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Resumo 

Influência da vaporização e de impregnação de nanopartículas de prata na taxa de secagem da madeira de 

Eucalyptus pellita F. Muell. O objetivo deste estudo foi avaliar o efeito da vaporização e da impregnação de 

nanopartículas de prata nas propriedades da madeira de Eucalyptus pellita. Para tanto, amostras de três regiões 

radiais da madeira, oriundas de três árvores, foram separadas em madeiras vaporizadas durante 12 e 24 h e 

madeiras imersas em solução de nanopartículas de prata com e sem aplicação prévia de vácuo (750 mmHg). 

Análises anatômicas, físicas e químicas da madeira foram realizadas a fim de avaliar o efeito dos tratamentos. 

A taxa de secagem da madeira foi determinada em faixas de umidade antes e após o ponto de saturação das 

fibras (PSF). Em geral, os tratamentos não modificaram as características anatômicas, densidade e 

permeabilidade da madeira nas três regiões radiais; contudo, a vaporização por 24h reduziu o teor de extrativos 

totais na madeira. Esses resultados contribuíram para que ganhos na taxa de secagem antes e após o ponto de 

saturação das fibras fossem obtidos. O efeito da impregnação de nanopartículas com vácuo e os dois períodos 

de vaporização resultaram nas maiores taxas de secagem, sendo que o tempo de 24h de vaporização obteve as 

melhores médias entre todos os tratamentos. A vaporização por 24h e a impregnação de nanoparticulas 

apresentaram efeitos positivos na taxa de secagem. 

Palavras-chave: secagem da madeira, nanotecnologia, permeabilidade da madeira. 
 

Abstract 

The aim of this study was to evaluate the effect of vaporization and impregnation of silver nanoparticles on the 

Eucalyptus pellita wood properties. For that, samples of three radial regions of the wood from three trees were 

vaporized for 12 and 24 hours and later on, they were immersed in solution of silver nanoparticles with and 

without application of vacuum (750 mm.Hg). Anatomical, physical and chemical analyzes of the wood were 

carried out in order to evaluate the effect of the treatments. The drying rate of the wood was determined in 

moisture bands before and after the fiber saturation point. Generally, the treatments did not modify the 

anatomical characteristics, permeability, and wood density in the three radial regions; however, the vaporization 

for 24h reduced the total extractive content in the wood. These results contributed in obtaining gains in the 

drying rate before and after the fiber saturation point. The effect of impregnation of nanoparticles with vacuum 

preceded by two periods of vaporization resulted in higher drying rates and the time of 24h stood out, resulting 

in the best averages among all treatments. The impregnation of nanoparticles had positive effects on the drying 

rate. 

Keywords: wood drying, nanotechnology, wood permeability. 
 

 

INTRODUCTION 

 

During the drying process it is necessary to minimize the undesirable effects to the factors related to the 

wood, such as the thermal diffusivity, the related physical properties with the dimensional movement, the drying 

tensions, density and wood permeability (TARMIAN et al., 2012; LUIS et al., 2017). 
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Drying rate is an important variable in wood behavior control during the drying process. In general, 

eucalyptus wood presents low permeability which is responsible for the significant humidity gradient and 

consequently tension formation that complicates its drying process (ELEOTÉRIO et al., 2014; REZENDE et al., 

2015). According to Bal and Bektas (2012), vaporization is a treatment possibility that modifies wood hygroscopic 

properties. The application of elevated temperatures initially causes carbohydrates degradation, mainly 

hemicelluloses and amorphus regions of cellulose chains (LUÍS et al., 2017), and by extended periods and higher 

temperatures. It modifies completely the wood permeability due to the appearance of microcracks in cellular wall 

(CALONEGO et al., 2014).  

Vapor treatment allows drying process optimization due to permeability increase, resulting from pits and 

vessels clearance (ALEXIOU et al., 1990). In such a way, the permeability is directly related to anatomical 

structures (BARAÚNA et al. , 2014), as well as with the balance of the water entrance and exit from the wood and 

the easiness of preservative fluid penetration (BREADS et al., 2013; GAO et al., 2015). 

The wood impregnation with silver nanoparticles has revealed a worthwhile process, promoting 

alterations in wood characteristics internally and superficially, providing, in some cases, improvements in 

durability as well as physical and mechanical properties (DASHTI et al., 2012; TAGHIYARI et al., 2012; 

MONTAZER, ALIMOHAMMADI, 2012; TAGHIYARI et al., 2014; TAGHIYARI et al., 2015; GAO et al., 

2015). 

Regarding what was exposed, it was evaluated the hypothesis that vaporization and impregnation of wood 

with silver nanoparticles promote modifications in the drying process, influenced by the material chemistry and 

anatomy. Thus, the objective of this experiment was to evaluate the wood technological behavior of Eucalyptus 

pellita F. Muell. treated previously with vapor and impregnated with silver (Ag) nanoparticles. 

 

MATERIAL AND METHODS  

 

Delineation, collection and preparation of the material 

For the acquisition of wood samples, three 22-year-old trees of Pellita Eucalyptus had been cutted, planted 

3 x 2m of spacing in a population located in the campus of the Rural Federal University of Rio De Janeiro - UFRRJ 

in Seropédica, state of Rio de Janeiro, Brazil (Lat 22.7604°, Lon 43.7078°). Samples of these trees were deposited 

in the xylotheque of the Forest Institute of the Rural Federal University of Rio de Janeiro, under the registration 

number: 7711, 7712 and 7713. After the cutting, the first log of each tree, with 4.5 m of length, was conducted to 

the primary cut with the assistance of vertical band saw in order to obtain planks with 3 inch radial thickness. After 

that, they were parted in pieces with the following dimentions: 33 x 2.5 x 5 cm (length x thickness x width), 

enclosing three radial positions from the pith towards the vascular cambium, denominated: Heartwood/Sapwood 

Transition Zone (HST), Intermediate Heartwood (ITH) and Internal Heartwood (INH)  

The samples of each region were distributerd in three groups: 1) No treatment samples; 2) samples treated 

only with nanoparticles; and 3) samples treated only with vapor (Table 1), totalizing 5 treatments per radial 

position. Vaporizarion was applied in the wood pieces in two constant periods with 12h and 24h of duration.  

 

Tabela 1. Delineamento experimental aplicado para as três regiões radias da madeira: Transição Cerne/Alburno 

(TCA), Cerne Intermediário (CIT) e Cerne Interno (CIN). 

Table 1. Experimental design applied to the three radiated regions of the wood: Heartwood/Sapwood Transition 

(HST), Intermediate Heartwood (ITH) and Internal Heartwood (INH). 

Radial position Vaporization (h) 
Impregnation with Nano 

Ag 
Vacuum Application Code 

External (HST) 

Intermediate (ITH) 

Internal (INH) 

N N - 
Control 

Sample 

N Y Y WV 

N Y N NV 

12 N - Vap12 

24 N - Vap24 
Nano Ag (silver nanoparticles); N = no; Y = yes; WV = nanoparticles impregnation with vacuum; NV = nanoparticles impregnation without 

vacuum; Vap12 = wood vaporization for 12h; Vap24 = wood vaporizarion for 24h. 

 

Vaporization and impregnation of nanopartículas 

Initially, the wood was vaporized using an horizontal autoclave with capacity of 0.18 m³ approximately, 

providing temperature and pressure control. The maximum temperature applicated was 98°C ± 2 and the relative 

humidity was 90% ± 5 proceeding from vapor generation through a boiler with the capacity of 12 Kg vapor/hour.  
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The sample impregnation with silver nanoparticles (NPs) was performed through simple immersion, 

using an acrylic chamber with 45 x 40 x 50 cm of dimention. The wood immersion in destilled water with silver 

NPs in suspension (22 ppm) occurred with and without initial vacuum application of 750 mmHg for five minutes. 

This solution consisted by silver NPs with size between 5 and 20 nm, which characterizes as colloid with 

exceptional stability and purity, i. e., without surfactants presence, avoiding precipitates formation. The wood 

remained submerged in the solution for 30 min. 

 

Anatomical analyses 

 For the anatomical analyses, a sample of 2 cm of thickness was removed from the extremity of each 

treatment parts. Later, this sample was cutted in 1 x 1 cm blocks for observation in Scanning Electron Microscope 

(SEM), aiming at the verification of nanoparticles impregnation and vascular contents and the obtention of 

transversal histological cuts in slide microtome. 

Semi-permanent blades were prepared to the measurement of the tangential diameter of the vessels 

through digital images captured by a monochromatic camera connected to the trilocular microscope.1 The used 

procedures followed the International Association of Wood Anatomy Committee (IAWA) (1989) recomendations.  

At first, the frequency of the vessels (tissue.mm-2) also followed the methodology proposed by IAWA 

(1989). For that, digitalized images from the transversal face of cilindrical samples were used, being prepared to 

the air permeability test. 

 

Chemical analyses 

For the determination of total extratives content, the procedures described by Abreu et al. (2006) were 

used, following an eluotropic sequence with the solvents: cyclohexane, acetate and methanol. Each extraction was 

performed during six hours. After each extraction the solution was placed in a rotary evaporator (Rotavapor) so it 

was possible, using vacuum and heat, to concentrate and weigh the extracted portion in each type of solvent. The 

contents of lignin (soluble and insoluble in acid), uronic acid, acetyl group and carbohydrates (xylan, mannan, 

galactan, arabinan and glucan) were determined according to the procedures proposed by Tappi T222 (2000), Scott 

(1995), Solar et al. (1987) and Wallis et al. (1996). Additionally, chemical analyses were performed in the 

vaporized and without treatment samples. 

 

Wood drying rate 

After vaporization and nanoparticle impregnation treatment, all samples went through a drying process 

in climatized room with temperature at 20°C ± 2 and relative humidity at 65% ± 5. During the drying process, at 

each 2 hours the mass and respective dimentions (width, thickness and length) of all samples were measured. This 

process was used in order to register water mass loss and it was 54 days long until the obtention of 15% humidity. 

According to the water mass loss registered after each 24 hours, it was determined the wood drying rate 

with the following equation: 

𝐷𝑟 =
𝑀𝑤𝑎𝑡𝑒𝑟 

𝑡. 𝐴
 

in which: Dr = drying rate for a determined humidity interval (kg/cm2.h), Mwater = water mass removed from 

wood (kg), t = drying time (h), A = evaporation area (cm²). 

 

The wood drying rate in each treatment was calculated using the area of a prism to the humidity intervals 

varying from saturated until 30%, from saturated until 15%, and from 30% until 15% humidity, according to the 

formula: 

𝑇𝐴 = 2(𝑎. 𝑏 + 𝑎. 𝑐 + 𝑏. 𝑐) 

in which: TA = total area (cm²); a, b and c = prismatic sample faces’ measures (cm). 

 

Wood density and permeability 

After the drying process, the prismatic samples were lathed in order to obtain cylindrical pieces with 2.0 

cm of diameter. Then, they were sectioned in 5.0 cm to obtain the sample to density and permeability test. 

The volume of cylindrical samples was obtained through Mercury (Hg) imertion in order to determine 

the aparent density (15%) of all samples already in balance and, after the permeability test, the basic density 

through the gravimetric method was performed. Mercury temperature was measured after each eight weighing 

with a digital thermometer (±0,2°C). 

To the permeability test the same dimentions described by other authors were adopted (BARAÚNA et 

al., 2014; TAGHIYARI et al., 2012; TAGHIYARI et al. 2015). To the final dimentipons, the samples had their 

longitudinal face waterproofed with maritime varnish with polyurethane base (two applications). Four flow meters 
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linked in series in the following scales and sequences were used to determine the wood permeability regarding 

atmospheric air: 0.04 to 0.5 LPM (Liters per Minute); 0.2 to 2.5 LPM; 0.4 to 5.0 LPM and 2.0 to 25.0 LPM. Then, 

in one of the flow meters series extremities it was connected a vacuum pump, and on the other extremity the 

samples were connected. The following equation was used for the determination of air wood permeability: 

 

𝐾𝑔 =
Q. L. Pi

A. ∆P. Pa
 

in which, Kg = gas permeability (cm³/cm.atm.s), Q = gas flow volume that travels the species (cm³/s), L = length 

of sample (cm); Pi = entrance pressure, the one from the environment (atm); A = transversal section area (cm²); 

ΔP = pressure difference (atm); Pa = average pressure in the sample (atm). 

 

Statistical analyses 

For the anatomical, chemical, density and drying rate variables, being accepted residues statistical 

requirements of normality (Shapiro-Wilk, at 5% of significace) and homogeneity of variance (Bartlett, at 5% of 

significace), methods of parametrical analyses (ANOVA) with completly randomized design were adopted, 

considering: three radial positions; two  vaporization periods (12 and 24 hours); and two nanoparticles 

impregnation levels (with and without vacuum impregnation). Tukey test was used for comparison of the averages 

at 95% level of reliability, all the times that nullity hypothesis was rejected. The statistical analysis used for 

permeability was the non parametric test of Kruskal-Wallis (95% probability) for the comparison of the average 

stages, due to the fact that the data did not follow a normal distribution (teste de Lillefors). After this test, the 

analysis by Dunn test was carried out in order to compare averages (95% probability). 

 

RESULTS  

 

Anatomical and chemical analyses  

Diameter, area and vessels analyses did not present significant differences (at 95% probability) between 

three radial regions, highlighting that statistically anatomical elements morphology did not modify in the radial 

direction of the wood and with vaporization use. At first, carbohydrates’ content reduced with vaporization period 

increasing, as well as total extractives’ content, which resulted in a total percentage increase of lignin in the 

samples (Table 2). 

 

Tabela 2. Análises anatômicas e químicas para as três regiões radias da madeira: Transição Cerne/Alburno (TCA), 

Cerne Intermediário (CIT) e Cerne Interno (CIN), submetidas a diferentes períodos de vaporização. 

Table 2. Anatomical and chemical analyzes for the three radiated positions of the wood: Heartwood/Sapwood 

Transition (HST), Intermediate Heartwood (ITH) and Internal Heartwood (INH), submitted to different 

periods of vaporization. 

Radial 

position 

Vapor 

(h) 
VD VF 

Total 

lignin 

(%) 

Uro Ace Ara Gal Gli Xil Man 
Total 

Extractives 

HST 

Control 128.2ns 9ns 36.63 3.01 1.5 0.1 1.2 43.0 8.8 1.1 6.91Ab 

12h 129.5 11 36.74 3.00 1.3 0.1 1.0 42.9 8.4 0.8 7.11A 

24h 131.7 10 38.51 2.88 1.1 0.1 1.0 41.6 7.8 0.6 5.36B 

ITH 

Control 126.1ns 10ns 35.50 2.81 1.2 0.2 1.1 42.7 8.7 1.1 11.0Aa 

12h 131.4 10 36.06 2.70 1.1 0.1 0.9 42.5 8.4 1.0 8.37B 

24h 128.2 10 36.74 2.57 0.8 0.1 0.9 43.5 8.1 0.6 7.3B 

INH 

Control 123.4ns 9ns 33.44 3.20 0.9 0.2 1.7 45.0 9.7 0.5 9.32Aa 

12h 124.6 10 34.52 3.30 0.9 0.1 1.4 43.7 8.6 0.4 9.57A 

24h 120.5 9 36.62 3.04 0.6 0.1 1.3 42.5 7.9 0.3 6.35B 
VD = vessels diameter (μm); VF= vessels frequency (nº.mm-2); Uro = uronic acids; Ace = acetyl group; Ara = arabinan; Gal = galactan; Gli = 

glucan; Xil = xylan; Man = mannan; Extra T = total extractives; ns: It express that there was not significative difference; (A B) Averages followed 
by equal capital letters indicate that there was not difference between vaporization period in each radial position, at 5% of significance; (a.b) 

Averages followed by equal lower-case letter indicate that there was not difference between positions to control sample, at 5% of significance. 

 

The total extractives content average for wood was 9.07%. A significant increase of contents was 

observed, when analyzing extractives content in pith towards the vascular cambium direction, because of the 

heartwood presence in the most interior wood parts. The vaporization caused a significant reduction in total 

extractives’ content. In vaporized wood for 12h only the intermediate heartwood (ITH) region presented reduction, 

while vaporization for 24h resulted in an average decreasing of 29,31% in total extractives’ content.  
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Air permeability and density 

Wood basic density in the three radial regions did not differ statistically, even when submitted to 

vaporization and nanoparticles impregnation. Density varied between 0.843 to 0.857 g/cm3. The results obtained 

to air permeability (k) of E. pellitta wood showed a variation between the radial position. The heartwood regions 

(INH and ITH) present values significantly inferior to the portions that contain sapwood (Table 3). Wood 

permeability in sapwood region was about 15 times superior to internal heartwood (INH) region. This denotes that 

capillary contents affect significantly fluids’ and gases’ flow. 

 

Tabela 3. Densidade básica e permeabilidade ao ar nas três regiões radiais.  

Table 3. Basic density and air permeability in the three radial regions.   

Treatment 
Basic density (g/cm3) Air permeability (K) 

HST ITH INH HST ITH INH 

Control 0.857 (0.22) 0.831 (0.02) 0.827 (0.05) 458.983* 50.128 30.989 

NV 0.834 (0.13) 0.827 (0.04) 0.825 (0.06) 448.803* 30.958 36.848 

WV 0.843 (0.09) 0.828 (0.03) 0.824 (0.06) 449.645* 71.727 27.462 

12h 0.842 (0.20) 0.828 (0.03) 0.824 (0.11) 469.473* 31.372 22.748 

24h 0.843 (0.15) 0.826 (0.04) 0.825 (0.03) 478.594* 16.894 28.352 
NV = nanoparticles with vacuum application; WV = nanoparticles without vacuum application; HST = Heartwood/Sapwood Transition Zone, 

ITH = Intermediate Heartwood; INH = Internal Heartwood. ( ): Variation coefficient, *: it expreess difference at 5% of significance between 
wood radial positions. 

 

However, even with reduction of extractive content and carbohydrates caused by vapor application, there 

was not significant increase in air flow in vaporized wood in relation to the non-vaporized one. The treatments 

with nanoparticles impregnations did not improve air longitudinal permeability. 

The radial profile of E. pellita wood permeability presents a natural tendency, once the heartwood region 

present vascular cells with the lumen obstructed by thyllos, as well as by extractives (Figure 1).  

 

  
Figura 1. Obstrução dos vasos (indicada por setas) do cerne por tiloses (A) e vasos desobstruídos na região de 

transição entre o cerne e o alburno (TCA) (B). 

Figure 1. Obstruction of the heartwood vessels (indicated by arrows) by tyloses (A) and unobstructed vessel in the 

transition region between heartwood and sapwood (HST) (B). 

Drying rate 

 Drying rate in wood without treatment was 0.382 kg/cm2.h.(10 -4), presenting a difference between 

humidity range saturated-30% (free water) and 30-15% (hygroscopic water). After the treatments’ application, 

hygroscopic water and free exits presented higher influence of vaporization and nanoparticles impregnation, 

respectively (Table 4). Therefore, the highest drying rate in heartwood/sapwood transition zone radial position 

(HST), that is, in samples containing sapwood portions. 

 

Tabela 4. Taxa de secagem das três regiões radiais em todos os tratamentos e nas fases de capilaridade e difusão 

(kg/cm².h.(10-4)). 
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Table 4. Drying rate of the three radial regions in all treatments and in the capillary and diffusion phases 

(kg/cm².h.(10-4)). 

Treatments 

Humidity range  

(Radial positions’ average) 

Radial position  

(Saturated - 15%) 
Total  

(Saturated - 15%) 
Saturated - 30% 30% - 15% HST ITH INH 

V
ap

o
r 

WV 
0.806 b 
(0.29) 

0.307 c 
(0.06) 

0.417 c 
(0.10) 

0.351 b 
(0.05) 

0.378 b 
(0.06) 

0.382c  
(0.08) 

12h 
0.806 b 
(0.38) 

0.369 b 
(0.09) 

0.504 b 
(0.17) 

0.435 a 
(0.11) 

0.425 b 
(0.10) 

0.455b  
(0.13) 

24h 
0.974 a 

(0.37) 
0.411 a 
(0.09) 

0.615 a 
(0.11) 

0.438 a 
(0.07) 

0.498 a 
(0.11) 

0.515a  
(0.12) 

N
an

o
 

WN 
0.806 b 
(0.29) 

0.307 b 
(0.06) 

0.417 b 
(0.10) 

0.351 ns 
(0.05) 

0.378 a 
(0.06) 

0.382b  
(0.08) 

NVac 
0.674 b 
(0.13) 

0.337 b 
(0.07) 

0.438 b 
(0.11) 

0.377 ns 
(0.06) 

0.376 b 
(0.05) 

0.397b  
(0.08) 

WVac 
1.152 a 
(0.11) 

0.403 a 
(0.11) 

0.657 a 
(0.13) 

0.439 ns 
(0.12) 

0.479 a 
(0.12) 

0.525a  
(0.15) 

Interaction ns ns ns ns ns ns 

WV = without vapor; WN = without nanoparticles; Nvac = without vacuum application; Wvac = with vacuum aplication; HST = 

Heartwood/Sapwood Transition Zone; ITH = Intermediate Heartwood; INH = Internal Heartwood; Saturated -30% = capilarity fase; 30% - 

15% = diffusion fase; ( ) = variation coefficient; ns = not significant at 5% of significance; (a.b) Averages followed by equal letters indicate that 
there was no difference between treatments at 5% of significance.  
 

Wood vaporization for 24h was more efficient than 12h period in total drying rate (saturated at 15%), also 

in capilarity and diffusion. However, silver nanoparticles incorporation in wood with previous vacuum application 

resulted in higher increase in drying rate because of the benefits before and after saturation point of fibers. It was 

possible to observe nanoparticles’ deposition location, after previous vacuum application, in the surface of vessels 

walls as well as inside fibers’ walls ultrastructure (Figure 2). 

 

 
Figura 2.Deposição de nanopartículas de Ag (indicadas por setas) observada em microscópio eletrônico de 

varredura. (A) Impregnadas na parede do vaso. (B) Impregnadas na parede das fibras. 

Figure 2. Deposition of Ag nanoparticles (indicated by arrows) observed in a scanning electron microscope. (A) 

Impregnated in the vessel wall. (B) Impregnated in the wall of the fibers. 

 

DISCUTION 

 

In all vapor treatments the sugar content reduced. This effect can be explained by molecular mass loss 

that occurs in hemicellulose polymer when vapor is directed towards the wood (PERSSON; JÖNSSON, 2017). 
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One of the reactions responsible for this molecular mass loss is the acetylation that occurs in acetyl group present 

in the ramifications of hemicelluloses’ chains, transforming them in acetyl group monomer and defragmenting 

hemicelluloses’ chains (JOHNSON et al., 2017) due to the easy access promoted by amorphous regions of the 

cellulose chain (CALONEGO et al., 2014). Therefore, vapor application modifies wood chemical composition. 

The presence of volatile extractives in E. pellita wood contributed to total extractives content reduction, due to a 

possible leaching and/or degradation of these components during the process of vaporization (DASHTI et al., 

2012; TAGHYARI et al., 2014). Carbohydrates and extractives content reduction also interefe in hygroscopic 

properties of wood cell wall (BAL; BEKTAS, 2012; CALONEGO et al., 2014). Vascular cambium direction 

permeability increase can be explained, mainly, by the distinct characteristics between heartwood and sapwood, 

that is, reduction of extractives content and absence of thyllos in sapwood. Thus, there is an inverse relation 

between extractives content and wood drying rate due to the obstruction of vessels by starch and resins (DASHTI 

et al., 2012; PAES et al., 2013).  

E. pellita wood drying rate presented an increase after vapor treatment for 24h. Similar results were 

obtained by Rezende et al. (2015) in planks of E. grandis submetted to vaporization (90°C and 100% of relative 

humisity for 3h), which promoted significant increase in drying rate for the studied species. Drying rate increase 

can be directly related to the permeability increase and to the diffusivity parameters of wood (DASHTI et al., 

2012). Vapor pre-treatment, depending on the period, can cause modifications in cell wall ultrastructure 

(JHONSON et al., 2017) and this type of modification can interfere in hygroscopic water exit rate (CALONEGO 

et al., 2014). Hence, temperature increase in wood treatments has direct influence in adsorption capacity of cell 

wall; due to the inactivation or neutralization of adsorption sites (hydroxyl groups) found in the wall, resulting 

from cellulose and hemicellulose chains rearrangement as well as migration and/or extractives loss (BAL; 

BEKTAS, 2012). These chemical rearrangements promoted by vaporization modify positively, reducing water 

exit access quantity, denotating significant effect in water movement by diffusion.  

Moreover, it was possible to note nanoparticle presence on the cell wall (Figure 3), since they can adhere 

on the wall surface or even penetrate it (MONTAZER; ALIMOHAMMADI, 2012). The significant air 

permeability increase obtained by nanoparticles depends on the impregnation method. The process of empty-cell 

is an effective method due to the forced clearance that the pressure causes in the vessels (TAGHIYARI et al., 

2014; TAGHIYARI et al., 2015). The drying rate increase after silver nanoparticle immersion also was observed 

by Lotfizadeh et al. (2012) in Populus nigra wood. Besides, Taghiyari and Layeghi (2012) verified that silver 

nanoparticles impregnation and thermical treatments reduced water adsorption capacity in P. nigra, P. deltoides 

and Fagus orientalis wood. This result, according to the authors, occurred due to the silver low hygroscopicity 

and carbohydrates content reduction by thermical treatment (TAGHIYARI et al., 2015; JHONSON et al., 2017).  

 

CONCLUSIONS 

• Vapor wood treatment for 24 hours period reduces total extractives content of wood contributing to the 

increase of drying rate;   

• In wood that present thyllos, heartwood permeability does not modify in vaporization processes;  

• Physical properties (basic density and permeability) of E. pellita wood are not affected significantly by 

vaporization and silver nanoparticles impregnation; 

• 24 hours vaporization and silver nanoparticles incorporation with previous vacuum application contribute to 

the significant drying rate increase in E. pellita wood, before as well as after fibers’ saturation point.  
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