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Resumo

Nanocelulose obtida mecanicamente por diferentes intensidades em moinho coloidal. Pesquisas com
nanocelulose tém revelado um material com diversas possibilidades de aplicacdes e propriedades atraentes para
a criacdo de novos produtos sustentaveis. Este trabalho deve como objetivo avaliar a celulose nanofibrilada de
Eucalyptus sp. produzida a partir de diferentes intensidades no moinho coloidal. Polpa Kraft deslignificada de
Eucalyptus sp. foi utilizada para obtencéao da celulose nanofibrilada por processo mecénico no moinho coloidal
utilizando 2, 10 e 20 passes. As estruturas celuldsicas foram observadas por imagens de microscopia eletrénica
de varredura e de transmissdo. Foram produzidos trés filmes por tratamento utilizados para determinar os
indices de cristalinidade. J& a analise de viscosidade avaliou a influéncia das intensidades do processo sobre a
celulose nanofibrilada. As analises microscopicas mostraram que o tratamento mecanico gerou a redugdo no
didmetro das fibras, promovendo a exposicdo das microfibrilas, para todos os tratamentos avaliados. As
nanofibrilas apresentaram didmetro médio de aproximadamente 30 nm e ndo foram observados diferencas na
conformagdo e dimensdes das estruturas para os diferentes nimeros de passes. O processo mecanico para
obtencdo da celulose nanofibrilada foi responsavel pela queda nos valores de cristalinidade e viscosidade da
celulose nanofibrilada quando comparada a celulose original. Os valores indicaram que a reducdo foi maior
com o aumento da intensidade do processo mecanico.
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Abstract

Recent advances in nanocellulose technology have enabled production of materials for various applications
with attractive properties. The aim of this work was to analyze the nanofibrillated cellulose of Eucalyptus sp.
obtained by different grinding intensities. Delignified Eucalyptus sp. kraft pulp was used to obtain the
nanofibrillated cellulose in the mechanical grinding process, with 2, 10 and 20 passes. Images were captured
by scanning and transmission electron microscopy to observe cellulose structures. For each mechanical
treatment, three films were produced, which were used to evaluate the crystallinity index. Viscosity
measurement evaluated the influence of mechanical treatment on nanofibrillated cellulose. Microscopic
analysis showed that the mechanical process promoted fiber defibrillation, resulting in the exposure of
microfibrils in all treatments evaluated. Differences were not verified in the conformation and dimensions of
the structures for the different numbers of passes, and the nanofibrils presented average diameter of
approximately 30 nm. The mechanical process to obtain the nanofibrillated cellulose reduced of the crystallinity
index and the viscosity of the nanofibrillated cellulose compared to cellulose before processing. The average
particle size declined with rising number of grinder passes.

Keywords: cellulose, nanotechnology, nanostructured film, density, crystallinity.

INTRODUCTION

Cellulose is a renewable polymer abundantly found in nature that has been widely studied for its
properties such as low cost, biodegradability and potential application in various areas (NAKAGAITO et al.,
2009). One of the products obtained from cellulose, through mechanical, chemical, physical and/or biological
processes, is nanocellulose, which has potential for application in new products in many areas, such as pulp and
paper (BALEA et al., 2018), packaging (HERRERA et al., 2016), composites (CHING et al., 2015;
KARGARZADEH et al., 2017) and drugs (ELIZONDO et al., 2012).

Nanofibrillated cellulose (NFC) is a type of nanocellulose obtained from cellulosic pulp using mechanical
processes, and may or may not undergo some type of chemical or enzymatic treatment. Cellulose nanofibrils have
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crystalline regions alternating with amorphous regions in their structure, with approximate length in micrometers
and diameters that can vary from 1 to 100 nm (BRINCHI et al., 2013; ABDUL KHALIL et al., 2014).

One example of the methods for obtaining NFC is by mechanical defibrillation using a grinder. The
grinder consists of a rotating disk and a fixed disk with an adjustable opening between them. Through mechanical
contact, the cellulose fibers are defibrillated by the shear forces generated by the silicon carbide stones
(POTULSKI et al., 2016). In this way, there is exposure of microfibrils and microfibril aggregates of cellulose
that have diameters of tens of nanometers, producing a material called nanofibrillated cellulose (MISSOUM et al.,
2013).

In the pulp and paper sector, nanofibrillated cellulose has been studied as an additive to improve the
physical and mechanical properties of different paper types. Research shows that the addition of nanofibrillated
cellulose in small percentages results in increased paper density and up to 100% increase in tensile strength
(VIANA et al., 2018).

In function of its unique characteristics, such as low thermal expansion, excellent mechanical and optical
properties, high strength, high rigidity and low weight, NFC has been evaluated for the development of
nanostructured films for application in special and functional packaging, especially in the food industry (BRODIN
etal., 2014; FRANCO et al., 2019).

NFC's versatility increases its application, making it a promising material for investments in research and
development. There is a wide range of known applications of nanofibrillated cellulose, but there are still many
likely uses that remain unknown or little explored. Variations in the parameters of the NFC production process,
different lignocellulosic sources and the possibility of combining this material are factors that still need to be
studied.

Regarding planted forest species, the Eucalyptus genus stands out in Brazil, given the high productivity
rates and good adaptation to much of the country’s territory. The wood is mainly applied in the pulp and paper
industry.

Therefore, the objective of this work was to evaluate the nanofibrillated cellulose of Eucalyptus sp.
obtained by different grinding intensities.

MATERIAL AND METHODS

Obtaining Nanofibrillated Cellulose

Delignified kraft cellulose pulp (Kappa 3.5) from Eucalyptus sp. was initially dispersed using a
disintegrator for five minutes, thus obtaining a suspension of homogenized fibers. One portion of the pulp was
applied for direct sheet formation (control treatment: 0 passes) and another portion was used to obtain
nanofibrillated cellulose.

The ground nanofibrillated cellulose was obtained using a frequency of 1500 rpm and a kraft pulp
concentration of 1% (diluted with water). The material was submitted to different mechanical processing
intensities (2, 10 and 20 grinder passes), and from each treatment samples were taken to make the films and
characterize the material.

Preparation of nanofibrillated cellulose films

The NFC films, produced from 2, 10 and 20 grinder passes, were produced by depositing the material on
a nylon mesh with the aid of a vacuum pump to eliminate excess water. After filtration, the films were dried in a
paper machine with a temperature of 90 °C and constant pressure of 80 KPa. Sheets were also made from the raw
cellulose pulp (0 passes) under the same conditions as nanocellulose films.

For each treatment (0, 2, 10 and 20 passes), three films were produced, totaling 12 films, which were
conditioned in a climate-controlled room with temperature of 23 + 2 °C and a relative humidity of 50 + 2%.
Subsequently, the samples were used to determine the crystallinity index. The cellulose pulp sheets were also
analyzed by scanning electron microscopy (SEM).

Microscopic characterization

In order to visualize the dimensions and morphology of the fibers of the kraft cellulose (control), scanning
electron microscopy (SEM) was performed in an FEI - Quanta 450 FEG microscope. In turn, the characterization
of nanofibrillated cellulose structures and dimensions was performed by transmission electron microscopy (TEM)
using a JEOL JEM 1200EX-II transmission electron microscope with resolution of 0.5 nm. The images were
acquired after depositing a drop of nanofibrillated cellulose aqueous solution in the sample holder and drying at
room temperature to form a film.
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Crystallinity index

The index was determined before and after the grinder defibrillation process. A Shimadzu XRD-7000 X-
ray diffractometer was used together with the XRD-6100/7000 v 5.0 software. The sweep speed adopted was
1°/min, ranging from 3 to 45°, Cu-Ka radiation with 0.155418 nm wavelength and 40 kV voltage with 20 mA
current. For each treatment, three crystallinity index values were obtained, which were determined with the method
suggested by Segal et al. (1959).

Viscosity

To this analysis for cellulose and CNF samples, cupriethylenediamine (CED) was used for dissolution,
followed by measurement with a capillary viscometer according to TAPPI T 220 om — 01. To evaluate the effect
of mechanical defibrillation on viscosity, three values were obtained per treatment.

Statistical analysis

The crystallinity and viscosity index values obtained were subjected to analysis of variance with
comparison of means by the Tukey test at 5% probability. Previously, the Grubb test was performed to identify
outliers and the normality test, and Bartlett's test to determine homogeneity of variances. All the tests were
performed with the Statgraphics Centurion XVI® software, considering 5% significance.

RESULTS

Nanofibrillated cellulose and films

After the passage of the kraft pulp through the grinder, the material acquired a gel appearance (Figure 1),
as already verified in other works (BESBES et al., 2011). Figure 1B shows images of nanostructured films.

4] a

Figure 1. A) Nanofibrillated cellulose; B) Nanostructured cellulosic films.
Figura 1. A) Celulose nanofibrilada; B) Filmes nanoestruturados de celulose.

Microscopic characterization

Scanning electron microscopy (SEM) analysis allowed observation of the structures and dimensions of
Eucalyptus sp. pulp used to obtain nanofibrillated cellulose (Figure 2). The fibers presented average diameters
around 12.00 um and length reaching up to tens of millimeters (Figure 2).
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Figure 2. Images of Eucalyptus sp. fibers obtained by scanning electron microscopy (SEM) A) Increase of 500
times / 100 um Scale. B) Increase 2k times / Scale 40 pum.

Figura 2. Imagens das fibras de Eucalyptus sp. obtidas por microscopia eletrdnica de varredura (MEV) A)
Aumento 500 vezes / Escala 100 pm. B) Aumento 2k vezes / Escala 40 um.

Transmission electron microscopy (TEM) analysis showed the nanofibrils in the three treatments and
their fibrillary conformation (Figure 3), confirming the obtainment of nanofibrillated cellulose by mechanical
defibrillation in the grinder.
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Figure 3. TEM images of cellulose nanofibrils obtained by A) 2 passes, increase 4k times / Scale 2. B) 2 passes,
increase 10k times / Scale 500 nm (width of fibers). C) 10 passes, increase 4k times / Scale 2. D) 10
passes, increase 10k times / Scale 500 nm (width of fibers). E) 20 passes increase 4k times / Scale 2.
F) 20 passes, increase 10k times / Scale 500 nm (width of fibers).

Figura 3. Imagens de nanofibrilas de celulose obtidas por microscopia eletronica de transmissdo (MET) A) 2
passes, aumento 4k vezes / Escala 2. B) 2 passes, aumento 10k vezes / Escala 500 nm (largura das
fibras). C) 10 passes, aumento 4k vezes / Escala 2j1. D) 10 passes, aumento 10k vezes / Escala 500nm
(largura das fibras). E) 20 passes aumento 4k vezes / Escala 2p. F) 20 passes, aumento 10k vezes /
Escala 500 nm (largura das fibras).

The values corresponding to the diameters of cellulose nanofibrils ranged from 21 to 44 nm for
nanofibrillated cellulose obtained with 2, 10 and 20 passes, respectively. With nanofibrillated cellulose defined as
structures with diameters smaller than 100 nm, 2 passes through the grinder were sufficient to form these structures.

Crystallinity index

Crystallinity indices observed for cellulose and nanofibrillated cellulose of Eucalyptus sp. are presented
in Table 1. The values ranged from 67.44 to 78.57% for cellulose and NFC obtained from 20 passes, respectively.
There was a decrease in the crystallinity index values with increase of the mechanical defibrillation process
intensity applied to the fibers. The mean values by the Tukey test allowed the formation of four different statistical
groups.

Table 1. Mean values and standard deviations of the crystallinity index of cellulose and nanofibrillated cellulose.
Tabela 1. Valores médios e desvios padrao do indice de cristalinidade da celulose e celulose nanofibrilada

Crystallinity index (%)

Treatment X o
Cellulose 78.57 a 1.00
Nanofibrillated Cellulose 2 passes 73.48b 0.55
Nanofibrillated Cellulose 10 passes 69.98 ¢ 0.31
Nanofibrillated Cellulose 20 passes 67.44d 0.90

LEGEND: XX corresponds to the mean and o corresponds to the standard deviation. Different letters show significant difference (p <0.05) by
the Tukey test.

The reduction in the cellulose crystallinity index with the higher number of grinder passes shows that the
defibrillation process caused damage to the cellulose crystalline structure, causing degradation to parts of this
region, as also observed by Kalia et al. (2014).

The crystallinity curve of Eucalyptus sp. and the nanofibrillated cellulose obtained from the different
grinder pass numbers is shown in Figure 4.
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Figure 4. X-ray diffraction of the nanofibrillated cellulose with different numbers of passes.
Figura 4. Difratograma de raios—X da celulose e celulose nanofibrilada com diferentes nimeros de passes.

The cellulose crystallinity curve has two peaks: one with lower intensity located in the 20 region of 15°
and the other with higher intensity in the 20 region of 22°, as can be seen in Figure 4. The amorphous halo is
located between the angles 18°<20<19°. The highest intensity peak represents the crystalline portion, i.e., the
cellulose was more crystalline the larger was the peak in the 20 region of 22°. It can be observed that pulp that
did not undergo mechanical defibrillation presented the most intense crystalline peak, and the intensity of the
crystalline peaks declined with increasing number of passes.

Viscosity

The viscosity of Eucalyptus sp. pulp and NFC decreased with increasing number of mechanical
defibrillation passes (Table 2).

Table 2. Mean values and standard deviations of the viscosity of cellulose and nanocellulose.
Tabela 2. Valores médios e desvios padrao da viscosidade da celulose e nanocelulose.

Viscosity (mPa.s)
Treatment —
X c
Cellulose Eucalyptus sp. 48,63 a 2,07
Nanofibrillated Cellulose 2 passes 36,77 b 2,03
Nanofibrillated Cellulose 10 passes 1483 ¢ 0,02
Nanofibrillated Cellulose 20 passes 11,29d 0,40
LEGEND: XX corresponds to mean and ¢ corresponds to standard deviation. Different letters show significant difference (p <0.05) by the
Tukey test.

Viscosity is influenced by the level of cellulose degradation due to chemical and physical processes, such
as pulping, delignification and mechanical defibrillation, and the degree of polymerization of the chains. Therefore,
the results showed that mechanical defibrillation significantly influenced the reduction of cellulose viscosity,
generating four distinct statistical groups.

Due to the separation of the cellulose fibrils during the mechanical defibrillation process, as observed in
the micrographs of nanofibrillated cellulose obtained by TEM, occurred a reduction in the size of the cellulose
molecules, significantly and negatively affecting their degree of polymerization, as can be observed by the drop in
viscosity values.

DISCUSSION

According to Besbes et al. (2011), the mechanical method of nanocellulose production leads to the
production of a gel with high water content, as verified in this study (Figure 1). Regarding fiber diameter, Boschetti
et al. (2015), when studying the characteristics of wood fibers from a Eucalyptus grandis x Eucalyptus urophylla
clone, found an average fiber diameter value of 15 pm. In this work, the SEM images demonstrated fibers with an
approximate average diameter of 12.00 um (Figure 2).

SEM and TEM images comparison revealed that the fiber dimensions decreased considerably after the
defibrillation process using the grinder. Henriksson et al. (2008) observed that the mechanical process of obtaining
nanofibrillated cellulose markedly changed the size of the cellulose fibers, since the process promotes the
defibrillation of the wood cell wall, exposing the cellulose fibrils and microfibrils.

Yano and Nakagaito (2004) observed that the mechanical process of obtaining nanofibrillated cellulose
can actually modify the structural and surface properties, forming a nano network through the intertwining of
nanofibrils due to the greater exposure of their active sites.

Regarding the average diameter found for cellulose nanofibrils (approximately 30 nm), no differences
were observed in function of the number of passes. The mechanical defibrillation of the fiber cell wall resulted in
obtaining nanofibrillated cellulose and exposure of structures with diameter smaller than the fibers, consisting of

FLORESTA, Curitiba, PR, v. 50, n. 1, p. 897 - 904 , jan/mar 2020

902 Lopes, M.S. et.al
Electronic ISSN 1982-4688

DOI: 10.5380/rf.v50 i1. 58690



microfibril aggregates (MISSOUM et al. 2013). Defibrillation exposed the innermost layers and increasing the
binding potential in NFC. Comparison of the images obtained by SEM (Figure 2) with those obtained by TEM
(Figure 3) indicates dimensional reduction of cellulose fibers.

Other authors have also observed the same trend, such as Wang et al. (2013), who obtained cellulose
nanofibrils with diameters between 30 and 100 nm after 20 passes through a grinder at 1600 rpm and consistency
of 1%.

In this study, the internal and external fiber defibrillation caused a reduction of crystallinity and viscosity
with increase in the number of grinder passes. Hai et al. (2013) also observed that mechanical defibrillation
treatment promotes irreversible fiber changes, such as reduced crystallinity and viscosity, due to internal and
external fibrillation phenomena.

Also regarding crystallinity, in a study of the properties of nanofibrillated cellulose, Iwamoto et al. (2007)
noted that the crystallinity index decreased with increasing number of passes (1, 3, 5, 9, 15 and 30 passes),
suggesting that the crystalline regions’ structures were degraded due to the defibrillation process, as occurred in
this study. Tonoli et al. (2012) observed the same trend of reduction in crystallinity index (from 69 to 60%) in a
study with Eucalyptus kraft pulp subjected to mechanical defibrillation.

In other viscosity studies, Iwamoto et al. (2007) observed, after mechanical defibrillation treatment, a
reduction in viscosity. The reduction in cellulose viscosity due to mechanical defibrillation treatment has also been
observed by other authors, such as Zimmermann et al. (2010), who found a reduction between 15% and 63% in
viscosity due to mechanical fibrillation, in a study of the properties of nanocellulose obtained from different raw
materials, and Pohler et al. (2010), who observed loss of viscosity in a study of the influence of fibrillation methods
on the characteristics of cellulose nanofibrils.

CONCLUSIONS

e The results of this work indicate it was possible to obtain nanofibrillated cellulose (NFC) from mechanical
processing of Eucalyptus sp. pulp in a colloid grinder using 2, 10 and 20 passes;

e Transmission electron microscopy analysis showed no differences in NFC structure and dimensions for the
different numbers of passes. The nanofibrils had diameters ranging from 21 to 44 nm;

e For the tests of crystallinity and viscosity indexes, the values found showed a reduction in these parameters
with increasing number of passes through the colloidal grinder. The results indicated that the mechanical
defibrillation process attacked the crystalline regions of cellulose and reduced the degree of polymerization
of cellulose chains.
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