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ABSTRACT

A pseudo-compressibility method for zero Mach number turbulent reactive
flows with heat release is combined with an unstructured finite volume
hybrid grid scheme. The spatial discretization is based on an overlapped cell
vertex approach. An infinite freely planar flame propagating into a turbulent
medium of premixed reactants is considered as a test case. The recourse to a
flamelet combustion modeling for which the reaction rate is quenched in a
continuous way ensures the uniqueness of the turbulent flame propagation
velocity. To integrate the final form of discretized governing equations, a
three-stage hybrid time-stepping scheme is used and artificial dissipation
terms are  added to stabilize the convergence path towards the final steady
solution. The results obtained with such a numerical procedure prove to be
in good agreement with those reported in the literature on the very same
flow geometry. Indeed, the flame structure as well as its propagation
velocity are accurately predicted thus confirming the validity of the
approach followed and demonstrating that such a numerical procedure will
be a valuable tool to deal with complex reactive flow geometries.

INTRODUCTION

Steady and unsteady zero Mach number reactive flows
in the sense of Majda and Sethian (1985), are often
encountered in many systems of practical interest such as
furnaces or jet engines. In such cases, the pressure can be
considered as being thermodynamically constant e.g. the
density variations are uniquely related to the temperature
changes due to the heat released by the combustion process.
When compressible flow solvers are employed in such
situations, their convergence rate is becoming so slow that
specific procedures such as preconditioning techniques
have to be employed to improve them, but in the limit

OMa even the recourse to such techniques is not
sufficient to ensure a satisfactory convergence rate
(Dourado and Azevedo, 1996 and 1999; Dourado et al.,
2000). Accordingly, specific numerical strategies have to be
employed such as the Simple, the PISO or the pseudo-
compressibility technique (Chorin, 1967). The latter
approach presents the immense advantage over the two
others that its introduction in a compressible flow solver is
easy and leaves the structure of the computer program
largely unmodified while allowing the calculations of both

inert and reacting flows (Corvellec, 1998; Corvellec et al.;
1999). On the other hand, during the last two decades, the
finite volume unstructured grid technique has shown its
ability to cope with a wide range of complex compressible
flow geometries (Jameson et al., 1986, Barth and Jespersen,
1989) including the use of mesh refinement techniques
(Batina, 1989, Trépanier et al., 1991, Nomura and Hughes,
1992) that are appealing for properly resolving the high
spatial gradients that are potentially present in the flows
under investigation. Thus, the temptation is strong to
combine the advantages of both the pseudo-compressibility
method and the finite volume unstructured grid technique to
develop a computer code able to deal with low Mach
number inert or reacting flows. Along these lines, the
present work is devoted to the development and the test of
such a combination that results in the development of a 2-D
computer code that will be tested on the geometry of an 1-D
freely propagating turbulent premixed flame whose velocity
is known, thanks to the formulation retained for the
combustion modeling.
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PHYSICAL MODELING AND NUMERICAL

STRATEGY

Combustion Model

Since the present study is mainly concerned with the
numerical method of solution of the governing equations
rather than the modeling of the combustion process itself,
only a brief description of the modeling is given here. The
formulation retained is similar to that of Corvellec et al.
(1999). This choice is motivated by the fact that such a
modeling yields a turbulent premixed flame that propagates
at a velocity that can be directly derived from the so-called
KPP analysis (Kolmogorov et al., 1937, Corvellec et al.,
1999). Consequently, such a test case permits an
unambiguous evaluation of the capability of the code to
predict the correct turbulent flame speed which is intrinsic
to the set of equations considered. So, the recourse to the
comparison with experimental data is not required at this
stage as long as it is not the physical modeling itself which
is to be tested. A simplified Bray-Moss-Libby like
formulation (Bray and Moss, 1977, Bray et al., 1984, Bray
et al., 1988), thereafter referred to as BML is used with a
quenched mean reaction rate. Accordingly, the isenthalpic
combustion process takes place in infinitely thin-laminar
like reactive interfaces (flamelets) whose thickness is less
than the Kolmogorov scale and whose laminar flame
velocity is negligible compared to the velocity fluctuations
associated with turbulence. An observer recording the
temperature signal at a given point within the flow would
obtain basically two values of the temperature signal e.g.

bTT  in the fully burnt products and rTT  in the

unburned mixture. The combustion process can then be
represented through the evolution of a single bi-valued
progress variable c  ( 0c  in the unburned mixture and to

1c  in the fully burnt products) which plays the role of a
reduced temperature via the following relation:

b

r

TT

TT
c (1)

The zero Mach number hypothesis leads to the following
equation of state:

bbrr TTT (2)

or alternatively :

c

r

1
(3)

where the heat release parameter  is defined by:

r

rb

T

TT
(4)

With use of the classical Favre average (Favre, 1965), the
governing equation for the mean progress variable

c
c~ can be written as:

wcL )~( (5)

where the operator L  regroups the convective and diffusive
operators. To ensure the existence of a unique propagation
velocity for the turbulent flame brush, a continuous
quenched form for the mean reaction rate w  is chosen
(Corvellec, 1998; Corvellec et al., 1999), namely:

w
0 c c

Cw 1
c c 1 c

1 c 2
otherwise

(6)

Pseudo-Compressibility Technique

The pseudo or artificial compressibility technique was
proposed initially by Chorin (1967) to deal with inert
incompressible flows. It has been extended to steady
reactive flows by Bruel et al. (1996), and to unsteady
reactive flows by Corvellec et al. (1999). The basic idea
behind this technique consists in modifying the continuity
equation to introduce a finite sound speed during the course
of the convergence process toward the solution. Thus, the
continuity equation permits de facto the calculation of the
static pressure and reads as:

1 p u i

x i
0

(7)

where  is the pseudo-compressibility factor expressed in
22 / sm  and  is the pseudo-time. This equation is

physically meaningful when convergence is reached in 

e.g. when 
p

 vanishes. The pseudo-sound speed is given

by:

a u2
(8)

and the local corresponding pseudo-Mach number *Ma

defined by 
a

u
Ma*  is thus always less than one as soon as

 is larger than zero. For a 1-D turbulent flame and using

an implicit structured finite differences approach, Bruel et
al. (1996) have shown that i) the value of the pseudo-
compressibility factor  influences strongly the

convergence rate of the calculations and ii) a value
25 refu to 210 refu  where refu  is the largest convective

velocity expected in the flow is found to be a good
compromise in terms of convergence rate.

Mean Governing Equations

In spite of the fact that the test case considered here is
one-dimensional, the governing equations are cast into a
two-dimensional form since an unstructured approach for
dealing with such equations cannot be formulated
otherwise. For the simplified combustion model retained
here, the main mean variables that describe the turbulent
reactive flow are the density , the Cartesian velocity

components iu~ , the static pressure p  and the progress

reaction variable c~ . The steady governing equations that
include the pseudo-compressibility approach are given by:

q E ei

x i

E v i

x i
S

(9)
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with xx1  and yx1 , the various vectors can be

expressed as:

q

p
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v

v 2 p

vc
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0
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y
u c
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0

0

0

w
(10)

where w  is the mean reaction rate given by Eq. (6) and ij

is the laminar stress tensor expressed for a Newtonian fluid
by:

ij l
u i

x j

u j

x i

2
3

u k

xk
ij (11)

In Eq. (10), 
l

l

Sc
D  is the laminar diffusion coefficient,

l  the kinematic laminar viscosity and lSc  the laminar

Schmidt number. The Reynolds stresses, present in Eq. (10)
are closed with a Boussinesq-like expression, namely
(Frisch, 1995):

ui uj t
ui

x j

uj

x i

2
3

k t
uk

xk (12)

Where 
""

2

1~ ji uu
k is the turbulence kinetic energy. The

turbulent viscosity coefficient can be expressed as a

function of k
~

 and of its dissipation rate ~  by (Launder and
Spalding, 1974):

t C k2

(13)

with C  being equal to 0.09.

In the present work, the turbulence field is supposed to be
frozen at the level that prevails in the fresh reactants so that

rkk
~~

 and r
~~  with:

k r
3
2

ur
2

r C0.75 kr
3 2

l i (14)

where 2''
rr uu  and il , to be prescribed, stand for the rms

velocity fluctuations and the turbulence integral length that
prevail in the fresh reactants, respectively.
The turbulent mass flux present in Eq. (10) is also
expressed through a gradient approximation, namely (Bray
et al., 1984):

ui c Dt
c

xi (15)

where 
t

t
t

Sc
D  is the turbulent diffusion coefficient,

t
t  the turbulent kinematic viscosity and  the

turbulent Schmidt number. The closed form of Eqs. (9) is
now written in an integral form using the Green's theorem:

V
V

qdV
S

Ee ndS
S

Ev ndS
V

SdV
(16)

where  represents the outgoing normal unitary vector to
surface S  of volume V  and  and $ are the

convective and diffusion flux vectors whose components
are given in Eq. (10). In two dimensional Cartesian

notation, the product  is equal to xy  where 

and  are the basis vectors.

Spatial Discretization

As the control volume can be constructed a priori with
different type of elements (triangles and/or quadrangles) on
hybrid grid topologies, the elementary cell of the grid
considered here is simply called an element. Thus, the
control volume V  is defined by the external boundary
surface of all elements sharing a common node, as sketched
in Fig. (1). The spatial discretization adopted here is based
on a cell center finite volume method adapted for cell
vertex hybrid elements (Jameson et al., 1986). This scheme
proved to be efficient for dealing with steady and unsteady
inert flows as reported by Mavriplis et al. (1989), Mavriplis
and Venkatakrishnan (1995), Dourado and Azevedo (1996),
Mavriplis (1998), Dourado and Azevedo (1999) and
Dourado et al. (2000). The discretized form of Eq. (16) is
written as:

V
q i

f 1
nf

e x f y e y f x f 1
nf

v x f y v y f x VS

(17)
where
q 1

V V
qdV

(18)

is the average main variables vector, and
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Figure 1 - Domain of influence of nodes 1, 2 and 3 and its local stretching for hybrid unstructured grid.

S 1
V V

SdV
(19)

is the average source term vector. E is the average flux
vector at face f calculated as the arithmetic average of the

two fluxes located on nodes which delimit this face. Further
details on triangular and hybrid elements in unstructured
grids are presented in the studies that have been referred to
above.

Artificial Dissipation

For high Reynolds number flows, it is frequently
required to stabilize the calculations by adding explicitly
some artificial dissipation to damp out numerical
oscillations. These additional dissipative terms must be kept
at a level that does not endanger the accuracy of the
numerical solution. Accordingly, and as suggested by
Dourado et al. (2000), the dissipation terms introduced in
the systems of equations are written as:

Da qi k 1
nn

k i
A k A i

2 (20)

where

q k 4 2 q (21)

and nn  is the number of nodes located on the boundary of
the control volume i , as it is sketched in Fig. (1).

The constant )4(k  which defines the level of the fourth
order dissipation term is taken equal to 256/1  for all the

calculations presented in this work and the coefficient A is
adjusted according to the grid stretching by:

Ak 1k cos2
k 2k sin2

k (22)

Subscripts i  and k  refer to the variable evaluation at nodes
i  and k , respectively. At each mesh point, the coefficients

1  and 2  of Eq. (22) are calculated with the maximum

eigenvalue  associated with the convective terms by:

1 s 1
s 1 2 s 1 s

s 1 (23)

where s  represents the magnitude of the stretching vector

S  (see Fig. (1)) and 3/21)( rr  For an unstructured

mesh, the maximum eigenvalue  at each mesh point is
evaluated by the following discrete approximation:

f 1
nf

f y
f

v f xf f x2 y2
(24)

where u , v and a are the average values of the velocity
components and of the sound speed calculated from the two
nodes which delimit the face f  and cumulated over all the

boundary faces of the control volume considered. Finally,
since the code is edge based database organized, the
artificial dissipation term formulation was enhanced in
order to be usable in the context of hybrid grids where
triangular and quadrilateral elements coexist. One should
observe that, although quadrilateral meshes were used in
the present simulations, the code treats all grids in a fully
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unstructured way. The reader should be aware that the
definition of an unstructured grid is not necessary related to
the shape of the control volumes but to the form in which
these control volumes are addressed in the code.

Pseudo-time marching

As exposed before, when one has recourse to the
pseudo-compressibility method to solve the flow governing
equations, the solution is physically meaningful only when
a steady state in pseudo-time is reached, so, even to seek
steady state solutions, a time-stepping procedure has to be
used. Thus, the discretized equations system (17) is first
written as:

Vi
dq i

d
C qi Dv qi Da qi S qi i 1 n

(25)

where the residuals of the convective, diffusive and
stabilizing terms are denoted by )(qC  )(qDv  and aD ,

respectively, and the source term is represented by )(qS .

Then, a Runge-Kutta explicit three-stage hybrid time-
stepping scheme is adopted due to its satisfactory
performance, simplicity and low computational cost. The
scheme proposed by Manzari et al. (1998), to advance the
solution in pseudo-time is implemented here under the
following form:

qi

0
qi

n

qi qi
0

Vi
C qi

1
Dv qi

1
S qi

1
Da qi

1

qi
n 1 qi

3 , 1, 2,3
(26)

The operators C , vD  and S  are expressed by using the

vector properties )1(
iq  from stage 1, while the added

artificial dissipation term is calculated only in the first stage
and held constant throughout the next stages. The
coefficients appearing in Eq. (26) are given the values

6.01 , 6.02  and 0.13 .
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Figure 2 - Computational grid mesh 1 with 355 nodes and 354 quadrilateral elements.

RESULTS

The 1-D turbulent premixed flame referenced by
Corvellec (1998) as Case I is considered here to test the
present numerical approach. The parameters defining such
a slow propagating flame are given in Table (1).

*c tS

(m/s)
ru

(m/s)
ru '

(m/s)
il

(m)
tSc wC

kg/
m3/s

r

kg/m3/
s

5 0.03958 0.5 0.5 1.0 10-3 0.75 200 1.1886

Table 1 – Parameters defining the 1-D turbulent
premixed flame considered as test case.

The boundary condition imposed at the reactants side
e.g. tr Su  and 0~cc  has been chosen so that the

turbulent flame brush will be steady in the computational
domain which consists of a strip of m5.0  long and m1.0 in

height with only one division in the latter direction. An
example of grid, called mesh 1 with 355 nodes in the
longitudinal direction and 354 quadrilateral elements is
presented in Fig. (2). In order to properly resolve the strong
gradients that are to be expected in the turbulent brush near
the quenching point, the mesh is highly refined in the

region located between mxm 33.017.0  with a

minimum mesh spacing minx  equal to m410333.5 .

Due to the high Reynolds number flow hypothesis, the
laminar diffusive transports will be neglected in front of
their turbulent counterparts. To ensure 1-D like conditions
on such a 2-D mesh, a symmetry condition is imposed at
the lower and upper boundary lines parallel to the flow and
are applied to the corresponding nodes and faces. Such a
condition corresponds to the imposition of zero transverse
velocity and gradients. At the burned products side, the
pressure is imposed and all other variables are extrapolated.
The initial condition for the progress variable c~  is given by
a ramp form function that goes from 0~c at mx 27.0  to

1~c  at mx 32.0 . The Courant-Frederich-Lewis (CFL)

number used in these calculations is equal to 0.94 and is
kept constant throughout the computational domain.
Accordingly, the pseudo time step is variable in the
computational domain with a minimum value used in the
region of greatest refinement. Such a CFL number is given
by:

CFL b x min

(27)
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Figure 3 - Convergence history of residue using mesh 1

with ./75 22 sm

where bbb au  is the largest convective

eigenvaluebased on the pseudo-sound speed given by Eq.
(8). As a consequence, the minimum pseudo-time step for

mesh 1 is equal to s510.2 . The convergence criterion set

to 410  was met after 27500 iterations through a
convergence history presented in Fig. (3). The
corresponding profiles of pressure gradient, mean progress
variable and mass flux obtained on mesh 1 are presented in
Fig. (4).
The curvature at the foot of the flame brush is extremely
strong and this illustrates why such a highly stretched mesh
has to be used to capture properly the progress variable and
pressure gradients in that zone. The profile of pressure
gradient plotted against the progress reaction variable c~  is
displayed in Fig. (5).
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Figure 4 - Profiles of mean reaction progress variable, mean
mass flux and pressure gradient versus x co-ordinate.

A good agreement is obtained between the present results
and those of Corvellec (1998) with a difference in the
maximum value of the pressure gradient of less than 6 %.
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Figure 5 - Profiles of mean pressure gradient versus the

mean reaction progress variable (mesh 1, 22 /75 sm ).

Consequently, the criterion convergence chosen here
appears to be correctly adapted to get accurate converged
results. To investigate the sensitivity of our results to the
mesh refinement, three other meshes have been considered
that differ from mesh 1 by their refinement: i) mesh 2

possesses 50 % more divisions in the x -direction in the

interval mxm 33.017.0  with mx 4
min 5610.3 ; ii)

mesh 3 has 100 % more divisions in the x -direction on the

same interval, which gives mx 4
min 1067.2  and iii)

mesh 4 has the same number of nodes as mesh 3 but the
interval of refinement is reduced to mxm 30.022.0 ,

which gives a minimum mesh discretization of

mx 4
min 1033.1 .
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Figure 6 - Profiles of mean pressure gradient versus the
mean reaction progress variable for meshes 1, 2, 3 and 4.

It should be remembered than in her study, Corvellec
(1998)  was using an auto-adaptive mesh refinement with a
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minimum spacing minx  equal to m5101.7 . The results

obtained with the different grids are presented in Fig. (6)
where the profiles of the pressure gradient are plotted
versus the mean reaction progress variable.
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Figure 7 – Residue history for the x-direction momentum

equation for several values of ˆ .

It can be clearly seen that as soon as the mesh is sufficiently
refined, no substantial difference can be observed with the
results by Corvellec (1998), obtained, it should be stressed
with a completely different numerical formulation. A short
analysis of the influence of the choice of the pseudo-

compressibility factor 
2

ˆ

bu
 on the convergence rate was

carried out here and Fig. (7) presents the convergence
history of the residue of the momentum  equation in the x -

direction obtained for different values of ˆ .
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Figure 8 - Dependence on ˆ  of the number of time steps

required to achieve convergence.

The dependence on the value of ˆ  of the number of

iterations required to meet the convergence criterion
410uLRHS  is presented in Fig. (8). The optimum

value of ˆ , around 10, obtained here confirmed the results

reported by Bruel et al. (1996), and shows that such an
optimum is poorly dependent on the numerical approach
retained and thus can be considered as specific of the
pseudo-compressibility approach itself.

CONCLUDING REMARKS

The proposed combination of the pseudo-
compressibility method with an unstructured formulation to
solve the governing equations of a turbulent premixed
flame proves to work properly and to produce results that
compare well with those obtained in the literature on the
very same flow geometry. Due to the centered type of
spatial discretization used here, a fourth-order artificial
numerical dissipation has been added to stabilize the
calculations but the results show that the accuracy of the
final solution has been preserved. The use of an explicit
three-stage hybrid time stepping scheme shows that it is
powerful enough to calculate the steady solution in the
pseudo-time of the system of discretized governing
equations. Nevertheless, the use of such an explicit time
stepping scheme has the drawback of limiting the
maximum possible CFL-number value resulting in an
increased total number of pseudo-time steps required to
achieve convergence. If needed, an implicit formulation
could be considered to speed-up the convergence process.
Finally, an auto-adaptive Lagrangian-Eulerian approach on
unstructured grid (Trépanier et al., 1991; Nomura and
Hughes, 1992) could greatly help in reducing the total
number of grid elements required to resolve properly the
high gradients present in the flow while preserving the
overall accuracy of the calculations. Future work will focus
on these directions.
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