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ABSTRACT 
 
The fast progress has been observed in the development of numerical and 
analytical techniques for solving convection-diffusion and fluid mechanics 
problems. Here, a numerical approach, based in Galerkin Finite Element 
Method with Finite Difference Method is presented for the solution of a 
class of non-linear transient convection-diffusion problems. Using the 
analytical solutions and the L2 and L∞ error norms, some applications is 
carried and valuated with the literature.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Keywords: Numerical simulation, Burgers equation, Galerkin Finite 
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NOMENCLATURE 
 
N interpolation function 

Pr Prandt number 

Re Reynolds number 

t time coordinate 
T temperature 
ui velocity field 
xi  space coordinates 
 

Greek symbols 
 
Ω two-dimensional domain 
α diffusion coefficient 
ρ especific mass 

INTRODUCTION 
 
The calculations of fluid flow are of interest in 

many processes of importance to man and also in 
nature. Such flows are modeled mathematically by 
the Navier Stokes equations, which are nonlinear 
partial differential equations. These equations are 
very difficult to solve analytically, except in very 
simplified cases. 

Due to the nonlinearities and complicated 
geometries found in real problems, solutions of the 
Navier-Stokes equations, in its complete form, are 
only possible by numerical methods. 
The finite element method (FEM) is based on the 
weighted residuals method (WRM), which gives rise 
to different formulations: Bubnov-Galerkin, Petrov-
Galerkin, Placement, Subdomain and Least Squares. 
These formulations result of the choice of the weight 
function in inner product of the residue by the weight 
function, in the integral or variational formulation of 
the method. 
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The current literature on the finite element 
method is vast, with emphasis of the textbooks 
presented by Zienkiewicz and Taylor (2005), Reddy 
(1993) and Jiang (1998). Jiang (1998) presents the 
detailed formulation of the least squares finite 
element method (LSFEM) for computational fluid 
dynamics and electromagnetism. 

It is well known that the classical Galerkin 
method produces oscillations solving convective 
dominant problems. However, this method is great 
for purely diffusive problems. According to Lewis et 
al. (2004), the Characteristic Based Split method has 
been used for solving convection-diffusion equations, 
initially for the case of compressible flows and more 
recently for the case of incompressible flows. In this 
case, when considering the motion of a particle in the 
direction of the characteristic, a convection-diffusion 
equation is transformed into a diffusion equation and 
the classical Galerkin method can be applied without 
oscillations in the solution. This alternative of 
stabilizing the finite element method is also used in 
this paper for solving the Navier-Stokes equations 
with heat transfer, for some two-dimensional 
problems, by using linear triangular elements. 

The stabilization method used in this work was 
a method of discretization of the time derivative term 
based on the flow along the characteristic, called in 
the literature Characteristic Based Split (CBS) 
scheme. The CBS scheme was originally presented 
by Zienkiewicz and Taylor (2005). Excellent works 
on this method are Lewis et al. (2004) and Liu 
(2005). 

Liu (2005) presented a methodology CBS with 
artificial compressibility (AC) and a semi-implicit 
CBS scheme for incompressible laminar and 
turbulent flows. The numerical simulations for 
steady-state and transient incompressible flows were 
held in structured and unstructured meshes of linear 
triangular and tetrahedral elements. The standard 
Galerkin method was used for spatial discretization 
of governing equations, with a semi- implicit CBS. 
The mathematical model was based on Navier-Stokes 
averaged equations (RANS) and four turbulence 
models of two equations were studied in detail. 
Results for laminar and turbulent flows, in unsteady 
and steady-state, were obtained. In addition to 
problems of the steady-state flow, the unsteady-state 
averaged Navier-Stokes (URANS) model was used to 
simulate the vortices behind a circular cylinder using 
the technique of dual time step. Two and three-
dimensional results have shown that both the CBS-
AC procedure (matrix free) and the semi-implicit 
CBS formulation are accurate and efficient.  

 
MATHEMATICAL MODEL 

 

Fluid flows can be modeled mathematically by 
the Navier Stokes equations, which are nonlinear 
partial differential equations. The dimensionless form 
of these equations is shown below. 
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NUMERICAL MODEL: SEPARATION MODEL 
BASED ON THE CHARACTERISTIC 
  

The separation model based on the 
characteristic is used to stabilize the classical 
Galerkin method, since this method presents 
oscillating solutions when applied to the solution of 
convection dominant problems. The convection-
diffusion equation for a scalar variable    in the not 
conservative form is:  
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where iu  is the velocity field, φ  is the property 
transported by convection and diffusion, α  is the 
diffusion coefficient and Q is any external source of 
φ . 

In Eq. (5), if the linear convection term is 
considered one-dimensional with constant velocity, 
then the characteristic propagates in the plane (φ ,t) 
as shown in Fig. 1. Thus, we can write: 
 

( ) ( ) 0,ˆ,ˆ 1 =−+ + nn txtx φδφ  (6)
 

where δ  is the distance traveled by the particle with 
a characteristic velocity equal to the convective 
velocity u  and udtxx −=ˆ  is the one-dimensional 
characteristic direction. 
 

 
Figure 1. Linear characteristic scheme. 

Equation (6) can be integrated, in the form of 
weighted residue, using the weight function 
w( δ+x̂ ): 

 

φ
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( ) ( ) ( )[ ] 0,ˆ,ˆˆ 1 =Ω−++ +

Ω
∫ dtxtxxw nn φδφδ  (7)

 
With the substitution of the interpolation 

functions, Equation (7) becomes: 
 

( ) ( ) ( )[ −+++ +

Ω
∫ 1,ˆˆˆ n

jj txxNxN δφδδ  

( )] 0,)ˆ( =Ω− dtxxN n
i φ (8)

 
The exact integration of Eq. (8) is not possible. 

Then, an approximate integration procedure must be 
used. The splitting procedure used is the semi-
implicit CBS scheme, based on Zienkiewicz and 
Codina (1995). A dimensionless form of Eq. (5) can 
be obtained by using the following scales: 
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where * indicates dimensionless quantities, the 
subscript ∞  represents the quantities in the free 
stream and L is a reference length. 

The semi-implicit CBS scheme consists of three 
steps. In the first step, an intermediate velocity is 
calculated. In the second step, the pressure is 
obtained from the modified continuity equation. In 
the third step, the intermediate velocity is corrected to 
obtain the final velocity. From the velocity field, any 
scalar variable can be obtained by solving the 
transport equation as a fourth step. The Navier-Stokes 
equations and energy equation for the temperature, in 
dimensionless form, can be written as: 
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According to Liu (2005), the four time steps in 

the discretization of Eqs. (10) to (12), using the semi-
implicit CBS scheme, are: 
 
Step 1 - Intermediate momentum 
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is the fluid particle 

momentum per unit volume, * indicates an 
intermediate quantity, nn ttt −=∆ +1 , and 

∞

∞∞=
µ

ρ LuRe
 
is the Reynolds number. 

 
Step 2 - Pressure 
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where c is the speed of sound. In Eq. (14) it is 
assumed that density changes are related to pressure 
changes, for small compressibility or elastic 
deformation, and c approaches infinity for 
incompressible flows. 
 
Step 3 – Momentum correction  
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where 15,0 1 ≤≤θ and 02 =θ  for the explicit 
formulation and 15,0 1 ≤≤θ and 15,0 2 ≤≤ θ  for the 
semi-implicit formulation. 
 
Step 4 – Energy equation 
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The second order extra terms in the last part of 

the right side in steps 1 and 4 are consistent and 
reduce the oscillations due to the typical Galerkin 
discretization for the convective terms. The third or 
higher order terms disappear when linear elements 
are employed. The boundary conditions for the CBS 
scheme are the first kind (Dirichlet) or the second 
kind (Neumann). The Dirichlet boundary conditions 
for velocity, like no slip conditions, are imposed in 
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step 3. The traction boundary conditions are 
prescribed in step 1. No Dirichlet condition for 
pressure is essential for the explicit CBS scheme, but 
at least one pressure boundary condition is essential 
for the semi implicit scheme.  

The following spatial discretization by the 
Galerkin method is employed: 
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where N are the interpolation functions and the tilde 
indicates a nodal quantity, i.e.: 
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Applying the Galerkin approximation to the 
divergence theorem, one arrives at the weak 
formulation of the governing equations as follows. 
 
Step 1 – Weak formulation of intermediary 
momentum 
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In Eq. (20), nt ijd Re)/(τ=  indicates the 

portion of the traction corresponding to the normal 
stress and n is the normal vector outward of the 
boundary. 
 
Step 2 – Weak formulation of pressure equation 
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In Eq. (21) the pressure and the term *
jU∆  are 

integrated by parts and jn  are the components of the 
normal vector outward of the boundary. 

The semi-implicit scheme is: 
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In Eq. (22), the pressure term is integrated by 

parts. 
 
Step 3 – Weak formulation of the momentum 
correction 
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The semi-implicit scheme is: 
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In Eqs. (23) and (24), ( )nppt n

p ∆+= 2θ  only 
indicates the portion of the traction corresponding to 
the pressure which was removed in step 1. It is 
simply ignored and assumed to be zero since 
complete traction is prescribed in step 1. 
 
Step 4 – Weak formulation of the energy equation 
 

∫ ∫Ω Ω
⎢
⎣

⎡
−Ω

∂
∂

−∆=Ω∆ d
x

Tu
NtTdN

k

kT
T

T
T

)(
 

⋅
∆

+
⎥
⎥
⎦

⎤
Ω

∂
∂

∂
∂

− ∫Ω 2PrRe
1 2td

x
T

x
N

n

ii

T
T α  

+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
Ω⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
−

∂
∂

⋅ ∫Ω
n

k

k

m

T
Tm d

x
Tu

x
Nu )()(

 

n

i
i

T
T dn

x
TNt ⎥

⎦

⎤
⎢
⎣

⎡
Γ

∂
∂

∆+ ∫Γ α
PrRe

1  (25)

 
The final forms of the matrices in the weak 

formulation of the governing equations are: 
 
Step 1 – Intermediary momentum 
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τ  (26)

 
Step 2 – Pressure 
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Step 3 – Momentum correction 
 

( )[ ]ppGtMUU nT
u

~~~~
2

1* ∆+∆−∆=∆ − θ  (28)
 
Step 4 – Energy equation 
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The matrix of the strain function B is given as: 

 
uSNB =  (31)

 
where S is an operator of tension matrix. For the two-
dimensional case, this operator is defined as: 
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In many problems of interest, the density 

remains approximately constant. This behavior is 
called incompressibility. An incompressible flow is 
generally defined using both parameters, velocity and 
pressure. Mixed formulations are often employed in 
finite element methods. Most forms of mixed 
Galerkin method results in discrete equations, which 
can usually be written as follows: 
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where u~  is the primary discrete variable and p~  is 
the discrete constraint variable (equivalent to the 
Lagrangean multiplier). The matrix G  is the discrete 
gradient operator, K  and M  are symmetric square 
matrices nn× . K  is positive definite and M  is 
negative definite or zero, depending on the type of 
discretization used. 1f  and 2f  are source terms. 

This section presents the way to avoid the LBB 
stability constraint that makes that, in the case of zero 
mass matrix (M = 0), several useful elements cannot 
be used, since they result in oscillations of the 
pressure field and consequent non-convergence of the 
velocity field. For Stokes flow, Eq. (26) in step one 
only keeps the viscosity term and the term of traction 
at the boundary: 
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where the time step tempt∆  provides temporal 
stability. 

In step 2, the matrix pM  disappears for 

incompressible flow and p~∆  is equal to zero for 
steady state flow. Thus, Eq. (36) can be rewritten as: 
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where spatial stability in discrete form is provided by 
time step tempspat tlt ∆=∆ , where l is the ratio of time 

step. In steady state 0~
=∆U , resulting in Eq. (28) in 

step 3 as: 
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Therefore, the discretization results in the 

following matrix form: 
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where the matrix ρτKKv =  is the quadratic form. 

The discrete velocity vector is nU~  and np~  is the 
discrete vector of the nodal pressure. 

If the approximate pressure is assumed to be 
discontinuous, then: 
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and the system for nU~  is obtained by elimination of 

np~ . One can write: 
 

[ ] p
T

u
nT
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where the penalty function

 
( )Ettemp 11 θ∆−=Ψ  in 

witch lHGGME T
u −= −1  is proportional to tempt∆ . 

From physical considerations, one can show that 
the bilinear form vK  is symmetric and positive 
definite. And from the quadratic form, one can show 
that E is symmetric and negative definite. However, 
the system is always positive definite and leads to a 
nonsingular solution to nU~ . Note that the discrete 
system, Eq. (39), has no zero diagonal term, so the 
restriction of LBB no longer influences the space of 
finite elements for velocity and pressure. So the 
system theoretically allows convenient and arbitrary 
interpolation functions for nU~  and np~ .  

The criterion for evaluating the convergence to 
steady state is defined as: 
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where NN is the number of nodes in the mesh. 

Whatever the method of discretization used to 
solve the governing equations (transport or the 
Navier-Stokes equations), the resulting system of 
algebraic equations can be organized in the following 
matrix form: 
 

FK =Φ  (43)
 
in which the global matrix K is composed of the 
contribution of all finite element matrices, Φ  is the 
global vector of all degrees of freedom of the 
problem and F  is the global vector of the known 
terms.  

The matrix K is constructed in an assembly 
process in the following way: 
 

∑
=

=
nelem

i

eKK
1

 (44)

 
where eK are the element matrices and nelem is the 
total number of elements. The vector F is constructed 
similarly. In general, the matrix K is very large and 
sparse (over 99% of its elements are null). In this 
sense, techniques that take into account the sparsity 
of the matrix make the solution process more 
efficient. 
  
NUMERICAL RESULTS FOR 
INCOMPRESSIBLE FLOWS 
  

In this work, three tests were done using the 
semi-implicit algorithm CBS (the pressure is obtained 
from the Poisson equation) in the numerical 
simulations of Navier-Stokes problems. In the first 
case the flow with heat transfer was simulated in a 
channel with an obstacle near the entrance. In the 
second and third cases, the flows through banks of 
tubes were simulated.  

Linear triangular element meshes were used, 
since this type of element has a lower computational 
cost and there are several mesh generators.  

In the case of semi-implicit CBS scheme, the 
Poisson equation for pressure is solved by the 
conjugate gradient method with Jacobi pre-
conditioner. In other words, the diagonal elements of 
the matrix are used as pre-conditioner.  
 
Flow in a Square Cavity with a Sliding Wall  

 
The classic case of a flow in a square cavity 

induced by movement of the upper wall was solved 
using the CBS scheme. Figure 2 shows the results for 
the velocity component U as a function of Y for X = 
0.5, at different times, compared with the results of 
Ghia et al. (1982), for Reynolds number equal to 
1000. Figure 3 shows the results for the velocity 
component V a function from X for Y = 0.5.  
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One can observe that the present results are in 
good agreement with the results of Ghia et al. (1982), 
which validated the CBS scheme. 

 
Flow in a Channel with an Obstacle 
 

In this case, the development of velocity field 
was simulated in a channel with the following 
dimensions: 375.120 ≤≤ x  and 20 ≤≤ y .  

An obstacle of square section is located at 
5.44 ≤≤ x  and 25.175.0 ≤≤ y . 

The mesh in this case has 2169 nodes and 4060 
elements. The number of Prantdl was set at 0.72 and 
different Reynolds numbers was investigated. The 
velocity boundary condition at the channel and the 
obstacle walls was set equal to zero (no slip 
condition).  

A parabolic velocity profile was imposed at the 
entrance of the channel: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−= 2

2

22
6

H
y

H
yuu

 
 

0,0

0,2

0,4

0,6

0,8

1,0

-0,4 -0,2 0,0 0,2 0,4 0,6 0,8 1,0 1,2

U

Y Re = 1000
 Ghia et al. (1982)
 t = 25
 t = 30
 t = 40
 t = 50

Figure 2. Profile of velocity U in a cavity with sliding 
wall, X = 0.5. 
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Figure 3. Profile of velocity V in a cavity with sliding 
wall, Y = 0.5. 

 

The temperature boundary condition at the 
entrance of the channel was set equal to zero and at 
the obstacle was set equal to one. In the channel 
output the pressure boundary condition was set equal 
to zero. 

Figures 4 and 5 show the numerical results for 
the Reynolds number of 100, for three different time 
steps. Figure 4 shows the variation of the temperature 
field with time. Initially there is a more heated region 
only around the obstacle.  

Over time this region reaches the exit of the 
channel. Figure 5 presents the path lines, showing the 
recirculation region behind the obstacle. 
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Figure 4. Temperature field (Re = 100) for the 
dimensionless time (a) 1, (b) 30 and (c) 75. 

 

(a) 
 

(b) 
 

(c) 
 
Figure 5. Streamlines (Re = 100) for the dimensionless 

time (a) 1, (b) 30 and (c) 75. 
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Figures 6 and 7 present the numerical results for 
the Reynolds number equal to 800, for steady state 
flow. Note that the velocity profile at the channel 
output in steady state is very close to a parabolic 
profile. The temperature field follows the same 
behavior of Re = 100. 

The numerical results for Reynolds number 
equal to 1200 are shown in Figs. 8 and 9. The 
velocity field behavior is similar to the results for 
Reynolds number equal to 800, but the velocity 
profile at the exit of the channel is a little flatter in the 
center, probably due to the undeveloped flow at the 
channel exit. For a larger number of Reynolds, even 
for laminar flow, the channel length to achieve a 
developed profile is greater. Streamlines for Re = 
1200 show that the vortex wake extends to the exit of 
the channel. 
 
Flow in Staggered Tube Bank  
 

Bank tubes are commonly found in heat 
exchangers, so the flows in this type of geometry are 
of great interest. A staggered bank tube is illustrated 

in Fig. 10, where we consider only the domain in 
which the flow repeats itself periodically. 

In this case it is considered only the geometry in 
the region (0<x<1.5 and 0<y<1) shown in Fig. 11. 
The numerical mesh has 5864 nodes and 11,420 
elements. The Prantdl number was set at 0.72 and 
were considered different Reynolds numbers in the 
simulations. 

The boundary conditions were specified as 
follows: at the inlet u = 1; v = 0; T = 0; at the outlet   
p = 0; at the horizontal lines (symmetry condition)  

0=
∂
∂

y
u

 , 0=
∂
∂

y
T

, v  = 0 at the tube surfaces u = 0; 

 v = 0; T = 1. 
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Figure 6. Temperature field (Re = 800) in steady state 

flow. 
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Figure 7. Streamlines (Re = 800) in steady state flow. 
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Figure 8. Temperature field (Re = 1200) for the 
dimensionless time (a) 1, (b) 4 and (c) 6. 
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Figure 9. Streamlines (Re = 1200) for the 
dimensionless time (a) 1, (b) 4 and (c) 6. 

 
A zero velocity field was used as initial 

condition, except at the inlet and the tube surfaces. 
Figures 12 and 13 present the numerical results, 

as a function of the dimensionless time, for Reynolds 
numbers equal to 100. It is observed that the the 
qualitative behavior of the flow between tubes was 
obtained properly. Figure 12 shows that the behavior 
of the velocity field for this Reynolds number does 
not change significantly for the different time steps. 
However, Fig. 13 shows that the temperature field 
undergoes major changes during the same time steps. 
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Figure 10. Staggered bank tubes and the numerical 
domain. 
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Figure 11. Geometry considered in the numerical 
simulations. 

 
Simulation results for Reynolds numbers equal 

to 600 and 1000 are presented in Figs. 15 to 18. It can 
be observed that the length of the recirculation region 
behind the first cylinder increases with increasing 
Reynolds number, as can be seen in Figs. 15 and 17. 
The temperatures fields shown in Figs. 16 and 18 
behave consistent with the boundary conditions 
imposed for this geometry. 
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Figure 12. Stream lines (Re = 100) for dimensionless 

time steps (a) 1, (b) 4, (c) 8 and (d) 14. 
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Figure 13. Temperature field (Re = 100) for time 

steps (a) 1, (b) 4, (e) 8 and (f) 14. 
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Figure 14. Stream lines (Re = 600) for time steps (a) 1, 
(b) 3 and (c) 5. 
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Figure 15. Temperature field (Re = 600) for time steps 
(a) 1, (b) 2, (c) 5 and (d) 7. 
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Figure 16. Stream lines (Re = 1000) for time steps (a) 
1, (b) 4, (c) 6 and (d) 8. 
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Figure 17. Temperature field (Re = 1000) for time 
steps (a) 1, (b) 5 and (c) 8. 

Flow in an Aligned Tube Bank  

 

The geometry of the aligned tube bank, shown 
in Fig. 18, represents the flow in the wake of one 
tube. The physical domain was defined in the region: 

100 ≤≤ x  and 20 ≤≤ y . 
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Figure 18. Geometry of the aligned tubes bank. 

 

In this case, a uniform velocity profile was 
specified at the entrance area. The boundary 
conditions were imposed as follows: at the inlet u = 
1, v = 0, T = 0; at the outlet p = 0; symmetry 
condition on the horizontal lines, ∂u/∂y = 0, ∂T/∂y = 
0, v = 0 and no slip condition and unitary temperature 
on the tube walls, u = 0, v = 0, T = 1. 

Figures 19 and 21 present the time evolution of 
the temperature field for Re = 100 and Re = 400, 
respectively. Thses numerical results show that the 
heat transfer process it consistently simulated. By 
inspection of Fig. 20, it can be seen that the presence 
of a second cylinder on the wake of the first one 
dampens the recirculation behind the first cylinder. It 
may be noted in Figs. 21 and 22 that for a larger 
Reynolds number, the recirculation region behind the 
second cylinder increases as expected. 
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Figure 19. Temperature field (Re=100) for time steps 
(a) 1, (b) 4 and (c) 28. 
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Figure 20. Stream lines (Re=100) for time steps (a) 1, 
(b) 4 and (c) 28. 

 

X
0 2 4 6 8 10

0

2

(a) 
 

X
0 2 4 6 8 10

0

2

(b) 
 

X
0 2 4 6 8 10

0

2

(c) 
 

X
0 2 4 6 8 10

0

2

(d) 
 

Figure 21. Temperature field (Re = 400) for time steps 
(a) 1, (b) 6, (c) 11 and (d) 21. 
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Figure 22. Stream lines (Re = 400) for time steps (a) 1, 
(b) 11 and (c) 21. 

 
CONCLUSIONS 
 

In this work a stabilization method, called 
Characteristic Based Scheme (CBS), was applied to 
the numerical solution of the two-dimensional 
Navier-Stokes equations and the transport equation 
for the temperature field. In the numerical 
applications, the physical domains were discretized 
by using unstructured meshes of linear triangular 
elements, that adapt well to any geometry and has a 
lower computational cost compared to other types of 
elements. Unstructured meshes also allow the 
refining regions of interest without the need to refine 
the entire domain.  

The computational program developed in this 
work was applied to the numerical solution of 
incompressible flows in a channel with an obstacle 
and in staggered and aligned tube banks, for different 
Reynolds numbers. The CBS proved to be an 
effective tool in solving complex problems, 
encouraging its application to other flow problems.  
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