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Abstract:             

The main objectives of this paper are to develop a kinematic deformation analysis model for 

landslides using Kalman filtering procedures; and to utilise the observations from TUSAGA-Aktif 

GNSS Network in Turkey to determine the velocity fields of a landslide study area in the Eastern 

Black Sea Region of Turkey. Thirty five (35) points were established for the determination of 3-

D time dependent velocities of the landslides study area. Point displacements and velocities were 

determined by single point kinematic model to perform 3-D statistical analysis, and to assess the 

significance of point displacements and velocities using three periodic observations from 

TUSAGA-Aktif Network. The determined velocities were used to generate the velocity fields of 

the landslide area for three epochs using Geographic Information System (GIS). The results 

obtained indicate that almost all the monitored points showed significant movements, with varying 

magnitudes of velocities. The directions of movement of the 35 monitored points were also 

determined. The results show that the dominant trends of landslide movements in the study area 
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are in the northwest and northeast directions. These results are in agreement with the previous 

results obtained in the same study area about ten years ago.   

Keywords: Landslides, TUSAGA-Aktif, Kinematic Deformation Monitoring, Velocity field 

 

Resumo: 

Os principais objetivos deste trabalho são desenvolver um modelo cinemático análise de 

deformação para deslizamentos utilizando procedimentos de filtragem de Kalman; e utilizar as 

observações de TUSAGA-Aktif Rede GNSS na Turquia para determinar os campos de velocidade 

de uma área de estudo deslizamento de terra na região do Mar Negro oriental da Turquia. Trinta e 

cinco foram estabelecidos (35) pontos para a determinação de 3-D em tempo velocidades 

dependentes da área de estudo deslizamentos de terra. Deslocamentos e velocidades de ponto 

foram determinadas por ponto único modelo cinemático para realizar a análise estatística 3-D, e 

para avaliar a importância dos deslocamentos de ponto e velocidades usando três observações 

periódicas de TUSAGA-Aktif Rede. As determinadas velocidades foram usadas para gerar os 

campos de velocidade da área de deslizamento de terra por três épocas, utilizando Sistema de 

Informação Geográfica (GIS). Os resultados obtidos indicam que quase todos os pontos 

monitorados mostrou movimentos significativos, com diferentes magnitudes de velocidades. 

Foram também determinados os rumos do movimento dos 35 pontos monitorados. Os resultados 

mostram que as tendências dominantes dos movimentos de deslizamento de terra na área de estudo 

estão nas direções noroeste e nordeste. Estes resultados estão de acordo com os resultados 

anteriores obtidos na mesma área de estudo cerca de dez anos atrás. 

Palavras-chave: Deslizamentos de terra, TUSAGA-Aktif, Monitoramento Cinemático de 

Deformação, Campo de velocidade  

 

  

1. Introduction 

 

 

Landslide is defined as ‘‘the movement of a mass of rock, debris, or earth down a slope’’ (Cruden, 

1991). The main factors responsible for the occurrence of landslides include - prolonged 

precipitation, earthquakes, volcanic eruptions, rapid snow melting, and various anthropogenic 

activities. Landslide is difficult to predict in time and in space. This is because landslide occurrence 

depends on complex interaction of many factors, namely slope, soil properties, elevation, land 

cover, and lithology, among others (Dai and Lee, 2002). Also, the relationship and interaction 

between these factors are uncertain. Guzzetti (2005) identified a large spectrum of the landslide 

phenomena, which are diverse and complex in nature. This spectrum includes: landslide length, 

landslide area/volume, landslide velocity, total number of landslides, triggering time, and landslide 

lifetime. These diverse and complex factors make it practically difficult to adopt a particular 

technique and instrumentation to map and monitor landslides. 

One of the main challenges in landslide monitoring is how to reduce the cost of the monitoring 

scheme. The cost of monitoring includes the costs of RTK GPS receivers, power supply, 

communication, logistics, personnel, etc. Several authors have proposed the use of low-cost GPS 

L1-only monitoring receivers (Cina and Piras, 2014; Cina et al. 2013; Yu, 2011; Verhagen et al. 

2010; Brown et al. 2006). The short-coming of this approach is the potential degradation of the 

position solution due to the effects of ionospheric delay, and the challenges in the ambiguity 

resolution. Recently, Eyo et al. (2014) proposed a low cost landslide monitoring approach based 
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on Reverse Real-Time Kinematic (RRTK) technique. The main features of this technique are that: 

low-cost receiver hardware can be utilized for real-time streaming of raw GPS measurements, thus 

eliminating complex algorithms and computations at the user end. This will drastically reduce the 

costs and tasks of the landslide monitoring scheme. Many low-cost landslide monitoring systems 

have been developed over the years (e.g. Lei et al. 2011; Glabsch et al. 2009; Aguado et al. 2006). 

Globally, there is an upsurge in landslide occurrence, which could be attributed to the increasing 

human activities on the environment (Glade, 2003; Sidle et al. 2004) and the impact of climate 

change (Geertsema et al. 2006). The consequences of landslides are enormous. Recent landslide 

disasters in many regions of the world have destroyed infrastructure, killed thousands of people, 

and resulted in heavy economic losses. The continuous occurrence of disastrous landslide events 

has increased the demand for new and improved techniques for landslide monitoring. 

The Global Navigation Satellite Systems (GNSS) - GPS, GLONASS, Galileo, Compass, QZSS 

and IRNSS are now being utilized as global infrastructure for a wide range of applications, 

including landslide monitoring. Continuously Operating Reference Stations (CORS) of Global 

Navigation Satellite Systems (GNSS) are being established in many regions of the world to provide 

valuable infrastructure for real-time kinematic positioning and applications in areas such as 

surveying, mapping, navigation and environmental monitoring. The use of RTK networks of 

reference stations has become the best solution for high precision positioning using Global 

Navigation Satellite Systems (GNSS). Compared to the standard RTK GPS, network RTK 

technique provides significant savings in the cost of infrastructure. 

The main focus of this paper is to develop an alternative low-cost landslide monitoring technique 

using TUSAGA-Aktif - a Real Time Kinematic Geodetic GNSS Network in Turkey. TUSAGA-

Aktif provides the users in the field instantaneous position solution with centimetre accuracy; and 

eliminates the cost of deploying two receivers (at base and rover stations), and also the need for 

post-processing of GNSS observations. The main objectives of this study are to develop a 

kinematic deformation analysis model for landslides using the Kalman filter; and to utilize the 

TUSAGA-Aktif measurements for determining the velocity fields of a landslide study area in the 

Eastern Black Sea Region of Turkey, in order to make realistic interpretations of the landslide 

evolution. 

 

 

2. TUSAGA-Aktif Network 

 

 

The development of GPS-RTK technique in the mid-1990 heralded the cm-level accuracy 

positioning in real-time, and gave impetus to carrier phase-based GPS technology. The standard 

RTK method employs radio links to transmit reference receiver data (or observation corrections) 

to the rover receiver. The user or rover unit utilizes this data together with its own raw 

measurements to resolve the ambiguity of the differenced carrier phase data and to estimate the 

rover’s position. The main problem in single-base RTK surveying is that the accuracy of the 

position solutions is compromised with increase in baseline length, especially with relatively short 

occupation periods.   

The problem in standard RTK GPS can be overcome by extending RTK GPS positioning from a 

single to a multi-base system, where a network of reference stations with baseline lengths of less 

than 100 km is used. The network RTK technique uses the Continuously Operating Reference 

Stations (CORS) to acquire a large amount of data, over a wide geographical scale, for the 
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determination of the position solutions. The network RTK allows the separation between the 

reference stations at significantly longer baseline lengths (> 100 km), and has been able to address 

the baseline length restriction of the single-base RTK technique.  

Continuously Operating Reference Stations (CORS) of Global Navigation Satellite Systems 

(GNSS) are being established in many regions of the world to provide valuable infrastructure for 

real-time kinematic positioning and applications in areas such as surveying, mapping, navigation 

and environmental monitoring. The initial motivations for the establishment of CORS were for 

scientific applications, to capture the occurrence of an earthquake and other geohazards in real-

time. Government agencies were mainly in the fore-front of the establishment CORS 

infrastructure, basically to maintain and expand their existing geodetic network. CORS 

infrastructure has been installed in many countries. Some of the examples include: US National 

Geodetic Survey CORS, Canadian Active Control System (CACS), Malaysia Real-Time 

Kinematic GNSS Network (MyRTKnet), Singapore Satellite Positioning Reference Network 

(SiReNT), and many other CORS system in Australia, Germany, Japan, Switzerland, Belgium, 

United Kingdom, etc. One of the main advantages of CORS network is that the cost of operating 

the reference, including the cost of hardware is eliminated. These Network of RTK services have 

proven to be an efficient tool for landslides monitoring in real-time (Lui, 2010).  

TUSAGA-Aktif is a Real Time Kinematic Geodetic GNSS Network in Turkey, established to 

provide infrastructure for strategic research in areas such as atmosphere, meteorology, earthquake 

early warning and accurate positioning, among others (Yildirim et al. 2011). This network consists 

of 147 Continuously Operating Reference Stations, as shown in Figure 1 (Yildirim et al. 2011). 

The Master and Auxiliary control stations of TUSAGA-Aktif are established in Ankara, the capital 

city of Turkish Republic (Mekik et al. 2011). TUSAGA-Aktif has the capability to provide cm-

level accurate position solution throughout Turkey (Mekik et al. 2011, Eren, 2009). 

 

 

Figure 1: Locations of TUSAGA-Aktif reference stations 

 

 

 

3. Landslide Study Area and Data Collection 



Bayrak, T. et al.                                                                                                                                                           614 

Bol. Ciênc. Geod., sec. Artigos, Curitiba, v. 21, no 3, p.610 - 623, jul-set, 2015. 

 

 

Kutlugün (Hacımehmet) Village in Maçka County in the Province of Trabzon in Eastern Black 

Sea Region of Turkey (see Figure 2) was selected as the study area where landslides are the most 

serious natural hazards. The Northeastern Black Sea Region of Turkey is characterized by steep 

mountainous terrain, complex lithology and high precipitation, which makes this region 

susceptible to landslide occurrence. 

 

Figure 2: A view of Kutlugün (Hacımehmet) landslides 

 

In order to monitor landslides in the study area, 35 points covering the whole landslide area and 

its surroundings were established to acquire periodic measurements. The measurements were made 

in August 2012, November 2012, and February 2013. Measurement time was very short for one 

point (about 2 minutes), and about 3 hours was used in acquiring data from the 35 points. 10-

epochs of measurements were made at each point for every three months using real-time 

TUSAGA-Actif Network. 

 

 

4. Kalman Filter Model for Kinematic Deformation Analysis 

 

 

The adjusted coordinates of the points were used to evaluate the kinematic deformation analysis 

of the landslide area. Point displacements and velocities were determined by kinematic single point 

model to perform 3-D statistical analysis, and to inspect the significance of point displacements 

coming from three repeated TUSAGA-Actif surveys. Kalman filtering technique was used in the 

solution of the kinematic model on Microsoft Excel. The determined velocities were used to 

generate the velocity fields of the landslide area for three epochs using Geographic Information 

System (GIS). 
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Ten epochs of real time measurements and their Root Mean Square (RMS) values were observed 

separately in a point at period k. These observed values were adjusted. Adjusted coordinates 

Xk,Yk,Zk and their RMS values were determined for the object point. Coordinates 

differences between two periods were obtained as Equation 1 for the object point as follows (Turan 

et al. 2012): 

 

Error propagation rule was applied to Equation 1 and given as follows (Turan et al. 2012): 

    

Equation 2 can be re-written in matrix form as follows (Turan et al. 2012): 

 

The variance and co-variance matrix of functional model can be obtained as follows (Turan et al. 

2012):   

 

Equations 3 and 4 were used in matrix operations of kinematic single point models. In the 

recommended method, Kalman filtering technique was used for the solution of the kinematic 

model. A time-dependent kinematic model consisting of displacements and their velocities can be 

formed as follows (Holdahl and Hardy, 1979; Yalçinkaya and Bayrak, 2005; Acar et al. 2008): 
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Where: 

Xk,Yk,Zk: Adjusted point coordinates at period k   

: Velocities of point coordinates 

Two periods of measurements are sufficient to solve model parameters using Kalman filtering 

technique in Equation 5.  Equation 5 can be re-written as Equation 6 in matrix form and with a 

shorter form in Equation 7. Equation 6 is the functional model for the kinematic single point model 

(Yalçinkaya and Bayrak, 2005; Acar et al. 2008). 

 

 

 

 
Where: 

: Prediction status (displacements and velocities at period k) 

: Status vector at period k 

T k,k+1: Prediction matrix 

I: Unit matrix 

Prediction status vector at period k and its covariance matrix can be written as Equations 8 and 9 

(Yalçinkaya and Bayrak, 2005; Acar et al. 2008).  

 

 

 

Where: 

 Nk,k+1 is the system noise matrix; wk is the random noise vector at period k;  is cofactor matrix 

of status vector and Qww,k is cofactor matrix of system noises.  
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The adjustment of the kinematic model can be expressed in matrix form in Equation 10 and 

Equation 11. Equation 11 is the functional model for the Kalman filtering technique. The stochastic 

model for the Kalman filtering technique can be written as Equation 12 (Yalçinkaya and Bayrak, 

2005; Acar et al. 2008). 

 

 

 
 

 
Where: 

V is the innovation vector; Lk is the actual observation; is the predicted observation.  

The kinematic model using Equations 11 and 12 were solved and their displacements and 

velocities are computed with two periods of measurements. 

 

 

5. Results and Analysis 

 

 

In the model, movement parameters are point displacements and their velocities. They were solved 

using Kalman filtering technique on Microsoft Excel, using two periods of measurements, which 

was sufficient to solve movement parameters using the model. Kinematic analysis was performed 

between August 2012-November 2012, and August 2012-February 2013. Results for velocities are 

given in Table 1 for August 2012-November 2012, and Table 2 for August 2012-February 2013.  

In the solution, the velocity parameters were divided by the square-mean errors and test values (T) 

were computed. These values were compared with the t-distribution table values (q) to evaluate 

whether velocities were significant or not in Table 1 and Table 2. If velocity parameters have 

significantly changed, a (+) sign is given in Table 1 and Table 2; otherwise, a (-) sign is given. 

In order to view the 3-D time dependent velocity fields of the landslides area, velocity field maps 

were drawn using Table 1 and Table 2 data. ArcGIS was utilized in drawing the maps, data 

interpolation were done using the Kriging method. Figure 3, 4, and 5 show the velocity fields of 

the landslides area in direction of X, Y and Z, respectively, between August 2012 and February 

2013 measurement periods. Tables 1 and 2, and Figures 3, 4, and 5 indicate that almost all the 

points showed significant movements, with varying magnitudes of velocity.  

The directions of the landslide movement of the 35 points are shown in Figures 6 and 7. The 

landslide between August 2012 and November 2012 (shown in Figure 6) shows the following 

trends in the direction of movement – northwest, 23 points (65.7%); northeast, 7 points (20%); 

southeast, 3 points (8.6%); and southwest, 2 points (5.7%). The landslide between August 2012 

and February 2013 (shown in Figure 7) shows the following trends in the direction of movement 

– northwest, 30 points (85%); and northeast, 5 points (15%). Thus, the dominant trends of landslide 

movements in the study area are in the northwest and northeast directions. These trends in the 
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direction of the landslide movements agree with the previous results obtained in the same study 

area about ten years ago (Yalçinkaya and Bayrak, 2005).   

 

Table 1: Significance test of velocities computed with kinematic model between August 2012 

and November 2012 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: Significance test of velocities computed with kinematic model between August 2012 

and February 2013 
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Figure 3: Velocity field in Direction of X 
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Figure 4: Velocity field in Direction of Y 

 

 

 

 

Figure 5: Velocity Field in Direction of Z 
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Figure 6: 2-D Landslide Movements (Aug. 2012 – Nov. 2012) 

 

 

 

Figure 7: 2-D Landslide Movements (Aug. 2012 – Feb. 2013) 

 

 

6. Conclusion 

 

 

In this paper, a methodology is presented for an alternative low-cost landslide monitoring using 

periodic data collected from TUSAGA-Aktif GNSS Network. The landslide site used for this study 

is located in Kutlugün (Hacımehmet) Village, Trabzon Province, Eastern Black Sea Region of 

Turkey. In order to monitor landslides in the study area, 35 points covering the whole landslide 

area and its environ were established to acquire periodic GPS observations at 3 months interval 

(on August 2012, November 2012, and February 2013). 10-epochs of GPS observations were 

acquired on each of the 35 points to generate 3-D coordinates for all the points.  

The coordinates were adjusted and used to perform kinematic deformation analysis of the landslide 

study area, using kinematic single point model developed based on Kalman filtering technique. 

Using the kinematic model, displacements and velocities were computed for all the monitored 
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points; and 3-D statistical analysis was performed to determine the significance of point 

displacements and velocities. In the statistical analysis, the computed test values (T) were 

compared with the t-distribution table values (q) to assess whether the velocities were significant 

or not.  

Using the ArcGIS tool in Geographic Information System (GIS), the velocities determined by the 

kinematic model were used to generate the velocity fields of the landslide study area. The results 

obtained indicate that almost all the monitored points showed significant movements, with varying 

magnitudes of velocities.  

The directions of movement of the 35 monitored points were also determined. The landslide 

between August 2012 and November 2012 shows the dominant trends in the direction of northwest 

(65.7%) and northeast (20%). Also, the landslide between August 2012 and February 2013 shows 

the dominant trends in the direction of northwest (85%) and northeast (15%). These trends in the 

direction of the landslide movements agree with the previous results obtained in the same study 

area about ten years ago (Yalçinkaya and Bayrak, 2005).   
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