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Abstract 

In this study, we present a toolbox built in ArcGIS, by using ArcPy, and designed to automatically detect trees 

in high resolution data obtained from Unmanned Aerial Vehicles (UAV). The toolbox (TreeDetection) contains 

a tool called TreeDetect, which requires three parameters: a raster input, a conversion factor, and an output 

folder. Three other optional parameters can be changed to improve the detection according to the characteristics 

of the forest and the raster source. The TreeDetect tool was tested in three study sites: one young Eucalyptus 

plantation; adult Eucalyptus and Pinus stands; and one Mixed Hardwood natural forest. Distinct raster inputs 

were also evaluated according to the data availability in each site. The tool was considered efficient to detect 

trees in the three study areas. The detection accuracy was lower in the natural stand, as expected considering 

the complex structure of this forest type. All the raster input provided satisfactory results. However, in 

the homogeneous stand, the Digital Surface Model (DSM) was not effective as the spectral bands. 

Furthermore, research can be performed with emphasis in different sensors and band combinations, as well in 

the selection of parameters. 

Keywords: Toolbox, ArcGIS, forest management. 

 

Resumo 

TreeDetect: Detecção automática de árvores utilizando dados VANT. Neste trabalho, é apresentada uma caixa 

de ferramentas construída em ArcGIS, usando linguagem ArcPy, para detectar árvores de forma automática em 

dados de alta resolução obtidos por Veículos Aéreos Não Tripulados (VANT). A caixa de ferramentas é 

chamada TreeDetection, e apresenta uma ferramenta chamada TreeDetect, que requer três parâmetros 

obrigatórios: um arquivo raster de entrada, um fator de conversão, e uma pasta de saída. Outros três parâmetros 

opcionais podem ser alterados para melhorar os resultados da detecção de acordo com as características da 

floresta estudada e do tipo de arquivo de entrada. A ferramenta TreeDetect foi testada em três casos de estudo: 

uma área de plantio de Eucalyptus jovens; talhões de Eucalyptus e Pinus adultos; e uma área natural de floresta 

folhosa mista. Também, foram testados diferentes arquivos de entrada, de acordo com a disponibilidade de 

dados para cada área. A ferramenta foi considerada eficiente para detectar árvores nas três áreas de estudo. 

A acurácia de detecção foi menor na área de floresta natural, porém esse resultado era esperado devido à 

complexa estrutura desse tipo de floresta. Todos os arquivos de entrada promoveram resultados satisfatórios, 

porém o uso do Modelo Digital de Superfície (MDS) em um dos plantios homogêneos não foi tão efetivo como 

o uso das bandas espectrais. Futuramente, pode ser avaliado, de forma mais avançada, o uso de diferentes 

sensores e combinações de bandas, assim como a seleção de parâmetros. 

Palavras-chave: Caixa de ferramentas, ArcGIS, manejo florestal. 

 

 

INTRODUCTION 

 

The use of remote sensed data in forest management is a common practice (TANG; SHAO, 2015), since 

it allows the collection of a large amount of information about the environment with less human effort in field. 

This is even more important in large or inaccessible areas, where the field work is more exhausting and expensive 

(TOMPPO et al., 2008; KOCH, 2015). Besides that, the most common Remote Sensing sources have their own 

disadvantages, usually related to the price and concerning high resolution imagery and Lidar data 

(KE; QUACKENBUSH, 2011; BALDAUF; GARCIA, 2016; GOMES; MAILLARD, 2016), as well as limitations 

of temporal coverage and data availability, according to weather conditions for passive sensors 

(TANG; SHAO, 2015). Because of these limitations and the restricted knowledge on some Remote Sensing 

techniques, the traditional field forest inventories are still the most common practice in forest companies. 
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The development of Unmanned Aerial Vehicles (UAV) in the last years quickly started to be used for 

many forest applications, as the detection of individual trees (HUNG et al., 2012; WALLACE et al., 2016; 

MOHAN et al., 2017; NEVALAINEN et al., 2017). This technology is easily disseminated for many reasons, as 

for its low cost compared to similar technologies, possibility to obtain high resolution data, flexibility regardless 

to data collection, and the capacity to use many different sensors in the same vehicle according to the application 

(NEX; REMONDINO, 2014; SALAMÍ et al., 2014). 

Besides that, it is necessary to consider the challenges to use this high-resolution data, since it presents 

great variance in color patterns, shape and texture for the same object, and this can cause confusion in the 

traditional classification methods (KE; QUACKENBUSH, 2011; GOMES; MAILLARD, 2016). In order to 

facilitate the acquisition of the targeted information, it is possible to apply image preprocessing techniques, 

including the enhancement of differences between distinct objects, selection of the most appropriate band, 

radiometric corrections, image smoothing, and resampling (KE; QUACKENBUSH, 2011). 

There are many algorithms developed to detect trees on images or on Lidar point clouds, for instance: local 

maxima; region-based segmentation; boundary-following; region growth; watershed segmentation; voxel space; 

adaptive segmentation; and adaptive filtering (BRANDTBERG; WARNER, 2006; VAUHKONEN et al., 2012; 

FAVORSKAYA; JAIN, 2017). Many algorithms can be used in hybrid approaches. In some cases, fusions between 

imagery and Lidar point clouds are used to have spectral and 3D information (LECKIE et al., 2003; KOUKOULAS; 

BLACKBURN, 2005). This fusion process can be applied in data derived from UAVs, since those have the spectral 

information as well as the 3D terrain reconstruction in most of the cases. Besides that, there are few approaches 

created specifically for high resolution datasets, as the UAV imagery, as well as few automatic tools for tree detection, 

limiting the applicability of the developed methods to academic uses. 

Considering the capacities presented for UAV data collection, there is indication that this data can be used 

in many forest applications. For that, the first task to be developed is the single tree detection. Therefore, this study 

had the objective to create a toolbox able to detect individual trees in datasets obtained from UAV. The toolbox 

was created in Python language for ArcMap. 

 

MATERIAL AND METHODS 

 

Tool structure 

Any python toolbox is composed by one or more tools. Each tool has its own script and is composed by 

some parts (called Methods). The python toolbox created for this research is called TreeDetection, and it contains 

a tool called TreeDetect. For this tool, we used three methods: init (defining tool name and description), 

getParameterInfo (defining the necessary parameters), and execute (primary execution code). 

 

Parameters 

Before the execution of the sequence of tools, it is necessary to input some parameters, as presented in 

Figure 1. The first input is the raster that will be used for the tree detection. Therefore, it is a required parameter. 

The tool was created to be used with an orthomosaic generated by UAV images, but it can be replaced by other 

files, as a DSM (Digital Surface Model), a band composition, a band index, or other high-resolution raster file. 

 

 
Figure 1. TreeDetect tool parameters. 

Figura 1. Parâmetros da ferramenta TreeDetect. 
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The second parameter is the Cell size (or resolution) used in the processing. It has a default value of 0.5 m 

and it is optional to change the value. Smaller the value selected, more detailed is be the process. Thus, in some 

cases, this could be prejudicial because variations in the same canopy are treated as more than one tree. The third 

parameter is the Conversion value, a required parameter that can be either 1 or -1. If the value of -1 is selected, it 

inverts the structure of the raster. The fourth parameter is called Minimum size and it represents the minimum area 

that a tree crown has in the area. This parameter has a default value of 3 m2. 

The last two parameters are the Smoothing rate and the Output folder. The Smoothing rate is optional and 

has a default value of 2 m2, which is adequate to most homogenous plantations. However, it should be modified 

in some cases, as in natural forests with much color variation in the crowns of the trees. The Output folder is 

required and should to be a geodatabase (gdb). 

 

Execute 

The TreeDetect tool was created based on the watershed segmentation. In this script, a group of several 

geoprocessing tools already implemented in ArcGIS and extensions were applied, as presented in Table 1. 

 

Table 1. Tools used in the TreeDetect script and their respective Toolboxes. 

Tabela 1. Ferramentas utilizadas no código TreeDetect e suas respectivas caixas de ferramentas. 

Tool Extension or Toolbox Input (s) Output 

Times Spatial Analyst or 3D Analyst Parameters 1 and 3 Raster times 

Focal statistics Spatial Analyst Raster times, and parameters 2 and 5 Focal raster 

Flow direction Spatial Analyst Raster focal Flow direction 

Basin Spatial Analyst Flow direction Crown area 

Raster to polygon Conversion Crown area Crown area shp. 

Select Analysis Crown area shp. and parameter 4 Crown area min 

Zonal statistics Spatial Analyst or 3D Analyst Crown area min and Focal raster Minimum 

Equal to Spatial Analyst Minimum and Focal raster Min points 

Reclassify Spatial Analyst or 3D Analyst Min points Trees 

Raster to point Conversion Trees Trees shp. 

Intersect Analysis Trees shp. and Crown area min Tree detect shp. 

Delete identical Data Management Tree detect shp. Tree detect shp. 

 

The first tool executed in the script is the Times tool, which multiplies the input raster by the Conversion 

value. The Conversion Value parameter can be either 1 (when it is not necessary to invert the raster values) or -1 

(when it is necessary to invert the raster values). The inversion is necessary when the selected raster has higher digital 

values in the top of the trees and smaller values in the surroundings. It happens, for example, in a DSM, in which the 

trees have a higher value (altitude) in relationship to the surroundings. For the correct execution of this script, it is 

necessary that the tree tops have a smaller value than the surroundings, since tools based on the watershed 

segmentation will be applied. The digital value is highly variable according to different cameras, bands, and possible 

raster combinations, so the user can select between two values that can be used in the Times tool. 

The second tool is the Focal statistics, used to highlight the lowest cell values in relation to the 

surroundings. The lowest cell values correspond to the tree tops. The tool searches the minimum value in a circle 

neighborhood, and the radius is defined by the Smoothing rate parameter. The lowest value in the search radius is 

applied to all cell in this same radius. This step is highly influenced by the Smoothing rate. We suggest that the 

default value (or a similar value) should be used in areas with homogeneous plantations, since the trees have 

homogeneous characteristics. In natural forests, it is suggested to use a higher value as Smoothing rate to smooth 

variations within the same tree crown. Besides that, there is not a formula to calculate the optimal parameter, and 

the user should try different values and analyze which one provides the best result. 

The next tool applied is the Flow direction, which results in a raster that represents the flow direction out 

of each cell. In the Flow direction, each cell of the output raster is represented by a number that corresponds to 

one of the eight possible neighborhoods of each cell, considering that each direction has one value (ArcGIS, 2017). 

By using the Flow direction results, the tool Basin is applied. This tool delimitates the watersheds by identifying 

the ridge edges in the Flow direction raster. In this case, the result is approximately the tree crown area and it 

includes ground areas, if they are visible among the trees. 

These crown areas are converted to polygons by using the tool Raster to polygon. Then, these polygons 

are selected based on their areas by the tool Select, and only polygons above a minimum value are utilized in the 

next steps. The minimum area is defined by the parameter 4 (minimum size), and the value of 3 m2 is used if the 

user does not define one. This selection enables the exclusion of small fragments created close to the edges or in 
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big gaps in the canopy, for example. From this selection, a shapefile that represents all possible crown areas above 

the minimum size is created. 

The Zonal statistics tool is employed to locate the smallest value of the area for each crown area. For that, 

the minimum statistic of the areas delimited in the focal statistics is applied. By executing this tool, a raster that 

represents the lowest values (more than one if the same value repeats) of each tree area is obtained. The lowest 

values represent the areas of the top of the trees.  

The Equal to tool is used to identify cells that have the same value on the raster resulted from the Focal 

statistics and the Focal raster. Only the minimum positions have the same value. These return 1, whereas the other 

cells return 0. The smallest cells, which return 1, are the tree tops. The ones with value of 0 are reclassified by 

using the Reclassify tool to NoData, whereas the one with value of 1 are converted to shapefile by using the Raster 

to point. The number of each crown area is included in the tree top points by the Intersect tool. The Delete identical 

tool is employed to delete possible extra points in the same tree area. These points occur if there is more than one 

cell with the same value in the same area. Concluding all the steps above, a shapefile that represents the top of all 

trees of the area is obtained. 

 

Case Studies 

Case study 1: young Eucalyptus tree plantations 

The study area is located in the municipality of Telêmaco Borba (state of Paraná, Brazil) and is property 

of the pulp and paper company Klabin S/A, which provided the data for this study. The study area is divided into 

three stands with an Eucalyptus grandis W. Hill and E. urophylla S.T. Blake hybrid, planted in February 2014 

(18 months by the survey date) in a grid of 3.75 x 2.4 m. 

The UAV used was an eBee-Ag (Sensefly) with RGB camera (Canon PowerShot ELPH 110 HS). 

This camera has a resolution of 16MP, a sensor size of 6.2 x 4.6 mm (4608 x 3456 pixels), pixel size of 1.33 μm, 

and focal length of 4.37 mm. Forty-one images were taken to cover an area of 117 ha, using approximately 170 m 

of flight height and 70% of overlap. The imagery processing was done by using Postflight Terra 3D (3.1.45). 

The options selected in the initial step were: full keypoints; image scale 1; automatic number of keypoints; and 

standard calibration. In the dense cloud step, we selected: multiscale; ½ image size; optional point density; and 

three minimum matches. The DSM was generated by the filter noise, and it was smoothed by a sharp surface. 

The DSM and orthomosaic archived a resolution of 16.21 cm/pixel. Ground control points were not available, but 

it was acceptable in order to obtain the total number of trees. 

The parameters selected in the TreeDetect were: orthomosaic input raster; cell size of 0.5; conversion 

value of 1; minimum size of 5; and smoothing rate of 2. The algorithm was applied for one stand at a time after 

clipping the orthomosaic in the shape of the stands. TreeDetect algorithm used only the red band (first), since no 

calculation was performed and the algorithm uses only one band (or a mathematical combination). TreeDetect 

results were compared to the number of trees manually detected on the orthomosaic, as well as the estimated 

number from the plant spacing. To evaluate the results, Qui-square (χ2) was also applied. In order to apply the 

χ2 test, the number of trees observed in the images was considered as the expected value in three different stands. 

The values observed were obtained by the algorithm TreeDetect. 

 

Case study 2: adult Eucalyptus and Pinus tree plantations 

In this case study, two large commercial stands of approximately 3 ha each were used. The stands are also 

located in the municipality of Telêmaco Borba (state of Paraná, Brazil) and are property of the pulp and paper 

company Klabin S/A. One stand is formed of an Eucalyptus grandis and E. urophylla hybrid tree species, planted 

in a 3.75 x 2.4 m spacing and of 5 years old. The other stand is formed of Pinus taeda L. trees of 7 years old, 

planted in a 2.5 x 2.5 m spacing. The trees are planted in lines, and the canopy is closed. 

The imagery collection was performed by the UAV eBee-Ag, with different cameras for each. For the 

Pinus stand, a RGB (Red, Green and Blue) Sony DSC-WX220 and a Near Infrared (Red, Green and NIR) 

Canon S110 NIR were used. For the Eucalyptus stand, a Multispectral camera (Green, Red, Red Edge 

and NIR) Multispec 4C was used. The RGB camera has resolution of 18.8 MP, sensor size of 6.16 x 4.62 mm 

(4896 x 3672 pixels), focal length of 4 mm, and pixel size of 1.26 μm. The NIR camera has resolution of 12 MP, 

sensor size of 6.23 x 4.69 mm (4048 x 3048 pixels), focal length of 5 mm, and pixel size of 1.54 μm. 

The Multispectral camera has resolution of 1.2 MP, sensor size of 4.8 x 3.6 mm (1280 x 960 pixels), focal length 

of 4 mm, and pixel size of 3.75 μm. 

Each camera required a different flight. The flight height and overlap were the same for all cameras, 

approximately 170 meters above ground and 85% of lateral and longitudinal overlap, as well as the double grid 

acquisition (to cover the same, it was twice in perpendicular flight directions). In the Pinus stand, an area of 161 ha 

was covered by 554 pictures of the RGB camera, and 128 ha by 648 pictures of the NIR camera. The multispectral 
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camera covered around 42 ha in the Eucalyptus stand, with 1880 pictures (images are taken for each band as one 

picture). Four ground control points were used in each stand, and their positions were collected by a RTK GPS 

(GPS Pathfinder ProXRT Receiver Trimble). 

The images were processed by the Pix4D Mapper (version 3.2.17). RGB and NIR have the same 

processing settings, and we selected: full keypoints; image scale 1; automatic number of keypoints; geometric 

verified matching and standard calibration in the initial step; multiscale; ½ image scale; high density; three 

minimum matches in the dense cloud step; and filter noise and no smooth surface in the DSM option. We obtained 

DSM and orthomosaic with resolution of 5.95 cm/pixel, RMS (root mean square) error of 0.039 m by the RGB 

camera, and resolution of 6.22 cm/pixel and RMS error of 0.041 m by the NIR camera. 

For the Multispec camera, the Rapid keypoints and Alternative calibration in the initial step of processing 

were changed, and the optimal point cloud density in the dense cloud step was selected. The other parameters were 

the same as the ones from the RGB and NIR cameras. In the Multispec, the camera and sun irradiance were 

corrected by using the values of reflectance from a calibration target. The correction enables to generate a 

reflectance map of each band from the Multispec camera, instead of one orthomosaic. The resolution of the 

reflectance maps of each band from the Multispec was 12.09 cm/pixel, and the RMSE error was 0.067 m. 

Different combinations of bands were tested for each stand, as well as different parameters, according to 

the raster input. For the Eucalyptus stand, three options were used: Red Edge band only; the sum of multispectral 

bands; and a Normalized Difference Vegetation Index (NDVI). For the TreeDetect, we selected for the three cases: 

cell size of 0.5; conversion value of -1; minimum area of 3 m2; and smoothing rate of 2. For the Pinus stand, three 

options were also used: the sum of RGB bands; NIR band only; and DSM generated from the NIR camera. For the 

sum of RGB bands and the NIR band, we selected: cell size of 0.5; conversion value of -1; minimum area of 2 m2; 

and smoothing rate of 2. For the DSM, we selected: cell size of 0.05; conversion value of -1; minimum area of 1; 

and smoothing rate of 1. 

TreeDetect results were compared to field data inventory, in which all individuals were measured (height 

and DBH – Diameter at breast height) and accounted by the line and position in the line. The trees were plotted in 

the orthomosaic by using the field data. Some trees were not found (such as trees with broken trunks, or natural 

regeneration trees). Thus, the total number of trees measured in the field and observed in the orthomosaic were not 

the exact same number. 

 

Case study 3: natural mixed hardwood forest 

The third case study was performed in a mixed hardwood forest, part of the West Virginia University 

Research Forest (WVURF), located in the city of Morgantown, state of West Virginia, USA. One stand of 

approximately 11 ha was selected. The UAV imagery collection occurred during the fall season of 2016. The UAV 

used was a Phantom 3 professional, equipped with a RGB camera (FC300X). The camera had resolution of 4 K, 

sensor size of 6.13 x 4.73 mm (4600 x 3000 pixels), focal length of 3.61 mm, and pixel size of 1.57 μm. The flight 

covered 30.2 ha in approximately 70 m above ground, using 85 x 80% of overlap, as well as double grid acquisition. 

1571 images were taken. 

Eight points were used as ground control. They were positioned in open areas (road and gaps in the 

canopy), and the positions were recorded by an iGage X900S-OPUS GNSS static receiver. The images were 

processed by the Agisoft Photoscan Professional Version 1.2.6. The alignment step was processed by using high 

accuracy, reference pair selection and no Key or Tie point limit. The dense cloud was generated by medium quality 

and moderate depth filtering. DSM with resolution of 9.97 cm/pix and orthomosaic of 2.49 cm/pix were obtained, 

and the RMS error was 0.491 m. 

CHM (Canopy Height Model) was used to detect the trees. It was generated by subtracting the DSM 

values with a DTM (Digital Terrain Model) generated from Lidar data with bare earth classified, which was 

obtained from the West Virginia GIS Technical Center website (http://www.wvgis.wvu.edu/lidar). The DTM had 

original resolution of 1 m, and it was resampled to the DSM resolution. Because of the difference in resolution, 

temporal variations and other factors, there were errors in the CHM (negative values) Therefore, this is not suitable 

for many applications. However, it can be used to exclude large variations in the terrain in this case. 

For the TreeDetect tool, the following values were applied: cell size of 0.1; conversion value of -1; 

minimum area of 10 m2; and smoothing rate of 15. The detection results were compared to field inventory done in 

2016, in 27 plots of 0.1 ha. All trees of 10.16 cm or more were identified by species and classified as Dominant (D), 

Co-dominant (CD), Intermediate (I), and Suppressed (S). Seven plots were excluded from the inventory since they 

intercepted regions with no forest, caused by the presence of a pipeline and an area with open field in this stand. 
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RESULTS 

 

Case study 1: young Eucalyptus tree plantations 

The results for case study 1 are presented in Table 2 and Figure 2. Figure 2 also highlights areas with 

major errors of each plot. The results exhibited good capacity of the TreeDetect to detect small trees with open 

canopy, since the errors in the number of trees were 4.69%, in maximum. 

The algorithm overestimated the number of trees in the plots. Major errors occurred in tan erosion area 

(T1) and spots with weeds growing (T2). In the stand T3, there are areas with many missing trees. It is possible 

that some of the trees are too small to be correctly visualized, or they can be weeds instead of Eucalyptus trees. 

Despite the errors, the TreeDetect algorithm calculated the total number of trees closest to the true value 

instead of the estimate from the plant spacing. In the stands T1 and T3, the plant spacing overestimated the total 

number of trees by approximately 10%, whereas the TreeDetect overestimated by less than 5%. This difference 

can result in a significant improvement in the production estimative. Furthermore, these results are better than the 

ones for automatic detection from Artificial Neural Network in the same study site (RUZA et al., 2017). 

The number of trees detected by the TreeDetect presented non-significant difference in relation to the visual 

tree count. 

 

Table 2. TreeDetect detection results for young Eucalyptus trees. 

Tabela 2. Resultados da detecção da ferramenta TreeDetect em árvores de Eucalyptus jovens. 

Stand Visual tree count 
Detected: TreeDetect  Plant spacing (vs visual count) 

n° Diff. (n°) Diff. (%) χ2 n° Diff. (n°) Diff. (%) 

T1 1770 1831 -61 3.45 2.10 1933 -163 9.21 

T2 2170 2192 -22 1.01 0.22 2199 -29 1.34 

T3 1321 1383 -62 4.69 2.91 1458 -137 10.37 

Total 5261 5406 145 2.75 5.24ns 5590 329 6.25 
ns: non-significant by the Qui-square test at 95% probability. 

 

 
Figure 2. TreeDetect results compared to manual detection.  

Figura 2. Resultados da detecção da ferramenta TreeDetect comparados com detecção manual. 

 

Case study 2: adult Eucalyptus and Pinus trees plantations 

The detection results are presented in Figure 3 and Table 3. They were compared to the number of trees 

plotted in the image. The results were considered as very good for the Eucalyptus stand for all raster inputs. 

The sum of all Multispec bands presented better results compared to only using the Red edge band and the NDVI. 

 

Table 3. Comparison of TreeDetect results to field measurements and manual count on images of adult Pinus 

and Eucalyptus trees. 

Tabela 3. Comparação dos resultados da ferramenta TreeDetect com a mensuração em campo e a contagem nas 

imagens para árvores de Pinus e Eucalyptus adultas. 

Stand Band / camera 
Field Image Detected (vs image observed) 

inventory observed num. Diff. Diff. (%) 

Eucalyptus Sum/Multispec 2,093 2,050 2,052 -2 0.10 

 Red edge/Multispec 2,093 2,050 2,104 -54 2.63 

 NDVI/Multispec 2,093 2,050 2,111 -61 2.98 
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Pinus Sum/RGB 4,173 3,899 3,871 28 -0.72 

 NIR band/NIR 4,173 3,899 3,758 141 -3.62 

 DSM/NIR 4,173 3,899 2,711 1,188 -30.47 

 

 
Figure 3. TreeDetect detection results compared to real tree positioning for Pinus (a) and Eucalyptus (b) stands, 

by using different rasters as input.  

Figura 3. Resultados de detecção da ferramenta TreeDetect em relação à posição real das árvores para os talhões 

de Pinus (a) e Eucalyptus (b), utilizando diferentes arquivos raster de entrada. 

 

The use of the DSM for the Pinus stand did not provide such satisfactory results, even with higher 

resolution. Since the number of trees was underestimated, we believe the DSM does not recognize small trees. 

The use of one band provided satisfactory results and can be used to expedite the processing. These results show 

similar accuracy to those observed for Eucalyptus tree plantations by Gebreslasie et al. (2011) with IKONOS 

images and to those observed by Oliveira et al. (2012) with Lidar. 

 

Case study 3: natural mixed hardwood forest 

The results for the natural mixed hardwood forest are presented in Figure 4 and Table 4. 

 

 
Figure 4. TreeDetect detection results for the natural forest area. 

Figura 4. Resultados de detecção da ferramenta TreeDetect para a área de floresta natural. 

 

Because of the large variability of crown sizes and the overlap between crowns, the total number of trees 

per plot had a broad range. The plot 11 had a total of 31 trees measured at field, but 12 were suppressed, which 
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means that they may not be visible in the upper layer of the canopy even if some species have few remaining leaves 

in the fall season. 

 

Table 4. TreeDetect detection results compared to field count in mixed hardwood forest. 

Tabela 4. Resultados de detecção da ferramenta TreeDetect comparados à contagem em campo para a área de 

floresta nativa mista de folhosas. 

Plot 
Field inventory 

Detected 
Detected-total Detected-upper layer 

D CD I S Total D, CD, I Diff. Error (%) Diff. Error (%) 

1 2 8 2 7 19 12 18 -1 -5.3 6 50.0 

2 1 7 2 5 15 10 11 -4 -26.7 1 10.0 

3 1 6 3 6 16 10 16 0 0.0 6 60.0 

4 1 10 1 8 20 12 18 -2 -10.0 6 50.0 

5  5 4 7 16 9 12 -4 -25.0 3 33.3 

6   14 2 16 14 12 -4 -25.0 -2 -14.3 

7 1 7 6 8 22 14 17 -5 -22.7 3 21.4 

8 2 10 3 6 21 15 14 -7 -33.3 -1 -6.7 

9  7 3 12 22 10 16 -6 -27.3 6 60.0 

11 1 11 7 12 31 19 21 -10 -32.3 2 10.5 

12 3 8 7 3 21 18 16 -5 -23.8 -2 -11.1 

13 1 9 6 2 18 16 11 -7 -38.9 -5 -31.3 

14 1 9 2 6 18 12 12 -6 -33.3 0 0.0 

15  14 1 1 16 15 10 -6 -37.5 -5 -33.3 

16  20 2 5 27 22 18 -9 -33.3 -4 -18.2 

20  11  7 18 11 13 -5 -27.8 2 18.2 

21 1 3 2 2 8 6 12 4 50.0 6 100.0 

22  12 2 6 20 14 15 -5 -25.0 1 7.1 

25 1 5 9 4 19 15 8 -11 -57.9 -7 -46.7 

26 2 7 5 4 18 14 16 -2 -11.1 2 14.3 

Average 19 13 14 5 27.3 3 29.8 
D: dominant tree; CD: co-dominant tree; I: intermediate tree; S: suppressed tree; D, CD and I: upper layer. 

 

The greatest errors were observed when comparing the upper layer trees (D, CD and I) in the plots 9 and 

21 (details in Figure 4). It can be explained by the presence of suppressed trees, since both plots have a high total 

number of trees. Plot 3 also presented 60% of detection error when considering the number of trees in the upper 

layer, but the detection was 100% efficient for the total number of trees. Besides that, some trees may be still 

occluded, since there are many suppressed trees. 

Despite the errors in detection, the results were considered as good, since the detection of single trees in 

deciduous forests is more difficult due to the complex geometry of the crowns (VAUHKONEN et al., 2012) and 

their overlap (GULBE et al., 2013). Comparable results were observed by Vauhkonen et al. (2012). They noticed 

that the success rate in detecting deciduous forest single tree ranged from 43 to 92%, considering different 

algorithms within two ALS datasets. Also, the results can be compared to the range on accuracy of 50 to 71% 

using combinations of Lidar and multispectral images in mixed forest, observed by Gulbe et al. (2013). 

 

DISCUSSION 

 

The TreeDetect tool showed to be efficient to detect single trees in the three experimental sites: young 

and well separated Eucalyptus plantations; adult Pinus and Eucalyptus tree plantations with closed canopy; and 

mixed hardwood natural forest. The results varied in accuracy depending on the areas. The largest errors were 

observed in the mixed hardwood natural forest (as expected), since this type of forest is extremely complex 

(VAUHKONEN et al., 2012; GULBE et al., 2013; TANHUANPÄÄ et al., 2016). 

In the study sites, diverse raster sources were applied for the detection, and it was observed that many 

options can be applied with the tool. Overall, using one band can be as good as using a sum of many bands, as 

long as a band with good vegetation characterization is used, such as the NIR band (KE; QUACKENBUSH, 2011). 

In the future, the effect of each band in tree detections in different forest types should be evaluated, as well as the 

possibility of index and combinations with DSM or CHM. The raw point cloud derived from UAVs can also be 

evaluated in terms of detection. 
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The use of CHM as an input source presented satisfactory results in the natural forest. However, using only 

DSM in the plantation site provided larger errors than using the spectral bands. The DSM may not model the crowns 

in dense plantations so well due to the overlap between some close crowns, but it can be a good source in areas as the 

mixed forest, since the upper layer of the canopy presents large crowns that can be delineated by using only the CHM, 

or even DSM if the area is relatively flat. The use of the CHM in mixed forest is also important, since the large 

variation on colors observed in the spectral bands can confuse the detection. 

Because of these different scenarios, the tool was constructed with parameters that can adjust the detection 

based on the forest type and source data. For example, it was observed that the resolution needs to be set close to 

the maximum (considering the resolution of the input file) if DSM or CHM were used, whereas the resolution 

should be reduced to minimize variations and facilitate the process if the spectral bands were used. Another 

crucial factor is the selection of the smoothing rate (PANAGIOTIDIS et al., 2016; TANHUANPÄÄ et al., 2016; 

MOHAN et al., 2017). It needs to be set to higher values in areas of extreme variances, as in the natural mixed 

forest, whereas this value should be small in plantations in order to not merge neighboring trees. 

In the future, more tools can be incorporate in the toolbox for crown delineation and possibly for tree 

height calculation, for example. These moves should be focused on using the tree detection points as seeds, both 

for tree height and crown delineation. However, further investigation is still necessary to create complete 

automated tools for these parameters. Another possible path is to create a complete database of parameters for 

forest types, possibly considering the most common UAV sensors used in forestry. 

 

CONCLUSIONS 

 

• The proposed tool can be applied to detect trees in UAV datasets with satisfactory results. 

• The tool can be applied in different forest types with satisfactory results, but some changes in the parameters 

are necessary in some cases. 

• It is possible to use distinct input files, but the detection results vary according to the choice. 
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