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ABSTRACT  
The complexity of pixel composition of orbital images has been commonly referred to the spectral mixture problem. 
The acquisition of endmembers (pure pixels) direct from image under study is one of the most commonly employed 
approaches. However, it becomes limited in low or moderate spatial resolutions due to the lower probability of 
finding those pixels. In this way, this work proposes the combined use of images with different spatial resolutions to 
estimate the spectral responses of the endmembers in low spatial resolution image, from the obtained proportions 
derived from the spatial higher-resolution images. The proposed methodology was applied to products provided by 
PROBA-V satellite with spatial resolution of 100 m and 1 km in the Pantanal region of Mato Grosso state. Initially, 
the fraction images (proportions) were generated from the 100 m dataset using the endmembers selected directly 
in the image, considering the higher probability of finding pure pixels in such images. Following the spectral 
responses of the endmembers in 1 km were estimated by multiple linear regression, using the proportions of the 
endmembers in the pixels derived from 100 m images. For the evaluation, the endmembers fraction images were 
compared and field data was used. These analyses indicated that the spectral responses estimated allowed to 
improve the results with regard to error, to variability, and to the identification of endmembers proportions, 
considering that inadequate choice of pixels considered as pure in low spatial resolution images can affect the 
quality of the fraction images for operational use.  
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RESUMO 
A complexidade da composição de um pixel nas imagens orbitais tem sido comumente referida ao problema de 
mistura espectral. A aquisição de endmember (pixel puro) a partir da própria imagem em estudo é uma das 
abordagens mais comumente empregadas, entretanto, torna-se limitada em sensores de baixa ou moderada 
resolução espacial pela menor probabilidade de encontrar tais pixels. Dessa maneira, este trabalho propõe o uso 
combinado de imagens de diferentes resoluções espaciais para estimar as respostas espectrais dos endmembers na 
imagem de baixa resolução espacial a partir das proporções obtidas nas imagens de maior resolução espacial. O 
método proposto foi aplicado nos produtos fornecidos do minissatélite PROBA-V com resolução espacial de 100 m e 
1 km na região do Pantanal Mato Grossense. Inicialmente, as imagens fração (proporções) foram geradas para os 
dados de 100 m utilizando os endmembers da própria imagem considerando a maior probabilidade de encontrar 
pixels puros nestas imagens. A seguir, as respostas espectrais dos endmembers nos dados de 1 km foram estimadas 
por regressão linear múltipla considerando que as proporções dos endmembers nos pixels são derivadas das 
imagens de 100 m. Para avaliação, foram comparadas as imagens fração e utilizados dados de campo. Conclui-se 
que as respostas espectrais estimadas permitiram a melhoria dos resultados no que se refere ao erro, à 
variabilidade e à identificação das proporções dos endmembers, visto que a escolha indevida de pixels considerados 
como puros em produtos de baixa resolução espacial pode afetar a qualidade das imagens fração para uso 
operacional.  
 
Palavras chave: Endmembers estimados; Moderada Resolução Espacial; Regressão Linear; Escala Regional; 
Pantanal. 
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1. INTRODUCTION 

In recent decades, great amount of data 

with different spectral, temporal and spatial 

resolutions have been made available to the 

Remote Sensing user community. In Earth 

observation studies, a wide range of applications 

requires accurate estimates. Therefore, high and 

medium spatial resolution sensor products are 

used. However, the use of these products may be 

limited by the lower frequency of revisit (LI et al., 

2017; HILKER et al., 2009; WULDER et al., 2008), 

which may be further affected by the incidence 

of clouds (ZHU; WOODCOCK, 2014; ASNER, 

2001). Furthermore, due to the storage capacity 

or download data onboard of the high spatial 

resolution sensors, some parts of the globe may 

not be continuously imaged by certain sensors. 

On the other hand, low and moderate spatial 

resolution sensors may provide observation 

products of the globe in more frequent revisits 

due to its wide viewing range coverage (ZHANG 

et al., 2017). However, it is also emphasized the 

challenge in studies whose object of interest is 

smaller than the pixel size (BARET et al., 2013). 

This problem occurs because the 

radiance detected by the sensor is an integrated 

sum of the radiance of all objects or materials 

contained within the instantaneous field of view 

(IFOV), for example, shade, soil and canopy of 

trees. Thus, each pixel provides the result of the 

interaction of electromagnetic radiation with 

multiple components, do not representing the 

composition of a single object only 

(SHIMABUKURO et al., 2014). Thus, the 

complexity of a pixel composition has commonly 

been referred as the spectral mixture 

(SHIMABUKURO; PONZONI, 2017; 

SHIMABUKURO; SMITH, 1995). 

Several mathematical models have been 

proposed to identify the mixing proportion of the 

pixel (KESHAVA; MUSTARD, 2002; GARCIA-HARO 

et al., 2005; ALCÂNTARA et al., 2008) and the 

linear spectral mixing model (LSMM) proposed by 

Shimabukuro and Smith (1991) is one of the most 

commonly used techniques. As a result of the 

LSMM, fraction images are generated containing 

information about the proportion of the 

components contained in each pixel, which in 

turn are widely used, as example, in studies of 

land cover changes (ADAMI et al., 2018) and 

monitoring of deforestation and forest 

degradation (SHIMABUKURO et al., 2019). In the 

Pantanal, the technique has also been used in the 

monitoring of land cover dynamics 

(SHIMABUKURO et al., 1998), in the 

characterization of the types of coverage using 

hyperspectral data (GALVÃO et al., 2003), in the 

study of flooding from MODIS images (PADOVANI 

et al., 2009), and in the assessment of grassland 

degradation (RAVAGLIA et al., 2010). 

The application of the LSMM is possible 

with a priori knowledge of the spectral response 

of the reference components, and one of the 

most commonly used approaches to the 

application of the model is to acquire pure pixels 

or endmembers from the spectral reflectance of 

the components available directly in the image 

study (SHIMABUKURO; PONZONI, 2017). In high 

and medium spatial resolution images, it is 

assumed that there is a higher probability of 

finding pure pixels or pixels that include a single 

reference component available in the image. 

However, in moderate and low spatial resolution 

images, the mixed nature of pixels limits this 

approach because of the difficulty or even the 

impossibility of obtaining pure pixels (DE FREITAS 

et al., 2008). Particularly in global or regional 

scale studies, the determination of these 

endmembers remains a challenge (MEYER; OKIN, 

2015). 

With the growing amount of available 

products, previous studies have  demonstrated 

the ability to fuse different resolutions and 

observations sensors as a promising way to 

increase the potential of Earth observation 

studies (LI et al., 2017; DE FREITAS et al., 2008). 

In this context, the objective of this work is to 

propose a method using linear spectral mixing 

model to explore the combination of images of 

different spatial resolutions and then, extend the 

information contained in fraction images on a 

local scale to larger areas. Thus, this proposal 

aims to estimate the spectral responses of 

endmembers in low spatial resolution images, 
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from the obtained proportions of the higher 

spatial resolution images. 

2. MATERIAL AND METHODS 

2.1. Study area 

The Pantanal covers an area of 

approximately 138,183 km² between the states 

of Mato Grosso and Mato Grosso do Sul (SILVA; 

ABDON, 1998). As the study area for this work, it 

was more specifically adopted the portion of the 

Pantanal biome encompassed by the Mato 

Grosso state (Figure 1). 

The vegetation of the biome is 

influenced by the predominance of Savanna and 

remnants of Chaco, by the Amazon Forest and 

Atlantic Forest (ADAMOLI, 1981), and by livestock 

as the main anthropic activity. In addition to the 

association of different soil types and flood 

dynamics, the Pantanal presents itself as a 

complex and heterogeneous environment 

(HARRIS et al., 2005), which is the reason why it 

was adopted in this study. 

 

 

 
Figure 1 – Location of the Pantanal of Mato Grosso (MT) state as study area, highlighting (a) flood areas, 

(b) agriculture, and (c) natural vegetation formations. Source: Esri World Imagery Basemap Service in 

true color. 

 

The dynamics of flooding is strongly 

influenced by rainfall patterns, especially by 

alternating two well defined seasons: the rainy 

season, which occurs between October to April, 

and the dry season, which occurs from May to 

September (SILICON-CALZADA et al., 2017) 

(Figure 2). Thus, targeting the applicability of the 

proposed method in different periods, the 

months of February and August were selected for 

having the maximum and minimum monthly 
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precipitation (mm) observed for the year of 

study, respectively. 

 

 

 
Figure 2 – Monthly precipitation climatology between 1981-2010 years and monthly precipitation 

observed for the 2015 year (adapted from CPTEC, 2014). 

 

2.2. Materials 

The PROBA-V (Project for On-Board 

Autonomy – Vegetation) is a mini-satellite 

launched in 2013, designed to ensure the 15-year 

continuity of the SPOT-Vegetation mission by the 

European Space Agency (ESA). To meet the user 

community needs, the four spectral bands of the 

sensor are similar to the SPOT-Vegetation 

instrument, available in: blue (centered at 0.463 

µm), red (0.655 µm), near infrared (0.837 µm), 

and middle infrared (1.603 µm) (WOLTERS et al., 

2018).  

The products are distributed in the ESA 

image catalog on the platform <http://www.vito-

eodata.be/>, atmospherically corrected and in 

different spatial resolution and temporal 

compositions (Table 1). For this work, they were 

acquired for the year 2015 in a five- and ten-days 

temporal composition at the top of the canopy 

(TOC) and with a spatial resolution of 100 m and 

1 km, respectively. 

 

 

Spatial resolution Temporal resolution 

100 m, 300 m and 1 km Daily 
100 m 5 days composition  

300 m and 1 km 10 days composition  

Table 1 - Summary of products available PROBA-V (WOLTERS et al., 2018). 

 

2.3. Methods 

A linear relationship is used to represent 

the spectral mixture of the components 

contained in the pixel, i.e. the LSMM assumes 

that the spectral reflectance of a pixel can be 

obtained as a linear combination of the 

responses of each element taken as reference. 

Thus, each pixel contains information about the 

proportion and the spectral response of each 

component (SHIMABUKURO; SMITH, 1995).  

Assuming this approach, it is understood 

then that being aware of the spectral response of 

each reference component, their proportions at 

the pixel can be obtained. Similarly, the 

proportions of the reference components are 

known, then their spectral responses can be 
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estimated (SHIMABUKURO; SMITH, 1995). Thus, 

the linear spectral mixing model proposed by 

Shimabukuro and Smith (1991) can be 

represented as: 

 

𝑟𝑖 =  Σ (𝑎𝑖𝑗𝑥𝑗1) +  𝜀𝑖  

 

where: 

𝑟𝑖  = Average spectral reflectance in the spectral 

band i; 

𝑎𝑖𝑗  = Spectral response of the j component of the 

mixture in the spectral band i; 

𝑥𝑗  = Proportion of the component j at a pixel; 

𝜀𝑖 = Error in the spectral band i; 

𝑖 = 1, n (number of spectral bands used); 

𝑗 = 1, m (number of considered components). 

 

The result of equation (1) is subject to 

constraints, which in turn, must be satisfied with 

the sum of proportions equal to one and non-

negative values: 

 

Σ𝑥𝑗 = 1 

 

0 ≤  𝑥𝑗 ≤ 1 

 

For implementation of the proposed 

method (Figure 3), firstly (step 1), the temporal 

composition adjustment of the PROBA-V 

products was performed, since both have 

different temporal compositions. For this, the 

products can be combined using the Maximum 

Value Composition, which selects the maximum 

values of NDVI (Normalized Difference 

Vegetation Index) of each pixel among all 

observations, as mentioned by Wolters et al. 

(2018). With this technique, the NDVI for the 100 

m products available in the temporal composition 

of five days were calculated, and the maximum 

values between two five-days temporal 

compositions were selected. Thus, the data of 

100 m spatial resolution had a ten-day temporal 

composition similar to that of 1 km spatial 

resolution data. 

 

 

 
Figure 3 –  Methodological flowchart. 
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As step (2) the LSMM in this study was 

used to calculate the proportions of each 

component in the 100 m images from the 

available spectral response in the study image. 

Employing the approach of pure pixels selected 

according to the spectral response, three 

components in the pixel assumed as reference 

were considered, which correspond to 

vegetation, soil, and shade (Figure 4). As a result 

of the LSMM, fraction images were obtained for 

each component considered in the pixel, which 

represents the proportion in the original data. 

 

 

 
Figure 4 – Spectral response of the reference components obtained in the study image. Where NIR¹ – 

Near Infrared; MIR² – Middle Infrared. 

 

Assuming that the proportions of the 

components (𝑥𝑗) extracted from the fraction 

images derived from the LSMM applied to higher 

spatial resolution image are known, for this work 

it was adopted the mathematical model 

proposed by Richardson et al. (1975) to estimate 

the spectral response of the components. The 

model was developed to partition the spectral 

reflectance (𝑟𝑖) in spectral reflectance of the 

component(𝑎𝑖𝑗), in which 𝑗 = 1 represents the 

vegetation component, 𝑗 = 2 represents the soil 

component and 𝑗 = 3 represents the shade 

component. The model can be written as: 

 

𝑟𝑖 =  𝑎𝑖1𝑥1 + 𝑎𝑖2𝑥2 +  𝑎𝑖3(1 − 𝑥1 −  𝑥2) 

 

where: 

𝑟𝑖  = Average spectral reflectance in all spectral 

bands; 

𝑎𝑖𝑗  = Spectral reflectance of components to be 

estimated; 

𝑖 = Spectral bands of the sensor used; 

𝑗 = Established components, which vegetation 

(1), soil (2) and shade (3); 

𝑥𝑗  = Known reference proportions of the 

components; 

 

Rewriting the above equation, it is 

obtained: 

 

𝑟𝑖 =  𝑎𝑖3 + (𝑎𝑖1 − 𝑎𝑖3) 𝑥1 + (𝑎𝑖2 −  𝑎𝑖3) 𝑥2, 

 

Similar to the multiple linear regression 

equation: 

 

𝑟𝑖 =  𝐴0 +  𝐴1𝑥1 + 𝐴2𝑥2 

 

Thus, since the proportions were 

obtained, they become the input variables in 

equation (5) with the average spectral 

reflectance in all spectral bands of low spatial 

resolution image. Thus, the combination of 

products with different spatial resolutions allows 

the determination of the spectral response of 
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vegetation (𝐴0), soil (𝐴0 +𝐴1) and shade (𝐴0 +𝐴2) 

components. Assuming that the sum of the 

proportions is equal to one, in this case is not 

necessary to add the shade proportion as the 

input parameter of the model. 

In this step (2), 25 samples were 

collected in the study area in the same 

geographical coordinates and without the 

incidence of clouds for wet and dry seasons in 

both products. For this, it was considered that a 

pixel of 1 km corresponds to eighty-one pixels in 

the product of 100 m, due to variations in 

cartographic conversion for geometric projection, 

each pixel had the spatial resolution of 0.008929° 

and 0.000992°, respectively (Figure 5). 

 

 

 
Figure 5 – Representation of a pixel composition at different spatial resolutions of PROBA-V, where 1 km 

(0.008929 °) to the left and 100 m (0.000992 °) to the right, in false color composite of R (1.603 µm) G 

(0.837 µm) B (0.655 µm). 

 

Finally, in step (3) the LSMM was applied 

to 1 km PROBA-V image using the estimated 

spectral response of vegetation, soil and shade 

components. For comparative purposes, the 

LSMM was also applied to the same product 

using the spectral response of the reference 

components acquired in the image itself, referred 

by conventional approach. 

 

2.4. Validation of Results 

A field campaign was carried out in Mato 

Grosso in September 2018, a period which 

corresponds to the end of the dry season in the 

region, aiming to identify areas of forest, bare 

soil, and water bodies. The campaign also 

included the passage in the Pantanal of Mato-

Grosso state and flooded areas that due to the 

season could only be properly identified through 

information collected from neighborhood. At this 

step, control points were collected in the field 

using a GARMIN GPS (Global Positioning System) 

device connected to a notebook and plotted on a 

mosaic of OLI/Landsat-8 (Operational Land 

Imager) satellite images using the Global Mapper 

(Global software Mapper Software LLC designs, 

Parker, CO) for navigation. All control points were 

collected after five seconds remaining in place 

and when at least five satellites signals were 

received by the device used. However, according 

to Caten et al. (2007), less than one minute in 

data collection can generate the average 

positional error of up to 5 m. Thus, the influence 

of the GPS positioning error was disregarded for 

this work due to the spatial resolution of the 

sensor used. 

 Furthermore, georeferenced 

photographs were collected in the field campaign 

and used as auxiliary data for the visual 

interpretation of the targets. 

 

3. RESULTS AND DISCUSSION 

The estimated spectral responses for 

determining the reference components in the 1 

km PROBA-V product in wet and dry seasons are 

shown in Tables 2 and 4. Also, the equation 

obtained from the multiple linear regression 

(equation 5) and the coefficient of determination 
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in each spectral band adopted are shown in 

Tables 3 and 5. 

 

 

 

February 2015  

 Spectral Bands 

Endmembers Blue Red NIR¹ MIR² 

Shade 0.02 0.02 0.06 0.03 

Soil 0.09 0.18 0.22 0.41 

Vegetation 0.01 0.03 0.54 0.24 

Table 2 – Estimated spectral response of the components during the period of maximum precipitation. 

NIR¹ – Near Infrared; MIR² – Middle Infrared. 

 

Spectral Bands Equation r² (N =25) 

Blue 𝑟𝑖= 0.0204 + 0.0712𝑥1 - 0.0316𝑥2 0.74 
Red 𝑟𝑖= 0.0194 + 0.1639𝑥1 + 0.0096𝑥2 0.84 
NIR¹ 𝑟𝑖= 0.0558 + 0.1625𝑥1 + 0.4818𝑥2 0.72 
MIR² 𝑟𝑖= 0.0317 + 0.3796𝑥1 + 0.2058𝑥2 0.79 

Table 3 – Equation obtained by multiple linear regression and the coefficient of determination for the 

period corresponding to the maximum precipitation in each spectral band. NIR¹ – Near Infrared; MIR² – 

Middle Infrared. 

 

August 2015 

 Spectral Bands 

Endmembers Blue Red NIR¹ MIR² 

Shade 0.02 0.02 0.04 0.01 

Soil 0.06 0.14 0.37 0.40 

Vegetation 0.02 0.04 0.49 0.25 

Table 4 – Estimated spectral response of the components during the period of minimum precipitation. 

NIR¹ – Near Infrared; MIR² – Middle Infrared. 

 

Spectral Bands Equation r² (N =25) 

Blue 𝑟𝑖= 0.0159 + 0,0413 𝑥1 + 0,0033𝑥2 0.77 
Red 𝑟𝑖= 0.0193 + 0.1250𝑥1 + + 0.0175𝑥2 0.82 
NIR¹ 𝑟𝑖= 0.0446 + 0.3229𝑥1 + +0.4409𝑥2 0.79 

MIR² 𝑟𝑖= 0.0122+ 0.3890𝑥1 + 0.2374𝑥2 0.87 

Table 5 – Equation obtained by multiple linear regression and the coefficient of determination for the 

period corresponding to the minimum precipitation in each spectral band. NIR¹ – Near Infrared; MIR² – 

Middle Infrared. 

 

Comparing the spectrum-temporal 

response of the targets analyzed in this study, as 

expected, it was observed that the peak of the 

vegetation component in the near infrared 

reached the highest value in February, coinciding 

with the period of maximum vegetative vigor due 

to rainfall. Inversely, lower values are seen in 

August, characterized by a drought period. 

 The performance of the method using 

fraction images was evaluated in two ways: (1) 
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comparing statistically the vegetation, soil, shade, 

and error fraction images obtained by the LSMM 

in the three applications and (2) comparing 

spatially and visually fraction images with 

information collected in the field campaign.  

As a first LSMM performance evaluation 

method to estimate the spectral responses of 

endmembers in low spatial resolution images 

from the proportions in the higher spatial 

resolution images, it was performed the 

comparison of the average error obtained 

between the samples generated by this approach 

and the conventional approach (Table 6). 

 

 

  February 2015    August 2015  

   Estimated  Image  100 m    Estimated  Image  100 m 

Average Error 0.48 0.60 0.51   0.49 0.59 0.52 

Table 6 – Average error obtained from the samples generated in the error fraction image, where both 

estimated and image correspond to 1km spatial resolution. 

 

Error fraction images typically have 

lower values according to the accuracy of the 

models employed. Accordingly, the average error 

obtained by the approach proposed in this study 

was lower than that obtained by the 

conventional approach in both study periods. 

However, it is noteworthy that the highest 

average error for the moderate spatial resolution 

image may be associated to the fact that other 

components may be contained in pixel due to 

better spatial resolution. Thus, the number of 

components defined in this work may not be 

enough for the model used. 

It is observed that the fraction images 

derived from the LSMM using the estimated 

endmembers by regression showed greater 

similarity to the fraction images derived from the 

better spatial resolution image when compared 

the average and the standard deviations (Table 

7). In general, it is observed that the fraction 

images generated directly in the 1 km image 

were underestimated or overestimated in both 

periods and also showed higher standard 

deviation. 

 

 

February 2015  August 2015  

   
Average 

      Image Standard deviation   

Average 
 Image Standard deviation    

Shade 0.46 0.46  0.23 0.11 

Soil 0.29 0.31  0.40 0.38 

Vegetation 0.51 0.27  0.36 0.35 

  Estimated    Estimated   

Shade 0.40 0.35  0.49 0.30 

Soil 0.25 0.23  0.38 0.33 

Vegetation 0.51 0.25  0.40 0.32 

  100 m     100 m   

Shade 0.24 0.17  0.57 0.27 

Soil 0.27 0.25  0.35 0.29 

Vegetation 0.50 0.24  0.41 0.23 

Table 7 – Average and standard deviation of components’ proportions estimated by regression 

(Estimated) and generated in the conventional approach (100 m and Image). 
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Generally, the major differences were 

observed regarding the shade fraction image, 

assuming that the greater mixture of pixels due 

to the increase in areas susceptible to flooding 

during the rainy season may have overestimated 

both results using the product of 1 km. According 

to Goltz et al. (2007), there are several forms of 

flooding that may occur in the Pantanal biome, 

both in temporary ponds and in areas previously 

established as vegetated, for example. 

Regarding the variation of the 

components’ proportions in relation to the 

seasonal variation in the Pantanal biome, what 

was to be expected for the study region is the 

increase in the proportion of both the vegetation 

and shade fraction during the rainy season and 

on the other hand, the highest influence of the 

soil in August due to the dry season.  

Comparing quantitatively the 

proportions obtained in each pixel (Table 8), it 

was noted that the more suitable proportions 

were obtained using the 100 m image or the 

combination between products of different 

spatial resolutions.  

 

 

Representation of pixel in 1 km (left) and 100 m 
(right) 

Proportion of the components 

  Image Estimated 100 m 

Shade 0.98 0.88 0.70 

Soil 0.00 0.05 0.01 

Vegetation 0.02 0.08 0.32 
 

     

Shade 0.00 0.00 0.00 

Soil 0.63 0.66 0.67 

Vegetation 0.37 0.34 0.31 
 

     

Shade 0.15 0.22 0.30 

Soil 0.00 0.00 0.00 

Vegetation 0.85 0.78 0.70 
 

Table 8 – Proportion of the components in the spatial resolution of 1 km and 100 m per pixel, where 

both estimated and image correspond to 1 km spatial resolution. 

 

From the above, it was inferred that the 

combined use of a product with better spatial 

resolution allowed the user to improve the LSMM 

results as regards the determination of pixels that 

include a single reference member, since the 

result of the model depends directly on the 

choice of input parameters. 

Regards the spatial and visual aspect, 

the fraction images can be used individually in 

gray scale or in colored compositions (RGB) for 

further analysis. It is noteworthy that the linear 

spectral mixing model is not a thematic classifier, 

but it provides data reduction and enhances the 

information contained in the pixel for several 

applications (SHIMABUKURO; PONZONI, 2017). 

Thus, the fraction images obtained for 

the soil, vegetation and shade components 

derived of the last step are observed in Figure 6. 

This figure represents the detail of the PROBA-V 

products for better visualization of the results. It 
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is noticed that the components proportions in 

the fraction images (Figures 6b, 6c and 6d) are 

represented by the variation of the grayscale – 

brightness – in the images. The level of dark gray 

represents a lower proportion of the component 

within the pixel and light gray level represents a 

highest proportion of the component within the 

pixel. 

 

 

 

Figure 6 – (a) PROBA-V product details using false color composite of R (1.603 µm) G (0.837 µm) B (0.655 

µm) and (b) the respective fraction images of soil, (c) vegetation and (d) shade components derived 

from the LSMM in a small area of the Pantanal biome. The figures (e), (f) and (g) show photographs 

collected in the field campaign, representing areas such as bare soil, vegetation, and water body, 

respectively, and thus the areas with higher brightness represent the highest proportion of a specific 

component within a pixel. 

 

To validate the results, photographs 

collected in the field campaign were also used. 

Thus, Figures 6e, 6f and 6g present details of soil, 

vegetation, and water body, clearly 

demonstrating the relationship between the 

presence of a specific target in the image and its 

enhancement in the fraction images. Thus, the 

soil fraction image contains information on bare 

soil. Vegetation fraction image shows variations 

in gray levels which may represent differences in 

vegetation types found in the Pantanal biome.  

Likewise, the shade fraction image highlights 

rivers and water bodies, making it possible the 

use in a multi-temporal scale to highlight the 

flooded areas in the biome. 

One of the potentialities proposed in this 

paper is the possibility of extending the 

information contained in fraction images 
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obtained at the local both on regional and global 

scales. Figure 7a shows a colored composition for 

the August month. The colors red (R), green (G), 

and blue (B) were respectively assigned to the 

soil, vegetation, and shade fraction images 

generated for the entire state of Mato Grosso 

using the 1 km PROBA-V product and 

endmembers estimated by combining the 

products. The color composition in Figure 7b and 

the grayscale fraction images in Figures 7c, 7d 

and 7e represent the result to the Pantanal of 

Mato Grosso state in detail. 

 

 

 
Figure 7 – (a) RGB composition using soil, vegetation and shade fraction images, respectively, derived 

from the LSMM and applied to the Mato Grosso state and (b) Pantanal of Mato Grosso in detail, using 1 

km spatial resolution in August, 2015. (c), (d) and (e) individually represent the soil, vegetation, and 

shade fraction images in the biome, respectively, and the areas with higher brightness represent the 

highest proportion of the component within a pixel. 
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Observing separately the colored 

composition (Figure 7a), there is an 

enhancement of the red areas with exposed soil. 

It is known that Mato Grosso is considered as one 

of the main producing states of cotton, soybeans, 

and corn in Brazil. The state’s agricultural 

calendar shows the end of the cotton harvest in 

mid-August and September, the same time that 

the soil is prepared for corn and soybean 

cultivation (EMPAER, 2018). This fact justifies, for 

example, areas in red destined for agriculture and 

also areas without vegetation. 

At the same time, the colored 

composition highlights vegetated areas in green, 

such as forested areas of the Amazon and in blue, 

the areas occupied by water bodies, especially 

observed in the limits of the Pantanal biome 

(Figure 7b). It is noteworthy that the variation in 

tones of the colored composition may be 

associated with different types of vegetation, soil 

and flood dynamics in the biome and in the state 

as a whole. Together, this information can 

aggregate the use of thematic classifiers to map 

land cover and land use in subsequent analyzes. 

This work suggests that using the linear 

spectral mixing model to explore the combination 

of different spatial resolutions images, and then 

extending the information contained in fraction 

images on a local scale to extensive areas is a 

viable alternative. The method presented allows 

the use of the LSMM in low spatial resolution 

images, which are often used in regional and 

global studies, without the need to select pure 

pixels in the own image study, in view of the 

lower probability of finding them. 

 

4. CONCLUSIONS 

The technique used in this work 

demonstrates the potential of the linear spectral 

mixing model for linking information from 

sensors with different spatial and spectral 

resolutions. The analyzes allowed to observe that 

the spectral responses estimated improved the 

results regarding error, variability, and the 

identification of component proportions, since 

the undue choice of pixels considered as pure in 

low spatial resolution products may overestimate 

or underestimate the results. 

Thus, one of the main applications for 

the use of this method is in the possibility of 

extending the information of fraction images 

contained in the local scale to studies on regional 

and global scales using a combination of different 

products. Moreover, it is also proposed to apply 

this method to products of different sensors with 

similar temporal resolutions. 
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