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ABSTRACT 
 
This research proposes a new method to establish the velocity field and the 
dimensionless velocity profile for Newtonian and non-Newtonian flows 
inside a circular tube. Several studies developed regarding different fluid 
types (such as potency law fluid, Bingham and Herschel-Bulkley, among 
others) observed that a rational or irrational polynomial was used for the 
dependent velocity field variable. Thus, a rational polynomial was 
established as a starting point for this research as the dependent velocity 
field variable. Dimensionless velocity profiles obtained from the proposed 
fluid-dynamics model were experimentally compared only with 
dimensionless velocity profiles for non-isothermal Newtonian flows of 
glycerol, in cooling as well as heating. On the other hand, it was possible to 
calculate that RMS errors found using relative dimensionless velocity data 
obtained from the proposed fluid-dynamics model creates very small errors, 
which are comparable to RMS errors found using data obtained from 
application of a numerical method. Finally, the proposed fluid-dynamics 
model was validated with a dimensionless velocity profile obtained from the 
flow of a cooling process, resulting in the validity of the proposed model. 
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NOMENCLATURE 
 
AT Cross-sectional area to the pipe, m2 

er Radial parameter 
eθ Angular parameter 
ex Positional parameter 
et Thermodynamic parameter 
eT Time, h 
Fobj Convex objective function 
Q Quantity giving the deviation from isoviscous 

behaviour 
r Radial coordinate, m 
R Tube radius, m 
ST Transversal section 
Vx Velocity field, m/s 

x
shaftV  Velocity on the pipe shaft, m/s 

x
relV  Relative dimensionless velocity 

x
mV  Average velocity, m/s 

x
modV  Velocity of model 

 

Greek symbols 
 
 Relative velocity coefficient 
 Density, kg/m3 
 
Subscripts 
 
exp Experimental 
 

Superscripts  
 
x Axial direction to the tube 
 
INTRODUCTION 
 

Research regarding the rheology of Newtonian 
and non-Newtonian flows inside channels of different 
transversal sections and circular section tubes is 
currently very developed (Choi et al., 2016). There is 
a certain assurance for the study of Newtonian flows. 
However, researches for non-Newtonian flows are 
still being developed. A rheological model is initially 
chose for study of non-Newtonian flows (Irgens, 
2014), with a starting point being the relation of 
shearing tension to shearing rate (velocity profile), 
for different rheological models, such as potency law, 
Bingham, Herschel–Bulkley, among others (López-
Carranza, Jenny, Nouar, 2012; Peixinho et al., 2005). 
All of these models are restricted to border conditions 
of flow inside the channel or tube. Maybe the most 
common rheological model is the potency law model 
(Güzel, Frigaard, Martinez, 2009; Hanley, Cronin, 
Byrne, 2013), and the general model would be the 
Herschel–Bulkley (Ancey, Bates, 2017; Bentrad et 
al., 2017). A consequence of choosing a good 
rheological model is a good agreement between the 
profiles for experimental velocity and analytical or 
simulated velocity. The Dutch engineer Pieter Barteld 
Kwant was one of the first researchers to work with 
non-Newtonian flows. In the theoretical research by 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Biblioteca Digital de Periódicos da UFPR (Universidade Federal do Paraná)

https://core.ac.uk/display/328068219?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Ciência/Science Gutierrez, et al. Velocity Profile Modeling for Thermal…
 

88 Engenharia Térmica (Thermal Engineering), Vol. 16 • No. 2 • December 2017 • p. 87-92
 

Kwant, Zwaneveld and Dijkstra (Kwant, Zwaneveld, 
Dijkstra, 1973b) for non-isothermal flows, the 
potency law model was employed to study velocity 
profiles using two methodologies: an approximate 
method (includes the mass conservation equation and 
momentum equation) and a numerical method 
(includes previous equations, plus the energy 
equation). Later on, research conducted by Kwant, 
Fierens and Van Der Lee (Kwant, Fierens, Van Der 
Lee, 1973a) produced experimental results to validate 
theoretical results from the work of Kwant, 
Zwaneveld and Dijkstra (Kwant, Zwaneveld, 
Dijkstra, 1973b). 

Normally, several research studies use the 
computer fluid dynamics (CFD) for flow modeling 
(Martins et al., 2014, 2016; Wang, Zhang, Wang, 
2013). The CFD model employs border conditions, 
the mass conservation equation, the momentum 
equation, among others. Advancements regarding the 
study of non-Newtonian flows is diverse, such as the 
study of the tube inclination effect over the removal 
dynamics of a viscous-plastic fluid by a Newtonian 
fluid (Alba, Frigaard, 2016), the behavior of a 
Herschel–Bulkley fluid layer when it is suddenly 
inclined and subjected to gravitational forces (Ancey, 
Bates, 2017), the effects of the velocity profile in the 
entrance of a cooling channel over flow (Kim et al., 
2016), the study of the velocity profiles (before and 
after a porous zone) of a turbulent flow in a straight 
channel (Choi et al., 2016), or the thermal 
conditioning in the tube wall (Bertsche, Knipper, 
Wetzel, 2016; Tu et al., 2015; Weigand, Abdelmoula, 
2014). 

Wang et al. (2017) performed one interesting 
study, in which a rheological model was not used for 
modeling the velocity profile of a heterogeneous 
flow. These authors established a rational polynomial 
in the variable depending on the velocity field in 
order to model the velocity profile. Such rational 
polynomial has 10 terms, which are based on space 
coordinates, tube diameter, particle size, ice fraction, 
and average flow velocity. The idea to establish a 
rational polynomial to a depending variable for the 
velocity field was also employed in another study 
(Amaro, Hernández, Olivencia, 2015). 

This current research consists on modeling 
dimensionless velocity profiles for laminar 
Newtonian flows in which the tube wall temperature 
was constant for each experiment. In order to do that, 
a generalization was employed regarding the 
polynomial expression proposed in the previously 
mentioned research (Amaro, Hernández, Olivencia, 
2015) for the dependent velocity field variable. This 
polynomial expression was restricted by appropriate 
border conditions as those used in previous 
researches that used rheological models. 
 
MATERIALS AND METHODS 
 

In order to define the velocity field dependent 

variable (considering only the velocity axial 
component) of a flow for any fluid inside a circular 
section tube, a rational polynomial was employed, 
which was much simpler than the one employed by 
Wang et al. (2017).  
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 1 2 j
x
shaft x t t t TV e ,e ,e , ,e , e  (1)

 
The velocity field dependent variable is defined 

on Eq. (1), where er, eθ and ex, are the independent 
variables, which depends on internal radius, the 
angle, and position regarding the beginning of the 
tube, respectively. They are independent variables 
that relate cylindrical coordinates. The 

jte  

independent variable is an average thermodynamic 
parameter (or a parameter that relates a 
thermodynamic property in an implicit manner) 
evaluated in a certain transversal section (ST) to the 
tube or it is characteristic for all the tube (for 
example: constant temperature or constant heat flow). 
Finally, the eT independent variable is the time 
variable. Some considerations were formulated, 
which are presented as follows: 
 

i) The tube through which the fluid flows is 
internally smooth and it is placed on a 
horizontal position. 

ii) The flow under study is in complete 
hydrodynamic development. 

iii) A value of n=3 was employed to evaluate the 
velocity field dependent variable. 

iv) The flow regimen is stationary. 
v) The velocity field is independent from the eθ 

variable. 
vi) Due to denotative simplicity, only one 

thermodynamic parameter was employed and       
named as et (but some change in such 
consideration can be modified in future studies, 
without any problem). 

vii) The following notations were established by 
denotative simplicity: 

 

   r x t r,x,te , e , e e  (2)

 

   x t x,te , e e  (3)

 
The internal radius and the tube transversal 

circle area are named as R and AT, respectively.  
 

r
r

e
R

  (4)
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The er independent variable was defined in Eq. 
(4), as 0 ≤ r ≤ R. Definition of ex and et independent 
variables will depend on the study which will be 
chosen as a reference. 

It is important to notice that it was not 
established if the flow regimen is laminar, transitory 
or turbulent, since it was not defined if the fluid is 
incompressible due to the dependence of the behavior 
regarding the thermodynamic parameter along the 
flow. Dr,x,t and Dx,t are non-empty sets in which their 
elements are (er,x,t) and (ex,t), respectively. The 
simplified velocity field (by previous considerations) 
and the flow density (ρ) were established as real 
functions defined in the Dr,x,t domain.  

 

 
   

x
r,x,t

x 3 x 2
3 x,t r 2 x,t r

V e

V e e V e e 
 

   x x
1 x,t r shaft x,tV e e V e   (5)

 
Equation (5) shows a simplified expression of 

the velocity field dependent variable. 
 

 
   

 
T

T

x
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r,x,t T
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T

x
r,x,t T

Sx
m x,t

T

V e  dA
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A



 (7)

 
On the other hand, it was necessary to establish 

flow average density (ρm,x) and flow average velocity 
( x

mV ) as real functions defined in the Dx,t domain. 

Dependent variables for both functions are defined on 
Eq. (6) and (7), respectively. 

 

   
 

x
shaft x,t

x,t x
m x,t

V e
α e

 V e
  (8)

 
A relative velocity coefficient was defined and 

identified as α. It is presented on Eq. (8). 
Some conditions were established, which served to 
restrict the Vx(er,x,t) dependent variable. These 
conditions are presented as below: 

 

 

r

x
r,x,t

r
e 0

V e
0

e






 (9)

 

 x
x tV 1,e ,e 0  (10)

 

   
T

x
r,x,t r,x,t T

S

ρ e V e  dA  

   x
m,x x,t m x,t T ρ e V e  A (11)

 
In Eqs. (9) - (11) the conditions of: Condition of 

maximum velocity in the tube axis, Non-slippery 
condition in the tube internal wall and Mass 
conservation condition, respectively, are presented. 

 

      
3 2

x,t r rx x
r,x,t m x,t

2 3
r r

α e 5e 6e 1
V e V e

10e 10e

  
 
 
   

(12)

 
A final expression for the velocity field 

dependent variable was obtained by using Eq. (9) – 
(11) to restrict Vx(er,x,t), and it is presented on Eq. 
(12). 

 

   
 

x
r,x,tx

rel r,x,t x
m x,t

V e
V e

 V e
  (13)

 
Finally, the expression for relative 

dimensionless velocity profile ( x
relV ) is shown on Eq. 

(13). 
For laminar isothermal Newtonian flows, 

α(ex,t)=2 is employed, creating a known expression 
for the velocity dimensionless profile equivalent to 

x
relV (er,x,t)=2-2 2

re . The RMS error (root mean square)  

was employed in order to evaluate the predictability 
of the relative dimensionless velocity profile 
regarding research experimental data that might be 
used (Devore, Berk, 2012). 

 

 i i

2m x x
exp modi 1

V V
RMS

m






 
(14)

 
The mathematical expression for RMS error, 

applied in this study, is presented on Eq. (14). Where 
m is the number of experimental data and x

expV  is the 

experimental velocity or the experimental relative 
dimensionless velocity provided by a certain radius. 
The x

modV  velocity is obtained by the proposed model 

from Eq. (12) or Eq. (13). This depends on data 
provided by studies used to validate the proposed 
model. The experimental relative dimensionless 
velocity was defined as the experimental velocity 
divided by the average velocity. It is clear that Eq. 
(12) needs to be used to validate the model, in case 
experimental velocities are provided.  

Thus, the dependent variable can be represented 
as Vx(er,x,t) by Vx(er, x

mV (ex,t), x
shaftV (ex,t)). Due to 

denotative simplicity reasons, the dependent variable 
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was considered to be Vx(er,x,t) by Vx(er, x
mV , x

shaftV ). For 

the case in which experimental velocities are 
provided, a methodology was developed to allow 
calculation of more suitable velocity values, x

mV  and 
x
shaftV . 

 

   
i

m 2
x x x x x x

obj,1 m shaft i m shaftexp
i 1

F V , V V V V , V



  
  (15)

 
The corresponding convex objective function 

was established in Eq. (15). Thus, this objective 
function has to satisfy the following conditions: 

 

 x x
obj,1 m shaft

x
m

F V ,V
0

V





 (16)

 

 x x
obj,1 m shaft

x
shaft

F V ,V
0

V





 (17)

 
Once x

mV  and x
shaftV  velocity values are obtained 

for different experiments, values for relative velocity 
coefficient can be calculated (α).  

In case experimental relative dimensionless 
velocities are provided, a similar method to the 
previous one can be applied, changing the objective 
function and the conditions of the first derivative. 

 

   
i

m 2
x x

obj,2 iexp
i 1

αF V V α


      (18)

 
The corresponding convex objective function 

was established in Eq. (18). Thus, this objective 
function has to satisfy the following condition: 

 
 obj,2F

α

α
0





 (19)

 
A behavior for the relative velocity coefficient 

can be established with these methods, for any 
position and thermal condition in the tube wall under 
study. An appropriate expression can be attributed to 
the relative velocity coefficient by using a linear 
regression model (Kleijnen, 2015). 
 
RESULTS AND DISCUSSION 
 

In order to validate the proposed fluid-dynamics 
model, experimental data were employed from 
Kwant (Kwant, 1971) and Kwant et al. (Kwant, 
Fierens, Van Der Lee, 1973a), the working fluid 
being glycerol in both studies. In addition, data 
regarding relative dimensionless velocities obtained 
through the numerical method proposed by Kwant et 

al. (1973b) were compared with experimental relative 
dimensionless velocities. The of data regarding 
experimental relative dimensionless velocities and 
from the numerical solution were derived from 
scaling velocity profile figures. Kwant et al. (1973a) 
studied velocity profiles for Newtonian laminar flows 
in a tube where wall temperature is constant, but 
different in each experiment that is performed.  

Experimental and numerical relative 
dimensionless velocities are a function of x+, Q and 

Re  parameters, which are the dimensionless axial 

position, iso-viscosity standard parameter regarding 
the flow, and the Reynolds number evaluated at the 
average flow temperature, respectively. For more 
references regarding these parameters, the study by 
Kwant et al. (1973a) can be revised. The current 
study considered that the positional parameter (x+) 
does not create significant changes in the relative 
dimensionless velocity profile. This assumption was 
considered due to the fact that several velocity 
profiles are not present for the same tube thermal 
condition. In addition, the Reynolds number ( Re ) 

was not selected as a thermodynamic parameter since 
all flows that generate experimental and numerical 
relative dimensionless velocity data are characterized 
by a laminar regimen, and also have a Reynolds 
number in the range of 0.24 to 55 (Kwant, 1971), 
which was considered very low to produce significant 
changes in the dimensionless velocity profile.  

Due to previous assumptions, the Q 
thermodynamic parameter was considered the most 
influential in experiments conducted, since it 
quantifies heat transference between the flow and the 
tube, characterizing the heat transfer phenomenon on 
heating or cooling processes. It is then possible to 
establish that et=Q. The Q value is equivalent to zero 
in case the flow and the tube have the same 
temperature. 

 

 x
rel rV e ,Q  

  3 2 2 3
r r r rα Q 5e 6e 1 10e 10e     (20)

 
The proposed fluid-dynamic model to determine 

relative dimensionless velocity profiles is presented 
on Eq. (20). Figure 1 shows the dimensionless 
velocity profile for the flow of a cooling process with 
Q=-2.06 (Kwant, 1971). For this case, one α=3.053 
was determined. The RMS error for data obtained 
from the proposed method and the numerical method 
was equivalent to 0.09080 and 0.07382, respectively. 

Figure 2 shows a dimensionless velocity profile 
for the flow of a heating process with Q=1.49 
(Kwant, Fierens, Van Der Lee, 1973a). In this case, 
one α=1.577 was determined. The RMS error for data 
obtained from the proposed model and the numerical 
method was equivalent to 0.02269 and 0.04002, 
respectively. 
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Figure 1. Dimensionless velocity profile for Q=-

2.06. 
 

 
Figure 2. Dimensionless velocity profile for 

Q=1.49. 
 

 
Figure 3. Dimensionless velocity profile for Q=2.34. 

Figure 3 shows the dimensionless velocity 
profile for the flow of a heating process with Q=2.34 
(Kwant, 1971). In this case, one α=1.298 was 
determined. The RMS error for data obtained from 
the proposed model and the numerical method was 
equivalent to 0.06887 and 0.07249, respectively. 

With different calculated α values and Q values 
used in previous experiments, a linear regression 
model was developed with α=2 for Q=0, in order to 
calculate the relative velocity coefficient value (α). 

 

  2α Q 0.0432Q 0.4034Q 2.0314    (21)

 
This linear regression model presented on Eq. 

(21) have a determination coefficient of R2=0.9976. 
Through the use of the linear regression model to 
calculate the relative velocity coefficient (α) for 
isothermal laminar Newtonian flows, a value of 
α=2.0314 was obtained. Thus, this velocity 
coefficient value is very close to the α=2 value, 
which is calculated theoretically.  

In order to validate the proposed fluid-dynamics 
model for non-isothermal Newtonian flows, an 
experimental dimensionless velocity profile was 
evaluated for Q=-1.35 (Kwant, Fierens, Van Der Lee, 
1973a). A good agreement was observed between the 
dimensionless velocity profile (obtained from the 
proposed fluid-dynamics model) regarding 
experimental data. This evaluation was presented on 
Fig. 4. 

 

 
Figure 4. Dimensionless velocity profile for Q=-

1.35. 
 

Through the use of Eq. (21), a value of α=2.655 
was calculated. The RMS error for data obtained 
from the proposed model (using Eq. (21) to calculate 
the relative velocity coefficient) was equivalent to 
0.03169, and the RMS error from data obtained 
through the numerical method was equivalent to 
0.03817. 
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CONCLUSIONS 
 

It can be concluded from the results that 
dimensionless velocity profiles obtained for the 
proposed fluid-dynamics model efficiently calculate 
experimental dimensionless velocities for non-
isothermal Newtonian flows. Dimensionless velocity 
profiles obtained through the use of the fluid-
dynamics model are better to model dimensionless 
velocity profiles in cooling processes, in comparison 
to dimensionless velocity profiles in heating 
processes, for which heating is even higher in the 
flow. Due to the flexibility to which the variables 
might depend, or how the relative velocity coefficient 
(α) can be defined, it is possible to employ the 
proposed fluid-dynamics model in future studies to 
obtain velocity profiles for non-Newtonian flows. 
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