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HOT WIRE METHOD FOR THE THERMAL CHARACTERIZATION 
OF MATERIALS: INVERSE PROBLEM APPLICATION 
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ABSTRACT 
 
 

An experimental set-up of the hot wire method is presented. The present design 

allows the measurement of the temperatures at two different points on the heating 

wire with an acquisition system that performs measurements at a frequency of 1kHz 

with a 12 bit numerical converter. An analytical solution for the direct model for the 

time dependent problem of heat transfer is employed. It is based on the quadrupole 

method which basically consists in a transfer matrix approach which is possible 

through the use of Laplace transforms. It extends the electrical analogy of heat 

transfer problems using the notion of impedance, and allows to take into account the 

thermal behavior of the wire, as well as contact resistance and heat loss effects in a 

very simple straightforward way. In the identification process carried on the 

temperature experimental data relies on a sampling of the data that is 

logarithmically spaced in time. The initial guesses for the thermal conductivity 

values are obtained applying the well known and ideal model of the linear 

temperature evolution versus the logarithm of the time. These values are used to 

start up the algorithms that are applied in the minimization of the cost functional of 

the squared residues between measured and calculated temperatures. The precision 

of the estimates is assessed with the calculated confidence bounds obtained by the 

variance-covariance matrix at the converged solution. 

 

 

 
1. INTRODUCTION 
 

The hot-wire technique (Norme Internationale, 

1987, Davis, 1984) is generally used for the measurement 

of the low thermal conductivity of various materials, 

including powders, semi-transparent foams, and also for 

the characterization of glass. Since the early use of this 

method in thermal characterization, one can notice a 

persistent use of a direct model that relies on the simple 

and idealized hypothesis of a non participating role of both 

the hot wire and the thermocouples. Even though these 

conditions may be achieved for specific measurements, this 

is not always the case. The main purpose of this paper is to 

present a complete direct model that is able to take into 

account the resistive and capacitive effects of the wire, the 

possible existence of a contact resistance, the appearance 

of size limiting effects, when long times are considered so 

that the heat exchange with the surroundings of the sample 

has to be considered. The design of the present hot-wire 

apparatus is based on the objective of applying the 

technique at high temperatures, for porous ceramic 

materials and molten glasses, and is exposed in section 2. 

The resulting constraints impose the development of a 

direct model able to take into account all the non-ideal 

effects mentioned earlier. Section 3 presents thus the 

theoretical model, based on the quadrupole method. This 

method, generally poorly used, has been recently presented 

in the textbook of Maillet et al. (2000). It is well suited for 

the modeling of thermal experiments as it complies both 

with simple geometries, input-output matrix transfer 

formulation of the problem and fast computational times. It 

also extends the well known electrical analogy made in 
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heat transfer to the transient regimes thus offering a very 

close physically related sense for the enginneer. In the 

fourth section, the strategy of the estimation procedure is 

presented, that underlines the fact that the use of a 

complete model makes the task of the inversion procedure 

more difficult, thus requiring the use of all the concepts 

developed in the theory of parameter estimation to assess 

the quality of the results. Section 5 then presents the 

inverse problem, discussing results obtained on the test 

case of a sample of paper (compressed journal paper) used 

as a test case for validating the overall procedure of 

thermal conductivity measurement. 

 
2. EXPERIMENTAL APPARATUS 
 
2.1. Basis of the method 

 
The hot-wire technique consists in generating a heat 

transfer within a sample by the application of a sudden 

constant heat flux induced by Joule effect in a metallic 

wire imbedded in the sample. The geometry of the 

experiment considered is cylindrical with a one-

dimensional radial heat transfer (infinite length of the 

wire). The material that surrounds the wire is considered 

infinite in the radial direction, thus avoiding heat losses 

effects to be taken into account. In the version presented 

below, the temperature on the wire itself is measured and 

associated with the efficiency of heat transfer away from it, 

in the material. In the idealized conditions, this experiment 

leads to a linear evolution of the temperature of the wire as 

a function of the logarithm of the time, thus making the 

identification process very easy to implement and control. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1 : Idealized theoretical model 
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,r0  : radius and length of the wire 

k  : thermal conductivity of the material 

,i  : temperature and flux at radius r0 of the wire 

Cte : defined later in Eq. (10). 

 
 
 
2.2. Technical specifications 
 

The system has been manufactured by Thermocoax . 

The hot wire is of 500 m of diameter, made of Inconel 

(Ni/Cr 80/20). The properties of the wire are given in 

Table (1). The thermophysical properties are those given 

by the manufacturer and compare well with data from the 

literature. Two thermocouples have been laser-soldered, 

symmetrically from the mid-distance of the wire’s length. 

These are K thermocouples (Chromel-Alumel), with 

Inconel shield of 1 mm of diameter, but thinned down over 

the last 1 cm of their extremity at 500 m where they are 

soldered on the wire (see Fig. (2a)). They allow to compare 

each of the measurements and to use the average measured 

value in the identification process. The hot wire is 

connected to pure Nickel wires in a specially designed 

connector made of ceramic (Stumatite) and involving a 

ceramic gliding bead and an excess dilatation wire. Then 

the electrical cables are connected to the constant 

stabilized current power supply, located beside the furnace. 

The hot wire resistance is of 0.662  (5.563 /m) and the 

resistance of the 3 m length part of the thick Nickel cables 

is 0.482 . No significant heat power variations have been 

experimentally measured with this wire. The temperature 

of the wire given by the thermocouples is recorded through 

an AD converter (MCP3201, Microchip , 8 channels, 

maximum sampling rate 100 kHz, 12 bits, 0.02°C 

resolution in the span 20-80°C). A logarithmically spaced 

time acquisition has been programmed to generate small 

files (1000 points) starting at very low times (1 ms). 

One hundred data points are acquired at equilibrium 

(reference state) before the controlling acquisition board 

triggers the power supply. The voltage and current 

(measured over a calibrated shunt resistance of Manganin) 

are recorded simultaneously allowing possible real time 

correction of the power variations on the signal. The 

electrical measured resistance of the hot-wire part in 

contact with the sample allows the calculation of the heat 

flux applied to the system. 

 

3. DIRECT MODELING 
 

3.1. Necessity of a complete model 
 

The equipment described above has been designed to 

fulfill measurements in various conditions, especially high 

temperatures, and for various materials, including ceramic 

powders and molten glass which is highly corrosive. These 

constraints rule the design of the equipment which in its 

turn determines the validity of the hypothesis that can be 

made when using the direct model.  

The aim of characterizing powders implies a model 

that takes into account a thermal contact resistance 

between the wire and the sample into account; 

The high temperature conditions, furthermore in 

oxidizing conditions, lead to a choice of a laser 

welding of the thermocouples on the wire. The 

welding process has imposed minimum diameters for 

both the wire and the shielded thermocouples of 500 

m, which is still thin compared to the dimension of 

the sample, but may alter the 
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Table 1 : Properties of the hot wire 
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Figure 2a : Hot-wire, connections with power supply cables and thermocouples (all dimensions in mm). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2b : Ceramic connector, transversal view of the connecting cables. 

 

 

thermograms at short times mainly because of bulk 

capacitive effects; 

The application to ceramic materials processed 

through syntherisation does not allow the 

manufacturing of samples of large diameter 

(maximum of 3 cm of radius) thus making the 

hypothesis of the semi-infinite medium not valid. So it 

is when glass is considered where the additional 

mechanism of radiative transfer reaches the 

boundaries of the sample very early (In this latter case, 

it is obviously necessary to have a direct model with 

coupled conduction and radiation modeling of heat 

transfer, which is not the case in this paper). 

 

All these aspects have been embedded in the 

construction of the direct model. The quadrupole method 

described in next section takes them into account without 

any complications and makes this method powerful. 

Furthermore the solution so obtained is analytical. It is 

important to note already that having such a model at hand 

does not mean that all of these features will be 

simultaneously turned on for any identification procedure. 

It simply means that a complete versatility can be achieved 

when working with the hot-wire technique. It is in turn the 

scientist that performs the measurement that has to 

determine which effects may be encountered in a given 

experiment. According to this analysis, various reduced 

models can be obtained from the complete one, that sets 

the dimension of the parameter vector to be estimated. It is 

with this principle in mind that the identification software 

has been developed and that the example shown in section 

5 has been chosen. 

 

3.2. Quadrupole method 
 

The method has received a full description in a recent 

textbook (Maillet et al., 2000) that the interested reader 

may consult for a more detailed derivation of the 

calculations presented here. 

The method originates in the integral transform 

treatment of the heat equation. As far as one dimensional 

heat transfer is considered in only one direction but in 

transient regime, the integral transform under consideration 

is the Laplace transform in time. Starting from zero initial 

conditions (equilibrium reference state), the partial 

derivative heat equation is transformed into a purely linear 

differential equation. Then one recovers an input-output 

matrix transfer formulation of the problem, well known 

from scientists working in the electronic field (automation 

systems). The variables embedded in the formulation are 

the temperature (potential) and the heat flux (current) 
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according to the well known electrical analogy. In terms of 

vector formulation, this leads for one layer of material to 

 

outin
DC

BA                                           (2) 

 

where A, B, C, D are the coefficients of the quadrupole, 

that depends on p, (the Laplace variable), and whose 

formal expressions depend on the geometry at hand.  

and  represent now the Laplace transforms of the 

temperature and heat flux variables. It is worthwhile to 

note here the intrinsic character of this formulation which 

until now never assumes to know the thermal boundary 

conditions of the problem. Classically, two of them have to 

be precise to derive the two other unknowns. Anticipating 

the results derived later on, if one considers that relation 

(2) represents the hot-wire experiment, one will introduce 

p

w

in
, Laplace transform of the Heaviside function with 

dissipated power w , 0out , if a finite layer is 

considered with adiabatic conditions on the external 

surface, and the exact direct model of the thermogram 

measured on the wire is simply, in Laplace domain, 
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Since the 70’s, very fast and precise algorithms have 

been developed allowing the numerical return to the time 

domain (see Maillet et all, (2000) for an introductory 

review). 

The electrical analogy is then extended to transient 

heat transfer problems. The consequence of Eq.(2) is that 

an electrical scheme involving three impedances connected 

in a T or  network can be classically derived according 

to the sketch shown in Fig. (3) where a T-network is 

considered. 

The expression of the impedances can be related to the 

four coefficients of the matrix transfer as shown in Eq. (4) 
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Figure 3 : Quadrupole or “Three impedances” network 

associated to a layer of material. 

 

When a material layer can be reduced to a pure 

resistive behavior, as it is in steady-state regime, one has 

the matrix transfer A=1, B=Rth (thermal resistance of the 

layer), C=0 and D=1, which is nothing else than Ohm’s 

law. One would also demonstrate in a very general way, 

that asymptotic development of the formal expressions of 

Z1, Z2, and Z3 for small p values (infinite times, i.e. steady 

state equilibrium) makes expressions of Z1 and Z2 to be 

pure resistance (depending only on k) and Z3 to be a pure 

capacity (depending only on the heat capacity of the 

medium). 

Thus the quadrupole method bridges the gap between 

the resistance of the steady-state problem and the heat 

capacity of the lumped body approximation. 

 

3.3. Hot-wire experiment modeled with 
quadrupoles 
 

We give now without demonstrations the mathematical 

relations and electrical scheme corresponding to the hot-

wire experiment modeling. 

 

For the cylindrical layer, the coefficients of the 

quadrupole are 
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where )(rK n
 and )(rI n  are the modified Bessel 

functions, and s corresponds to /p , where  is the 

diffusivity of the material. 

Equations (5) are suited for the cylindrical layer of the 

material to characterized. 

 

Similar expressions can be obtained for a cylindrical 

heating element (the Hot-wire) defined by its averaged 
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  and mean power 

dissipation ))((2

0 tgrm L , where ))t(g(L  is the Laplace 

transform of the volumetric heat dissipation (generally 

noted ‘g’ in the heat equation). But a first simplification 

can be introduced here due to the generally small size of 

the wire compared to the material, that allows to consider 

responses time weak compared to the medium ones. In the 

asymptotic development ( 0p  and Rr0 ), one would 

obtain for the wire : 
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This means that the behavior of the wire, within the 

approximation mentioned above, can be reduced to pure 

resistive (Rw) and capacitive (Cw) effects. 
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Contact 

Resistance

The heat losses are represented by a pure convective 

resistance hlR : 

 

RSwith
hS

Rhl 2
1                                     (7) 

where h is the heat transfer coefficient. 

 

Finally, we have the quadrupole corresponding to a 

cylindrical ‘layer’ which may be regarded as infinite 

( R ). One obtains then Z2=Z3=0 and Z1 reduces 

to the simple relation : 
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and the electrical scheme that corresponds to this situation 

is readily obtained (Fig. (4)). 

 

 

 

 

 

 

 

 

 

 

Figure 4 : Quadrupole representation of the 

 semi-infinite layer. 

The complete model. 

 

The hot-wire experiment is fully described according 

to the sketch of Fig. (5), made of all the elementary bricks 

defined in the above Eqs. (5-8). The reduction of the 

model from the finite case to the semi-infinite medium is 

obtained from Fig. (5) by simply substituting the last two 

‘bricks’ (Finite medium and heat losses) by the semi-

infinite impedance of Fig. (4). The model can be 

analytically expressed as 
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Finally, thanks to this complete model, one can 

develop the exact solution for long times ( 0p ). This 

asymptotic development in the case of the semi-infinite 

medium leads to the determination of the constant of Eq. 

(1). One finds  
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with 577210e .  is the Euler constant, and 

wc RRRT . 

A linear regression on the correctly identified linear 

part of the thermogram then provides initial guesses for 

two parameters. The thermal conductivity of the medium k 

is obtained from the slope. If for example, the contact 

resistance is expected to be negligible, RT reduces to the 

resistance of the wire Rw (Table (1)) and the parameter 
2

c 0rt  can be estimated from Eq. (10) and used as 

starting guess in the numerical procedure. 

 

3.4. Direct simulations - Knowledge of the physics 
of the problem 
 

 

We present in Figs. (6) and (7) the effects of contact 

resistance, hot-wire heat capacity and heat losses. 

Dimensionless quantities are used. The thermograms 

shown correspond to the dimensionless temperature 

km

1*

1
 versus the logarithm of the dimensionless 

time 2* / Rtt . Therefore, the thermograms are plotted 

in log-space for the abscissa. 

In Fig. (6), we plot the influence of the dimensionless 

contact resistance c

* RkR on the thermograms. The 

analysis of Fig. (6) shows that the  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 : Analog representation of the hot-wire experiment. 
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absence of contact resistance leads to a perfect linear 

evolution of the temperature. The greater the contact 

resistance is, the shorter the linear part of the thermogram 

becomes along with an increase in the temperature reached 

by the wire (insulation effect). 
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Figure 6 : Effect of the total reduced resistance 

( 152C .* ). 

 

In Fig. 7, we show the influence of both the capacity 

of the wire and the heat losses effect (finite medium). 

Thermograms are given for various values of the 

dimensionless capacity 
mediumCCC w

* . For the 

curve obtained for 5C* , we show the effect of the finite 

medium for different values of the Biot number 

khRH / , respectively H=0, H=10 and H . The 

external radius considered here is cm3R which 

corresponds to a reduced ratio of 100r)(*
00

rRe . 

What can be observed from these curves is firstly that 

the heat capacity of the wire should be as small as possible 

because it strongly affects the early time evolution of the 

temperature rise, just as the thermal resistance does. It has 

nevertheless no influence on the later temperature rise. As 

could be expected from a capacity element in an electrical 

network, it acts as a delay for the dynamical system. 

Secondly, one can note that the influence of the heat losses 

is only sensible in the long times part of the thermogram.  
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Figure 7 : Effect of the hot-wire heat capacity and of the 

Biot number ( 50R .* ). 

 

The main conclusion that can be drawn from the 

simulations presented in Figs (6) and (7), is that all the 

non-idealized effects (hot-wire capacity effect, thermal 

contact resistance, and finite medium effect) reduced the 

linear part of the thermogram. As shown earlier in section 

3.1, all these effects may arise in an experiment, and the 

complete model presented above can be used either 

directly in an estimation procedure, or indirectly, by 

defining two times mint  and maxt  bounding the time 

interval on which the linear behavior model given by Eq. 

(1) can be used. One can also state that insufficient 

concern in the physics involved may lead the 

experimentalist to stop the experiment too early, thus 

working on the part of the thermogram that reflects the 

effect of heat capacity of the wire, and possibly contact 

resistance, instead of the medium’s thermal conductivity. 

A plot on a logarithmic scale in this restricted domain of 

time exhibits also a linear evolution that may be confused 

with the ‘good’ one, thus leading to substantially 

underestimate what is supposed to be the thermal 

conductivity parameter. 

 

4. The inverse problem 
 

According to the model presented in section 3.3, the 

parameter vector exhibits a maximum of 5 parameters 

 

hRrtCk 5T4
2
0c321 ,,/,, w     

                                                                                  (11) 

 

Such an inverse problem has already been investigated 

by Zhang (1993), Zhang et al. (1993) and Rémy and 

Degiovanni (2001). From these previous studies relating a 

sensitivity analysis of the Parameter Estimation Problem 

(PEP), one can retain firstly that the thermal conductivity 

of the medium, the parameter that is aimed to identify, is 

the parameter of highest sensitivity and generally 

sufficiently uncorrelated from the other parameters. 

Secondly, the sensitivity analysis justifies the model 

reduction embedded in the direct model presented above, 

that considered only the capacitive effect of the wire. The 

diffusivity and conductivity of the wire can be proved to be 

totally correlated. Only the heat capacity has to be taken 

into account, the resistance of a metallic wire Rw, always 

small, can be considered as a known parameter and in all 

cases can not be discriminated from the contact resistance, 

if it exists. Despite these two remarks, the PEP for the hot 

wire conductivity is still complicate due to modifications 

of the correlation coefficients between the parameters of 

the model, that depends of the nominal values. 

Calculations of sensitivity coefficients or expected 

variance-covariance matrix of the parameters show that in 

some cases 4  (contact resistance parameter) may appear 

totally correlated with ct3  (diffusivity of the 

medium). In other cases, i.e. when no contact resistance is 

considered, it is 2  (hot-wire capacity parameter) that may 

in some cases be correlated with 3 . 

Our purpose in this section is to give an example 

which aims to be a pedagogical one, showing that if a 

‘blind-type’ estimation is carried on using the most 

sophisticated model and performing minimization 
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algorithms, large errors can be made. On one hand, one has 

a complete model (synonymous with large parameter 

vector) able to take into account different physical 

phenomena. On the other hand, one has a given 

experiment, on a given sample with specific constraints. 

One has to perform the identification making these two 

things in perfect symbiosis. 

 

4.1. Fitting procedure 
 

In this section, instead of recalling all the tools 

involved classically in PEP and developed in many good 

textbooks like for example the one of Beck and Arnold 

(1977), we simply give the list of all the features available 

in the software package developed for post-data treatment 

under MATLAB environment. 

setting the data for the estimation procedure (statistical 

analysis of the temperature recordings at equilibrium 

i.e. characterization of the noise, calculations of the 

heat power dissipated in the wire and control of 

stability, possible reduction of the number of data 

points, plot of the thermograms, dissipated power, 

temperature of cold junction…) 

Initialization of all needed data. 

Selection of the model type (semi-infinite or finite 

medium). 

Selection of the model (and parameter vector). Five 

different models are available ranking from a 1 

parameter model to 4 parameter model (dimensionless 

or not). 

Clicking mouse selection of the linear part of the 

thermogram on which the user wishes to calculate 

initial values for 2 parameters according to Eqs (1) 

and (10). 

Possibility of taking the thermocouple into account by 

adding a parameter which is the characteristic 

response time of the thermocouple (R-C branch). 

Selection of the minimization algorithm: 

Estimations are performed in the classical way of 

minimizing the uni-modal cost functional that consists 

on the square of the temperature residuals, i.e. distance 

between experimental and calculated thermograms 

(OLS estimator). Three inversion algorithms have been 

considered in the estimation software :  

- the simplex Nelder-Mead and Levenberg-

Marquardt algorithms, based on a deterministic 

search of the minimum. These methods are very 

efficient in terms of computational time. In some 

complicated cases where a good design of the PEP 

can not be achieved (i.e. in case of correlated 

parameters), such methods lead to local minima 

that are dependent upon the initial guesses. This 

induces an error on all the estimates, according to 

the influence of the noise on the sensitivity matrix. 

We use the built-in function fminsearch for the 

Nelder-Mead simplex algorithm, of the function 

leasqr.m developed by Richard I. Shrager, from 

the National Institute of Health (Bethesda, MD, 

USA) and modified by Arthur Jutan and Ray 

Muzic, available at the Internet Matlab site 

(matlab42/toolbox/contrib). 

- the stochastic optimization (exhaustive search) 

algorithm used is the “Simulated Annealing” 

method (SA), which has been already used in heat 

transfer problems by Silva Neto and Soeiro (2002, 

2003). This method is less sensitive than the 

previous deterministic algorithms in the case of 

problems being somewhat badly conditioned. On 

a computational point of view, this method 

requires prohibitive time for data treatment. It has 

been compulsorily used in this study as it provides 

an alternate method for securing the results, but 

mainly because it allows to constrain the 

parameter search as it operates on a pre-defined 

domain of the parameter space. We used function 

SimAnneal.m developed by Peter Cervelli from 

the Dept. of Geophysics (Stanford University). 

Results : The software provides the calculations of the 

sensitivity coefficients and sensitivity matrix at 

convergence and for the initial parameter vector. It 

calculates also the optimal cost expected from the 

characteristic of the noise of the signal, the theoretical 

variance-covariance matrix expected from the 

characteristic of the noise, the effective variance-

covariance matrix calculated at convergence taking the 

residuals into account instead of the noise, and the 

95% confidence interval. 

 

4.2. Example of estimation 
 

In Fig. (8) we show an experimental thermogram 

obtained on a sample of compressed journal paper. Curves 

denoted 1 correspond to the hot wire thermogram 

(thermocouples 1 and 2 recordings, with their average 

value) that has been offset with respect to the base line 

signal recorded for negative times (equilibrium reference 

state). Curve 2 corresponds to the Cold-Junction 

temperature that undergoes an undesired heating and may 

alter the temperature recordings as can be seen from the 

temperature rise on curve 3 (temperature measured on the 

external surface of the sample). It can not correspond to 

size limited effect in view of the times involved. This will 

be a source of bias in the residuals as shown later. Curve 4 

(given here without units specification) corresponds to the 

recording of the power dissipated in the wire and is shown 

to be perfectly stable even at the very short times (not 

shown here for clarity of the figure). 

Estimations are now performed with the complete 

model in the semi-infinite case. Care has been taken in 

order to reduce possible contact resistance to zero by 

performing a good immersion of the wire and 

thermocouples at the plane surface of the two-parts sample. 

The initial value considered for parameter wRR T4  

is given in Table 1. So it is for the capacity of the wire 

from the manufacturer values. The thermal conductivity 

and characteristic time are estimated using Eqs. (1) and 

(10) using a regression fitting in the linear part of the 

thermogram ranging approximately from st 200min  to 

st 1100max  (manual selection). One obtains generally 

an initial conductivity value 10ki . and an initial value 

of 25.1
ict  with some 20% of departure around this 

value. The medium has a measured density of 
3.215 mkg , and an unknown specific heat. 
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Assuming a value of the order of 
11 ..1400 KkgJC p  

(classical value for paper in the literature), we may 

therefore expect a diffusivity value of the order of 
12 .33.0 smm  and a characteristic time of the order 

of stc 2.0 . 
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Figure 8 : Experimental thermograms. 

 

Applying the Levenberg-Marquardt algorithm yields 

the results shown in Fig. (9). The values obtained for the 4 

parameters in the order specified by Eq. (11) are given in 

the figure caption. The identification is perfect exhibiting 

residuals less than 0.1°C over the entire time interval and a 

conductivity value of 0.1, the value found with the ideal 

model of Eq. (1). One may feel satisfied with this result 

except that if one looks at the values obtained for the other 

parameters, the identification seems to have failed. It is 

impossible considering our knowledge of the experiment 

to get a resistance value of WKRT /8.11  and a 

characteristic time of stc 9 , which leads to a very small 

diffusivity and then to an unacceptable value of CP. 

In fact, the LM algorithm has been trapped into a local 

minimum simply because the model used was over-

parameterized. Maintaining parameter RT (known to be 

negligible and thus having a null sensitivity) in the 

parameter vector, gives all orthogonality to the algorithm 

to deal with the data and find a perfect optimum in terms 

of the cost function to minimize. 
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Figure 9 : Identification performed with complete model 

and Levenberg-Marquardt algorithm. 

(Number of iterations = 22, 

) 74.0,78.11

,46.9,196.0,100.0
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On the other hand, using the Nelder-Mead simplex 

algorithm leads to the following results (Fig. (10)) : 

The conductivity value is now of k=0.11 and all the 

other parameters have reasonable values compared to our 

knowledge of what should be. The residuals are not as 

good as those obtained using the LM algorithm (of the 

order of 0.4°C) but this is due to the fact that a bias clearly 

exists between model and experiment (large oscillations). 

Such a bias may find acceptable explanations that for some 

of them can lead to slight modification of the experiment. 

For example in our case, one has to verify that the cold 

junction temperature evolution during the experiment does 

not affect the temperature measurement (good correction). 

The parameter w2 C  is always overestimated which 

can be understood because at the measurement point, there 

is an excess of matter due to the thermocouple itself (of 

diameter 500 m soldered on a 1 cm length). The 

parameter 3  is between the value found applying the 

asymptotic model of Eq.(1) and the value ‘expected’ from 

the literature value of Cp. Finally, one can note that the 

parameter 4 , RT, is found to have an expected small 

value. It is a trend already observed in minimization of ill-

posed problems that the Nelder-Mead simplex algorithm is 

less sensitive to a parameter having a very low sensitivity 

as is the case in our example. Furthermore, if the parameter 

vector was not initialized according to the procedure 

explained above (i.e. with somewhat arbitrarily choice), 

the algorithm also fails, just as Levenberg-Marquardt does. 

This in turn means that the direct model can not be used 

with the full parameter vector. The last comment is that the 

conductivity value is different within 10% depending on 

the minimization algorithm used and this is not acceptable. 

Now we use the model by setting parameter 
TR  to the 

fixed value Rw and performing the identification with a 

parameter vector of 3 components : 

/,, 2

03w21 rtCk c
. In this case, the 

result obtained is exactly the same as the one shown in Fig. 

(10) and does not dependent on the algorithm used (results 

therefore not presented here). The fact that the two 

algorithms converge now to the same estimates, being 

more insensitive to the initial conditions, is considered to 

be a proof of the proper suiting of both the direct model 

and the identification procedure. 
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Figure 10 : Identification performed with complete model 

and Nelder-Mead simplex algorithm. 

(Number of iterations = 220, 

) 2.13,019.0

,755.0,138.0,111.0
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Figure 11 shows the behavior of the reduced 

sensitivity coefficients 

i

ii

tT
X

,  calculated using the 

estimates obtained for the unknowns.  
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Figure 11 : Thermograms and reduced sensitivity 

coefficients for the case 

760t140110 c321 .,.,. . 

 

The variance-covariance matrix calculated at 

convergence leads to the following variances on the 

estimates: %52)(%,5.3)(,%64.0)( 321 VVV , showing 

that as expected, it is the thermal conductivity that has the 

smallest confidence interval. The correlation coefficients 

found are 76.0,985.0,71.0 231312
 which is 

compatible with an accurate solution according to the 

Gallant criterion (Beck and Arnold, 1977):  

Number of significant figures in the calculation 

11log2
min

max  with minmax ,  being the largest and 

smallest eigenvalues of the correlation matrix. 

We plot also in Fig. (12) each sensitivity coefficient as a 

function of another in order to verify if any linear dependence 

exists between the 3 sensitivities. One must note that, compared 

to the two other combinations involving 1 , the two 

parameters X2 and X3 shows a more constrained 

dependence (due to smaller sensitivity values as for 1 ) 

that tends to a quasi linear dependence only in a small 

region of time centered on the extremum of sensitivity of 

2  that corresponds also to the inflexion point of the 

sensitivity evolution of 3 . Therefore, even if the 

correlation coefficient 13  between both does not indicate 

a high correlation, this global information is somewhat 

counterbalanced when analyzing carefully the sensitivity 

coefficients. This explains the highest variances obtained 

for these two parameters. 

In all cases, it is absolutely impossible to identify 

correctly other properties than the thermal conductivity of 

the medium as far as the hot wire experiment is concerned 

with such a material.  
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Figure 12 : Reduced sensitivity coefficients for the case 

760t140110 c321 .,.,. . 

 

5. Conclusion 
 

In this paper, we aimed to demonstrate that the modeling of 

an experiment needs to be as complete and precise as possible. 

But this does not mean that it has to be used without a great 

knowledge of the characteristic of the experiment really 

developed. Therefore, special care must be paid when 

performing the estimation and reducing the model (and the 

parameter vector as a consequence) accordingly to the physics 

really embedded. For this purpose the well known tools 

developed in the parameter estimation theory need to be used 

and introduced in the estimation software to allow objective 

means of analyzing the results. If this basic principle is applied, 

identification can be performed independently of the 

minimization algorithms used. If not, large errors may be 

obtained. This principle is simple and has to be clear for 

engineers or scientists involved in the metrology of thermal 

properties. 
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