of linear
algebraic equations is obtained for the unknown
singularity strengths on the solid surface, which
may be solved using techniques such as Gaussian
elimination.

In our mesh-free vortex method, Lamb
vortices are generated along the cylinder surface,
whose strengths are determined to ensure that the
no-slip condition is satisfied and that circulation is
conserved.  The impermeability condition is
imposed through the application of a source panel
method, so that mass conservation is explicitly
enforced. The dynamics of the body wake is
computed using the convection-diffusion splitting
algorithm, where the diffusion process is simulated
using the random walk method, and the convection
process is carried out with a lagrangian second-
order time-marching scheme. We calculate global
(e.g. lift and drag coefficients) as well as local (e.g.
pressure coefficient) quantities for a high Reynolds
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number flow around a square cylinder. Results for
the aerodynamic forces and pressure distribution
are presented and compared to other results
available in the literature.

Mathematical Formulation

We begin our analysis considering the flow
around a square cylinder of side a, immersed in an
unbounded region with a uniform flow and
freestream speed U (Fig. 1). We assume the flow to
be incompressible and two-dimensional, and the
fluid to be newtonian with constant kinematic
viscosity ν. The unsteady flow that develops
originates from the separation that occurs at the sharp
corners of the cylinder surface, which generates an
oscillatory wake downstream of the body. This flow
is governed by the continuity and the Navier-Stokes
equations, which can be written in the form

, (1)

. (2)

In the equations above u is the velocity vector
field, p is the pressure, and  is the Reynolds
number based on the square cylinder length side a.
All the quantities in Eqs. (1), (2) and the equations
below are nondimensionalized by U and a.

Figure 1. Flow around a square cylinder.

For all the cases studied, the flow is started
impulsively from rest. The impermeability and the
no-slip boundary conditions on the surface of the
cylinder can be expressed as

,  on the cylinder surface (3)

,  on the cylinder surface (4)

where n and t are unit vectors normal and tangential
to the cylinder surface, respectively. We also
require that

1→u , at infinity (5)

The dynamics of the fluid motion, governed
by the boundary-value problem (1)-(5), can be
studied in a more convenient way if we take the
curl of Eq. (2) and use Eq. (1) to obtain the vorticity
equation. For a 2-D flow this equation is scalar,
and it can be written as

, (6)

where ω is the only non-zero component of the
vorticity vector (in a direction normal to the plane
of the flow).

In our model, the flow vorticity is
represented by a cloud of N

v
 discrete point vortices,

each of constant strength Γ
j
. Using the source panel

method (Anderson Jr., 1991), we can superimpose
the flows comprised of the vortex cloud, the
uniform flow and the flow due to a source
distribution on the N panels, each of constant
strength per unit panel length λ

j
, to construct a flow

field that satisfies Eqs. (1), (3) and (5)
automatically. Figure2 shows the combined flow
without the vortex cloud. Thus, the u and v
velocities components of the total flow can be
written in terms of the unknown vortex and source
strengths and the known panel geometry according
to the following equations

where the constants above can be expressed in
terms of the geometrical panel parameters, shown
in Fig.3, as
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Figure 2. Uniform flow U and constant source
strength distribution (λ) combined to construct a
flow field around a arbitrary shaped body.

Figure 3. Geometry of the panels.

The aerodynamic force coefficients are
calculated through integration of the pressure
coefficient distribution around the square cylinder,
which takes the form

(9)

and

(10)

where C
D
 and C

L
 are the drag and lift coefficients,

respectively. In order to calculate the pressure
coefficient, we develop a new algorithm, based on
the algorithm proposed by Fusen and Su(1998),
such that C

p
 at a panel control point m is calculated

according to the following expression
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The velocities u
(+)

 and u
(-)

 are calculated at
the upper corners of a control volume bounded by
panel n and enclosing a nascent vortex adjacent to
the panel, as shown in Figure 4.

Figure 4. Tangential velocities at the upper corners
of a control volume bounded by a panel and
enclosing a nascent vortex adjacent to the panel.

THE VORTEX METHOD - THE
ALGORITHM

The two-dimensional, incompressible,
unsteady flow around a square cylinder formulated
above is solved using a Discrete Vortex Method
associated to a Source Panel Method. The Discrete
Vortex Method uses an algorithm that splits the
convective-diffusive operator (Chorin, 1973) in the
form

0
tDt

D
=ω∇⋅+

∂
∂ω

≡
ω u (14)
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ω∇=
∂
∂ω 2

Re

1

t
(15)

In a real flow vorticity is generated on the
body surface so as to satisfy the no-slip condition,
Eq. (4), and is transported by convection and
diffusion into the flow according to Eq. (6). Our
discrete vortex method represents the vorticity by
discrete vortices, whose transport by convection
and diffusion is carried out in a sequence within
the same time step. First, a lagrangian approach is
used to simulate the convective process, governed
by Eq. (14). The convective motion of each vortex
is determined by integration of each vortex path
equation, which can be written, using a second-
order Adams-Bashforth scheme, as

(16)

(17)

In Eqs. (16) and (17), ∆x
c
 and ∆y

c
 are

displacements of a vortex owing to convection, and
u and v are components of the velocity at the point
occupied by the vortex. Second, the process of
viscous diffusion, governed by Eq. (15), is
simulated using the Random Walk Method (Lewis,
1991), where the random displacements of each
vortex in the x and y directions owing to diffusion,
∆x

d
 and ∆y

d
, are calculated from

  and  (18)

where

,  and  (19)

In Eqs. (19), P and Q are random numbers
between 0 and 1, drawn from a uniform probability
density distribution.

In order to remove the singularity of the
point vortices we use Lamb vortices for r ≤ σ

o
,

where σ
o
 is the radius of the vortex core. During a

time step ∆t, the core grows from zero to σ
o
, where

(20)

This value is kept constant for the entire
simulation. In terms of σ

o
, the dimensionless

velocity induced by the kth-vortex in the
circumferential direction, , is

(21)

In this particular equation r is the radial
distance between the vortex center and the point
in the flow field where the induced velocity is
calculated, and C = 5.02572 is a constant. The
distance ε off the cylinder surface where the new
vortices are generated per time step (Fig. 5) is set
equal to σ

o
 for all the cases studied. Vortices that

penetrate the body are reflected back into the flow
field.

The time step ∆t is estimated from the
convective length and velocity scales of the flow.
For a velocity scale of order one and a length scale
of order of ∆s = 4a/N between two adjacent vortices
generated at the surface, we can write

, 0 < k ≤ 1 (22)

Figure 5. Vortex generation scheme.

THE NUMERICAL IMPLEMENTATION

Initially, the body surface is discretized into
N uniform small panels. The numerical method
described above is, then, implemented to run
sequentially according to the following five steps:
(i) generation of new vortices; (ii) calculation of
the forces on the body; (iii) convection of the
vortices; (iv) diffusion of the vortices; (v) reflection
of some vortices; (vi) stepping in time.

The process of vorticity generation is
carried out so as to satisfy the condition
impermeability and the no-slip condition, Eqs. (3)
and (4). At each time step, N new vortices are and
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(4). At each time step, N new vortices are
created a small distance ε off the body surface, just
adjacent to the N panels (Fig. 5), and new N sources
are created on the N panels that cover the body.
The strengths of these new vortices and panel
sources are determined by imposing the no-slip and
the impermeability conditions at N−1 control points
on the cylinder surface, at the center of each panel.
In order to implement the entire procedure, the
velocities induced by all the vortices in the wake
are computed at the N−1 control points where Eqs.
(3) and (4) must be satisfied. This contribution is
added to the velocities induced by the new vortices
and the source strengths and equated to zero. Thus,
2N−2 equations can be written out for the 2N
unknowns (N new vortices and N new source
strengths). The two last equations are statements
of conservation of circulation (the sum of all
vortices with known and unknown strengths must
equal zero) and mass conservation (the sum of all
new source strengths must equal zero). This
procedure yields an algebraic system of 2N
equations and 2N unknowns, that is,

( ) )t(b)t(B)t(A j

N

1k
kjkkjk =λ+Γ∑

=
, 1Nj1 −≤≤   (23)

)t(b)t( N
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, Nj = (26)

The 2N×2N matriz given by Eqs (23) to

(26) takes the form of
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The (N−1)×N matrix A
jk
 represents the

coefficient matrix of the normal velocities induced
by all the vortices, the (N−1)×N matrix B

jk
represents the coefficient matrix of the normal

velocities induced by the source panels, the (N−
1)×N matrix C

jk
 represents the coefficient matrix

of the tangential velocities induced by the vortices,
and the (N−1)×N matrix D

jk
 represents the

coefficient matrix of the tangential velocities
induced by the source panels. The second and
fourth rows, given by Eqs. (24) and (26), represent
the conservation of vorticity and the conservation
of mass at the last panel, respectively. As a
consequence, the no-slip and the impermeability
conditions are not satisfied at the control point of
the last panel .

The linear system of algebraic equations
can be written in closed form as
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The elements of the 2N×2N matrix A
depend on the position of the vortices just created
and on the points on the cylinder surface where
the no-slip and impermeability conditions are
imposed (control points of the panels). It is,
therefore, calculated only once for the entire
simulation. The vector b

j
(t), which is recalculated

every time step, includes the contribution of all the
terms in Eqs. (7) and (8).

RESULTS AND DISCUSSION

We now present results for the simulation
of a high Reynolds number, two-dimensional,
incompressible, unsteady flow around a square
cylinder. The surface of the square cylinder is
discretized into 200 panels. A long-time simulation
is performed up to t = 40.0, where 200 vortices are
generated per time step. Since the algorithm is still
being tested, we present preliminary results for one
case only, with Re = 105. The numerical parameters
used in the computations are: ∆t = 0.1 and ε = σ

o
 =

0.0045. This run is carried out for 400 time steps
and it ends up with 80000 vortices in the flow.

The flow around a circular cylinder presents
several interesting characteristics, which can be
described starting with the occurrence of the
separation phenomenon. Experiments show the
formation of the so-called Von Karman vortex
street, which is comprised of large vortices
generated and shed alternately from the upper and
lower surfaces of the cylinder. The vortices in the
wake are connected in pairs by a vortex sheet.
Owing to the periodic characteristics of the wake,
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the lift force on the cylinder oscillates in time
around zero, with a frequency determined by the
Strouhal number. The periodic behavior of the wake
is also reflected on the drag force, which presents
a time evolution that oscillates around a non-zero
mean value. However, its non-dimensional
frequency is approximately twice the Strouhal
number, since the drag force presents
approximately two cycles of oscillation for each
cycle of the lift force. For these reasons, the
experimental values available in the literature
represent time averages for the lift and drag
coefficients.

Figure 6 illustrates the positions of the
vortices present in the flow simulation at t = 40.0.
The wake clearly shows the occurrence of
separation at the corners of the square cylinder
surface, followed by the generation and growth of
large separated vortices near the lateral and the
backward surfaces of the cylinder, which precedes
their shedding into the wake. It can also be seen
the formation of pairs of the large eddies that
comprise the Von Karman vortex street, connected
to each other by thin vortex sheets. The cores of
these large vortices grow as they move downstream
of the cylinder due to the diffusive effect of the
flow, and the lateral extent of these vortices increase
due to the convective growth of the instabilities in
the wake. Note that the farthest vortices in the wake
are generated at the initial moments of the
simulation, and they are, therefore, subject to
numerical transient effects.

Figure 6. Positions of the wake vortices for Re =
105, at   t = 40.0; N = 200, ∆t = 0.1 and ε = σ

o
 =

0.0045.

The time histories of the lift and drag
coefficients are revealed in the graph of Fig. 7. As
expected these coefficients reach a periodic steady
state after an initial numerical transient (about 20
units of non-dimensional time). The lift coefficient
oscillates about zero with a non-dimensional
frequency (Strouhal number, St) of 0.138. This
value for St is calculated over two cycles of
oscillation corresponding to the C

L
 peaks at t = 22.5

and  t = 37.0. On the other hand, the drag force
oscillates about a mean value of 1.88, integrated
over the same cycles used to determine St.

Figure 7. Time variation of C
D
 and C

L
 for Re = 105,

at     t = 40.0; N = 200, ∆t = 0.1 and ε = σ
o
 = 0.0045.

The pressure coefficient is shown in Fig.
8, compared to the experimental results obtained
by Lee (1975) for Re = 1.76×105. As mentioned
above, the numerical scheme used to compute the
pressure coefficient distribution is based on the
model proposed by Fusen and Su (1998). Our new
scheme is observed to perform better than the
scheme used by Mustto et al. (1998) for a circular
cylinder, which is based on Lewis (1991). Our
numerical results compare well with the
experimental results of Lee (1975), although the
calculated backpressure distribution is slightly
higher than the experimental one. We should point
out that the difference in the Reynolds number
between the numerical and experimental results is
also a source of discrepancy.

Table 1 provides an easy comparison of our
numerical results for the drag coefficient and
Strouhal number with the experimental results
obtained by Blevins (1984) and Vickery (1966).
The experimental mean drag coefficient of Blevins
is 2.20, which is 7.3% higher than the value 2.05
measured by Vickery (1966). Our calculation
produces a mean drag coefficient of 1.88, which is
lower than both experimental values. This fact is
clearly due to the higher backpressure calculated
in the simulation. Our numerical value for the
Strouhal number, 0.138, is higher than the
experimental ones shown in the Table, namely 0.12
and 0.118, obtained by Blevins and Vickery,
respectively. This difference may be attributed to
errors in the simulation of the vortex shedding
mechanism near the corners of the cylinder.
Although close to the experimental values, the
numerical results indicate that the algorithm still
needs investigation in order to yield more accurate
results. The numerical parameters also require
further tests, searching for more adequate values.
On the other hand, difficulties in calculating
massively separated flows are expected if one
recognizes that even experimental results present
relatively large discrepancies when compared to
each other.

V. G. Guedes et al. Numerical Simulation of the Flow...

Engenharia Térmica (Thermal Engineering), Vol. 3 · No. 2 · December 2004 · p. 161-167



167

Figure 8. Cp distribution on the square cylinder
surface at t = 40.0, for Re = 105, N = 200, ∆t = 0.1
and ε = σ

o
 = 0.0045.

Table 1. Comparison of the mean drag coefficient
and Strouhal number with other numerical and
experimental results, for Re = 105.

CONCLUSIONS

A new mesh-free two-dimensional discrete
vortex method coupled with a source panel method
is implemented to calculate the Strouhal number
and the lift, drag and pressure coefficients on a
square cylinder in a two-dimensional,
incompressible, unsteady and high Reynolds
number flow.

Considering that the simulation described
in this paper is still preliminary, we find that the
numerical results obtained are in good agreement
with the experimental results used for comparison.
The discrepancies observed in the determination
of the Strouhal number and in the calculation of
the backpressure distribution on the cylinder
surface, which is transferred to the drag coefficient,
may be attributed to errors in the simulation of the
dynamics of the vortex shedding mechanism.
Although the differences to the experimental values
are not large, the numerical results suggest that the
algorithm still needs investigation in order to yield
more accurate results. An increase in the resolution
of the simulation, through an increase of the
number of vortices, may attenuate part of the
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problem. The numerical parameters used also
require further tests to find more adequate values.
However, it must be pointed out that the numerical
calculation of massively separated flow is expected
to be difficult due to the flow complexity. This fact
is corroborated by the relatively large discrepancies
between experimental results available in the
literature, when compared to each other. The use
of a fast summation scheme to determine the
vortex-induced velocities, such as the Multipole
Expansion scheme, allows an increase in the
number of vortices and a reduction of the time step,
which increases the resolution of the simulation,
in addition to a reduction of the CPU time, which
allows a longer simulation time to be carried out.
This will definitely improve the numerical results.
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