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NOMENCLATURE

disturbance amplitude, m
speed of sound, m/s
function

derivative function
wavenumber, m
modified wavenumber, m

T N N

L reference length, m

N number of points per wavelength
)4 pressure, N/m2

t time, s

U free stream velocity, m/s

u dimensionless velocity, m/s

X cartesian coordinates, m

Greek symbols

a wave number, 1/m

Ax  mesh spacing

y dimensionless ratio of specific heats
P density, kg/m’

10} wave frequency, 1/s

Subscripts

0 temporal mean flow

o2 free stream

INTRODUCTION

ABSTRACT

The governing equations of the acoustic problem are the compressible Euler
equations. The discretization of these equations has to ensure that the acoustic
waves are transported with non-dispersive and non-dissipative
characteristics. In the present study numerical simulations of a standing
acoustic wave are performed. Four different space discretization schemes are
tested, namely, a second order finite-differences, a fourth order finite-
differences, a fourth order finite-differences compact scheme and a sixth order
finite-differences compact scheme. The time integration is done with a fourth
order Runge-Kutta scheme. The results obtained are compared with linearized
analytical solutions. The influence of the dispersion on the simulation of a
standing wave is analyzed. The results confirm that high order accuracy
schemes can be more efficient for simulation of acoustic waves, especially the
waves with high frequency.

Keywords: Acoustic wave, dispersion error, compressible flows, standing
wave, finite-difference method, high order methods.

industry to drastically reduce aircraft noise. There is also
an increased interest in other areas such as automobile
noise control. As an extension of Computational Fluid
Dynamics (CFD), CAA inherits up to date achievements of
CFD, nevertheless, it differs from the traditional CFD
research in certain ways. Numerical simulations of these
phenomena call for computational methods better suited
for accurate and efficient calculation of large scale time
dependent problems; and most importantly, a better
understanding of the influence of the numerical method
over the entire physical wavenumber space is
indispensable. This involves improvements in design and
analysis of both the basic discretization and numerical
boundary conditions. One of the challenges in the CAA
area is the accurate calculation of the phenomena,
especially in the presence of shock waves. The CAA
requires numerical schemes of high accuracy, low
dispersion and almost non-dissipation. The need for high-
resolution discretization methods is a well-known factor in
CAA. This is because the numerical study of aeroacoustic
requires the correct representation of a large range of
spatial and time scales.

In the current work the acoustic waves phenomena
was adopted. A very good theory of acoustic waves can be
found in Morse and Ingard, 1968, and Tam, 1995, gives a
good explanation of the challenges and perspectives in
CAA. Tam and Webb, 1992, studied dispersion-relation-
preserving finite difference schemes for computational
acoustic. Linearized Euler equations were adopted for the
numerical model. They emphasize that in uniform mean
flow, one has to assure that these partial differential
equations support three types of waves: the acoustic, the
entropy and the vorticity waves. All three waves are non-

The engineering research and design requirements
of today pose great challenges in computer simulation to
engineers and scientists who are called on to analyze
phenomena in continuum mechanics. The research area of
Computational Aeroacoustics (CAA) is an emerging
research area. Its major objective is to help the aerospace

dispersive and non-dissipative. The difference between
them is that, the acoustic waves propagate with the speed of
sound, and the others propagates with the speed of the main
flow. Because of this characteristic, one has to assure that
the numerical results in acoustic simulation are free of
dispersion and dissipation. In order to obtain these results,
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Tam and Webb, 1992, developed a finite difference
approximation in a way that the Fourier transform is
preserved. They obtained an optimized fourth-order
explicit approximation with a stencil of 7 points. It was
shown for this kind of study that the obtained
approximation is better that explicit sixth order
approximation, for this kind of study. They also optimized
the time discretization, and showed outflow boundary
conditions that are “transparent” to the outgoing
disturbances. The results obtained by them were very
good, showing that non-dispersive methods are important
for numerical acoustics.

Vanhille and Pozuelo, 2000, simulate a finite but
moderate amplitude standing acoustic wave, using
Lagrangian coordinates. In their numerical model a third
order partial derivative was obtained. For this derivative a
finite-difference scheme of fifth order of truncation error
was developed, since the role of this derivative was very
important for the formation of the nonlinear standing
wave. Their numerical method was validated by
comparison with an analytical model. Their results showed
the efficiency and the limits of the developed code.

A semi-implicit method for acoustic waves in low
Mach number simulations is presented in Wall et all., 2002.
The advantage of their proposed method is that the time
step is limited only by the convective CFL condition. Their
method is second order accurate, both in time and space.
An analysis of their results showed that the waves
simulated had an average dispersion error of 5%. This was
considered by them as not an excessive dispersion error.
Their main result is on the gain in computational
efficiency, obtained with the semi-implicit method,
resulting in a factor of 15 reduction about, as compared
with an explicit method.

Spectral methods can be used to assure that all
relevant scales are captured, but high order finite
difference is also able to represent short length scales with
good accuracy. Lele, 1992, emphasizes the importance of
using high order methods schemes for first and second
derivatives. Mahesh, 1998, presents high order finite
difference schemes, introducing a method that, using the
same stencil is more accurate than the standard Padé
schemes. The disadvantage of his method is that it requires
the solution of first and second derivatives simultaneously.
Souza et al., 2002 and Souza et al., 2005, used high order
compact methods for transition phenomen problems. In
these investigated it was studied the propagation of the
Tollmien-Schlichting waves in incompressible flows.

Ekaterinaris, 1999 developed a compact high order
implicit method to study aeroacustics and two-
dimensional Euler equation. His results in Aeroacoustics
showed a good agreement with the exact solution, and the
results with the two-dimensional Euler equation showed
that the proposed method presents good results, lowering
the total computational time for the simulations when
compared with other schemes for the same simulation.

Hixon, 2000, using the algebraic manipulations,
proposed a compact finite difference scheme with eighth
order accuracy, using 3 points stencil for the simulations of
acoustic waves. The main advantage of the proposed
method is that one can use the scheme for the points near
the boundaries. Results are shown to illustrate the
functionality of the method.

Ashcroft e Zhang, 2003, extend the factorization
concept proposed by Hixon to a broads class of compact
schemes using a more general derivation strategy. Rather
than using the algebraic manipulations proposed by Hixon,
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developed an approach the combines Fourier analysis with
the notion of a numerical wavenumber. Two schemes were
used, one forward and one backward, giving the optimized
prefactored compact scheme. The sum of the schemes
recover the original central compact scheme. Their results
showed the efficiency of the proposed methods in acoustic

waves simulations.

Bogey ¢ Bailly, Bogey showed finite difference
schemes with high order accuracy, optimized for acoustic
waves simulations, with low numerical dispersion and
dissipation, even using 4 points per wavelength. They
showed also selective filters that can be used to eliminate
spurious oscillations. Runge-Kutta schemes were also
studied in their paper, and they showed a sixth order
scheme that presented numerical stability with CFL
number of 1.98, that represents a gain in the computational
time. Other proposed finite difference schemes for
numerical simulation of linear acoustic waves can be

found in Thomas, 1993; Zingg, 1993; Lockard 1994.

Most sound waves behave as linear waves since
they produce pressure fluctuations in air that are very
small. A linear waves travels through a medium such as air
or water. Fluids such as these can be thought of as
consisting of a large number of "particles", each of which
consists of a vast number of molecules. Eachof these
particles moves as the wave travels through and it passes
the disturbance on to its neighbors. However, these small
parts of the medium do not travel with the wave. Waves

transfer energy without transferring matter.

In the current work, the focus is on the evaluation of
discretization error. The tests involved the simulation of
one-dimensional standing wave in a periodic domain.
Standing wave may be created from two waves, with equal
frequency, amplitude and wavelength, traveling in
opposite directions. Using superposition, the resultant

wave is the sum of these two waves.

The discretization error was analyzed and tested for
different space discretization schemes, namely, a second
order finite-differences, a fourth order finite-differences, a
fourth order finite-differences compact scheme and a sixth
order finite-differences compact scheme. Both centered

and non-centered schemes were analyzed.

The paper is organized as follows: in section 2 the
formulation for the standing wave is shown. The equations
adopted are the Euler equation. The numerical method
adopted is shown in section 3. In the same section an
analysis of the spatial discretization of the finite difference
methods used is done. In section 4 numerical results for
various test cases are presented. The conclusions about the
discretization errors on Computational Aeroacoustic are

shown in the last section.

FORMULATION

In the current study, the governing equations are the
compressible, isentropic, one-dimensional Euler
equations. They consist of the momentum equations for the

velocity component (u) in the streamwise direction (x):

opu 0 ) )
—=—-—\pu"+p
ot Oox

and the continuity equation:

Opu
ox ’
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where t is the time, p is the density and p is the pressure.

Finally p and p satisfy the idea law gas for a isentropic
flow (Sullivan, 1981):

p=| —2—1|p’, 3)

where ¥ is the specific heat ratio. The variables used in the
above equations are non-dimensional. They are related to
the dimensional variables by:

X tUOO u
x::, Z:T’ u:T’
L L UOO
_ _ “4)
p p
p=—— PpP= _29
POO 5 U
o0 o0

where the terms with an over-bar are dimensional terms,
L is the reference length, U, is the free-stream velocity
and p_, is the density of the undisturbed flow.

We can also decomposed the flow in a temporal
mean with a small disturbance:

u(x,t)=u_+1u',

0

p(x,t)=p0+p’, (5)
t — '

p(x,1) Pyt P

where the index ( ) indicates the temporal mean flow
(') and indicates of the small disturbance.

NUMERICALMETHOD

The Egs. (1) and (2) are solved numerically using a
uniform grid. The number of points used in each simulation
depended on the discretization method adopted. Therefore,
an efficient selection of the grid points numbers and the
accuracy of a code can be evaluated by comparison with
analytical solution. Finding general analytical solutions of
the Euler equations is not easy due to its non-linearity.
Because of this, the waves considered had small
amplitudes. Taking this into account, the equations were
linearized to obtain an analytical solution. This assumption
is realistic if the fluctuations are small. The temporary
mean flow adopted was null (#;=0) . With these two
assumptions one can obtain the following solutions of the
Euler equations (1 and 2):

u'(x,t)=Asin(ad x—o t)+ Asin(a x+o ¢),

P
p'(x.t)=—L[u' = 245sin(a x+o 1) |
C
Py
pxn=|—|p’, (6)
o
0
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where @ is the disturbance wave number in the x-direction,
o is the disturbance frequency and A is the disturbance
amplitude.

The acoustics wave propagation develops from
specified initial conditions. In the present computations the
analytical solutions at time equal zero were used as initial
conditions. These conditions were:

u'(x,t = 0) = A sin(a x),
p'(x,t=0)=0.0, )
p'(x,=0)=0.0.

The time integration of equations (1) and (2) were
carried out with a classical 4" order Runge-Kutta scheme.
In these equations the spatial derivatives were calculated
using a finite difference scheme. At the boundaries a
periodic condition was used. In this work four different
finite difference schemes were evaluated, namely: second
order explicit, fourth order explicit, fourth order compact
and sixth order compact. Their formula and their
respective truncation error are presented bellow:

Second order explicit derivatives:

' 1 1,23
fizm(fi-ﬁfnl)gm S ®)

Fourth order explicit derivatives:

' 1
f =——>\f ,-8f _+8f _-f. )
i lZAx2 -2 i-1 i+1 1+2
LAt ©)
30

Fourth order implicit (compact) derivatives. To find
the values of implicit derivatives a matrix must be solved,
where all derivatives in a grid line are solved
simultaneously. The system can be obtained using the
following equation:

] ] B 3 ( )
R W U Ra TR

+%Ax4f5. (10)

Sixth order implicit (compact) derivatives. Here the
derivatives are calculated as in the last scheme, solving a
system composed by:

3 ' ' _
i

! )
2 Vi P80 728 -,

1
— A5 (11)
28
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A Fourier analysis of the finite-difference methods
adopted in the current study was performed. This analysis
and the notion of the modified wavenumber provides a
convenient means of quantifying the error associated with
the differencing schemes. Mahesh, 1998, gives a good
explanation of the modified wavenumber considering the
test function f = ¢'"*on a periodic domain, where k is the
wavenumber. Discretize this function on a domain of
length 27 , using a uniform mesh of N points. The mesh
spacing is therefore giving by £ =21 / N . The exact value
of the first derivative of fisik e’ However, the numerically
computed derivatives will be of the form i k" ¢’** The k is
the modified wavenumber.

The k is the modified wavenumber. Figure (1) shown
the plot of the modified wavenumberk against
wavenumber k . In this figure the precision of the
different schemes can be compared. The wavenumber
was normalized by £, =n/Ax. According to Lele,
1992, the difference of the modified wavenumber to
the exact value is associated with the dispersion error.
The wavenumber is related to the number of points
N per wavelength by:

k= i (12)
N-1
In Fig. (2) the plots of phase speed against wavenumber of
the analyzed difference schemes are shown. These plots
were obtained by considering exact time advancement of
the advection equation:

a o
—+—=0. (13)
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1
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Figure 1. Modified wavenumber k " versus wavenumber
(k) for first derivative approximations.
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Figure 2. Phase speed versus wavenumber (k) for first
derivative approximations.
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The next section presents results of a standing wave
simulation of infinitesimal amplitude and the results were
related with the modified wavelength and phase speed
plots.

NUMERICALRESULTS

The propagation of standing acoustic waves with a
small amplitude was used to analyze the numerical
method. The number of points used for discretization of the
mesh interferes directly in the precision of the amplitude
and phase speed waves, generating a numerical error. This
error is called of dispersion error. The study of this error is
very important for problems with two or three dimensions,
where the computational cost is very high. With this
analysis, one can choose the number of points for which
the dispersion error is negligible. In this work, the second
and fourth order explicit finite-difference methods and the
fourth and sixth order compact finite-difference methods
were analyzed.

The parameters for the temporary mean flow adopted
were those at sea level according to the International
Standard Atmosphere. The initial amplitude A4 of the
perturbation was approximately 10~* m and the phase speed
c was 340.21 m/s. The wavenumber o of the disturbance
selected for the simulation was 27 . The numerical results
were simulated for over 100 time periods. The spatial
domain extended from x =0 to x = 1.

In the dispersion error analysis a very small time step
was adopted. This choice assured that the temporal
discretization error was much smaller than the space
discretization error. The order of the time step adopted was
107 In the simulations meshes with 5, 9 and 13 points per
wavelength were used in the x discretization. The mesh
with 5 points corresponds to the wavenumber value of
k=0.51n the Figs. (1) and (2). The 9 points mesh
corresponds to the wavenumber value of &= 0.25 in the
same figures, and the mesh with 13 points corresponds to
the wavenumber value of k= 0.167. In the figs. (3) (7),
the solid line corresponds the amplitude of the analytical
solution and the dotted line corresponds the amplitude
obtained with the numerical simulation at time equals 100
periods. The square, diamond and circle symbols correspond
to numerical results obtained with mesh discretization of
5,9 and 13 points for wavenumber.
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Figure 3. Results of standing wave with second order
approximation.
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Figure 4. Results of standing wave with fourth order
explicit approximation.

Figure (3) shows the numerical results with a second order
centered explicit method. The result obtained with the
mesh of 5 points shows a large error as compared with the
analytical solution. This result can be explained with the
help of Fig. (1). There is a difference between the spectral
(exact) solution and the second order centered
approximation for the wavenumber of & = 0.5. This
difference is directly connected with the dispersion error.
This error is reduced increasing the number per
wavenumber to 9 and 13 of points. It can be observed that
even with wavenumber of k& = 0.167, which that
corresponds to 13 points per wavelength one can see a
dispersion error. This effect can be understood with the
help of Fig. (2), which shows that even with this number of
points per wavelength there exists a phase error. The
numerical results obtained with the fourth order centered
explicit method are presented in Fig. (4). It can be observed
that in the result obtained with 5 points per wavelength, the
dispersion error is much smaller the one obtained with a
second order centered explicit method. The results
obtained with 9 and 13 points per wavelength are better and
the dispersion error cannot be quantified in this figure. This
results are consistent with the graphics shown in Figs. (1)
and (2).

Figure (5) shows the numerical results obtained with
the fourth order compact method. By comparing Figs. (4)
and (5) it can be observed that the result obtained with the
fourth order compact method with 5 points per wavelength
was more accurate than the result obtained with the fourth
order explicit method. For the results obtained with 9 and
13 points per wavelength, the numerical error cannot be

quantified by comparing these two figures.
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Figure 5. Results of standing wave with fourth order
compact approximation.

Germanos and Souza et al. Analysis of Dispersion Errors ...

exact
----- m==== 6" order cp -> 5 pts/wl
=== 6™ order cp -> 9 pis/wl
ssese@eens 6" order cp -> 13 pts/wl

-1E-07 |~

-2E-07 |-

-3E-07 |-

-4E-07 |-

-5E-07 |-

-6E-07

0 0.25 0.5 0.75 1

Figure 6. Results of standing wave with sixth order
compact approximation.

The last simulation results, using a sixth order
compact method is shown in Fig. (6). This method
presented the best result for the simulations when
compared with the other methods. The amplitude error
obtained for the simulation with 5 points per wavelength
was very small and cannot be quantified in this figure. The
numerical result obtained with 9 and 13 points per
wavelength was very good and the dispersion error was
almost null. It can be seen in Fig. (2) that the phase error
with wavelength of £k=0.5 is very small for the sixth order
compact method. Fig. (6) is consistent with the result.

10°
1
10®
107+
2 10°} -
[
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b 4™ order explicit
1ot ——e— 4" order compact _
——e—— 6" order compact
1 | I &— L > 1 > " L L
5 10 15 20 25 30

Points per wavelenght

Figure 7. Dispersion of the approximations with different
number of points per wavelength.

Figure (7) quantifies the dispersion error obtained
in each numerical simulation with different number of
points per wavelength. It can be observed that even with a
small number of points per wavelength, the sixth order
compact is accurate and has low dispersion error. The
results obtained with the fourth order compact method
shows the advantages in using compact methods. This can
be seen by comparing with the fourth order explicit
method. This last method shows a large dispersion error if
compared with results of the fourth order compact method.
The second order explicit method gave the worst results in
these simulations. The result obtained with 31 points per
wavelength was worse than the result obtained with sixth
order compact using 9 points per.

The computational effort of each method was
evaluated and the results are shown in table 1. The
simulations were carried out in a Pentium IV 2.8 GHz. It
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can be observed that the 6" order compact scheme gives the
best result of computational effort, considering the total
amount of dispersive error. It can also be seen that explicit
schemes presented the worst results. The error obtained
with the 2™ order explicit schemes is approximately two
hundred larger than with the 6" order compact schemes
using 5 points per wavelegth. The last result in this table
shows that the error does not increase with the 6" order
compact scheme even for large number of periods.

Table 1.Computational effort.

Method Points per | Periods | Error | Execution
wavelength (%o) time

2™ arder 5 1000 | 18,80 | 00:55
explicit

2"" Order 80 1000 nl 0444
explicit

4" order 14 1000 0,1 01:14
explicit

4" order 9 1000 [ 0,09 | 01:14
compact

6" order 5 1000 [ 0,071 00:57
compact

6" order 5 10000 | 0,072 08:12
compact

CONCLUSIONS

In this work numerical simulation of a standing acoustic
wave was performed. The adopted equation was the Euler
equation for an isentropic one-dimensional flow. The
method adopted was accurate in time, using a fourth order
Runge-Kutta scheme, and adopting a very small time step.
This assured a very small error in time discretization,
allowing a comparison of the dispersion errors of the
spatial discretization. The amplitude of the wave was very
small in order to present nonlinear behavior. This allows
the comparison of the numerical results with the linear
analytical solution.

The results showed that the second order explicit
method analyzed was dispersive even using many points
per wavelength. The results also showed that the fourth
order compact method was better than fourth order explicit
method analyzed. The execution time was also analyzed
showing the advantage in using high order compact
schemes. The results confirmed that high order methods
are better in wave transport phenomena and should be
adopted in acoustical numerical studies.

ACKNOWLEDGEMENTS

The financial support from FAPESP (State of Sao
Paulo Research Support Foundation) -- Grant number
02/09256-3 and 04/07507-4 are greatly acknowledged.

REFERENCES

Achcroft, G., Zhang X., 2003, Optimized
perfactored compact schemes, Journal of Computational
Physics, Vol. 190, pp. 459-477.

Bogey, C., Bailly, C., 2004, A family of low
dispersive and low dissipative explicit schemes for

Germanos and Souza et al. Analysis of Dispersion Errors ...

flow and noise computations, Journal of Computational
Physics, Vol. 194, pp. 194-214.

Ekaterinaris, J. A., 1999, Implicit, high-resolution,
compact schemes for gas dynamics and aeroacoustics,
Journal of Computational Physics, Vol. 156, pp. 272-299.

Hixon, R., 2000, Prefactored small-stencil compact
schemes, Journal of Computational Physics, Vol. 165, pp.
522-541.

Lele, S., 1992, Compact finite difference schemes
with spectral-like resolution, Journal of Computational
Physics, Vol. 103, pp. 16-42.

Lockard, D. P., Brentner, K. S., Atkins H. L., 1994,
High accuracy algorithms for computational
aeroacoustics, AIAA paper, AIAA-94-0460.

Mabhesh, K., 1998, A family of high order finite
difference schemes with good spectral resolution, Journal
of Computational Physics, Vol. 145, pp. 332-358.

Morse, P. M., Ingard, K. U., 1968, Theoretical
Acoustics, McGraw-Hill, New York.

Souza, L. F., Mendonga, M. T., de Medeiros, M. A.
F., Kloker, M., 2002, Three dimensional code validatin for
transition phenomena, III Escola de Transicdo e
Turbuléncia.

Souza, L. F., Mendonga, M. T., Medeiros, M. A. F.,
2005, The advantages of using high-order finite
differences schemes in laminar-turbulent transition studies
International Journal for Numerical Methods in Fluids,
Vol. 48, pp. 565-582.

Sullivan, D. A., 1981, Historical review of real-
fluid isentropic flow models, J. Fluids Eng., Vol. 103.

Tam, C. K., 1995, Computational aeroacoustics:
Issues and methods, AIAA Journal, Vol. 33(10), pp. 1788-
1796.

Tam, C. K. W., Webb, J. C., 1992, Dispersion-
relation-preserving finite difference schemes for
computational acoustics, Journal of Computational
Physics, Vol. 107, pp. 262-281.

Thomas, J. P., Roe, P. L., 1993, Development of
non-dissipative numerical scemes for computational
aeroacoustics, AIAA paper, AIAA-93-3382.

Vanhille, C., Pozuelo, C. C., 2000, A high-order
finite-difference algorithm for the analysis of standing
acoustic waves of finite but moderate amplitude, Journal
of Computational Physics, Vol. 165, pp. 334-353.

Wall, C., Pierce, C. D., Moin, P., 2002, A semi-
implicit method for resolution of acoustic waves in low
Mach number flows, Journal of Computational Physics,
Vol. 181, pp. 545-563.

Zingg, D. W., Lomax, H., Jurdens, H., 1993, An
optimized finite difference scheme for wave propagation
problems, AIAA paper, AIAA-93-0459.

Engenharia Térmica (Thermal Engineering), Vol. 5 - N° 01 - July 2006 67





