
Bol. Ciênc. Geod., sec. Artigos, Curitiba, v. 13, no 2, p.231-243, jul-dez, 2007.

THE TRANSFORMATION OF COORDINATES BASED ON

DESIGN PATTERNS

Transformação de coordenadas com base em padrão de projeto

NORBERT RÖSCH

Geodetic Institute
Universität Karlsruhe (TH)

roesch@gik.uka.de

ABSTRACT
In this paper a new approach for the transformation of coordinates is suggested.
This approach is based on design patterns which simplify the implementation
significantly. The whole transformation process is depicted as a directed acyclic
orientate graph. There each vertex denotes a class and each edge stands for one or
more algorithms. Thus the transformation is nothing but a crossing of vertices and
edges of this graph. Besides the rather simple maintenance of the program the
complete flow of data concerning the transformation gets quite simple. Furthermore
also the extensibility of the program can easily be performed. All aspects are
explained by examples and code fragments.
Keywords: Coordinates transformation; Desing patters; A new approach for
tansformation coordinates.

RESUMO
Neste artigo uma nova abordagem para a transformação de coordenadas é sugerida.
Essa abordagem baseia-se no padrão de projeto que possibilita a simplificação da
implementação de forma significativa. A totalidade do processo de transformação é
representada como um gráfico orientado acíclico. Cada vértice denota uma classe e
cada borda apóia a um ou mais algoritmos. Portanto a transformação consiste em
cruzamento de vértices e bordas deste gráfico. Além disto, a manutenção do
programa para o completo fluxo dos dados acerca da transformação é realizada de
forma muito simples. Ademais o programa pode ser facilmente extendido. Todos
os aspectos serão explanados com exemplos e fragmentos de códigos.
Palavras-chave: Transformação de coordenadas; Padrão de projeto; Uma nova
abordagem para a trasfomação de coordenadas.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Biblioteca Digital de Periódicos da UFPR (Universidade Federal do Paraná)

https://core.ac.uk/display/328055413?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The transformation of coordinate based on desing patterns.

Bol. Ciênc. Geod., sec. Artigos, Curitiba, v. 13, no 2, p.243- , jul-dez, 2007.

2 3 2

1. INTRODUCTION
 The adoption of the object orientated concept led to a paradigm shift in
software engineering. The term paradigm shift was first used by Thomas Kuhn in
his book “The Structure of Scientific Revolution”(KUHN, 1996). According to the
theory outlined in this book a paradigm denotes the sum of all rules used by a
specific scientific community. If these rules don’t fit the underlying problems any
longer they have to be replaced by new ones.
 In the mid sixties the so called software crisis showed all criteria preceding a
paradigm shift. As a consequence the concept of software engineering and further
on the object orientated programming were introduced. Now these schemes are part
of the new paradigm based on new strategies for the implementation of software are
developed.
In the mid nineties Erich Gamma coined the term “design patterns” according to an

analogy in architecture (GAMMA, 2000).
Together with R. Helm, R. Johnson and J.
Vlissides he had analysed many software
products and found three main patterns
which can be subdivided further. These
three patterns are: creational patterns,
structural patterns and behavioral patterns.
 Creational patterns are supposed to
produce new instances when they are
needed. The factory pattern, the singleton
and the builder pattern are examples for
members of this category. Behavioral
patterns can be classified in observer,
visitor, strategy and so on. Structural
patterns comprise for example bridge,
adapter and composite.
 This paper describes the use of
design patterns in the field of coordinate

transformation which concerns especially geodesy (including GPS) and GIS
respectively (see e.g. HECK, 2003). Actually for the transformation of coordinates
not all the above mentioned patterns are needed. However the use of some of the
most interesting patterns, the factory pattern, the singleton as well as the strategy is
illustrated.

2. GENERAL OVERVIEW
 In this section some general aspects concerning the flow of data are discussed.
The overall structure of the program is shown in figure 1. On the top level the user
interacts with a graphical user interface (GUI). He takes his decision concerning the
transformation which simply means he fills in the GUI and then starts the program.

graphical user interface

controller

kernel

Figure 1. The design

Rösch, N.

 Bol. Ciênc. Geod., sec. Artigos, Curitiba, v. 13, no 2, p.231-243, jul-dez, 2007.

2 3 3

The GUI hands over the parameters to the controller unit (abbr. controller) which is
in fact an instance. The controller then forces the computation kernel (abbr. kernel)
to perform the required transformation.
 This last step is quite difficult, because depending on the users demand, the
transformation can be rather complex. Thus the two layers (controller and kernel)
have to exchange data for several times. Nonetheless the kernel only performs
single point transformations which are treated to be atomic. As a consequence a
datum transformation for example has to be subdivided into different steps, whereas
the first one is always the transformation of any arbitrary coordinate into a
geographic coordinate (see fig. 2). To keep the flow of data symmetric, the next
step involves a change of the geodetic datum in any case. If no change of datum is
needed, e. g. the datum of the source coordinate and the target coordinate should be
the same, a dummy datum transformation is performed.
 Due to this procedural method, the flow of data remains strictly symmetric
e.g. there are no exceptions needed. Hence this is only possible, if there exists a
method to detect the correct transformation method. This is the task of the strategy
pattern which is outlined in detail in section 4.

Figure 2. The transformation designed as an directed acyclic graph

 The whole transformation process can be depicted as an acyclic graph where
the boxes or vertices respectively are symbolising the different stages of the
transformation and the edges are standing for the appropriate algorithms (see fig. 2).
E. g. to get geographic coordinates starting from UTM-coordinates the algorithm or
edge respectively connecting the vertex UTM and geographic coordinate has to be
passed. Actually the result needn’t to be the final target of the transformation
process. It is the task of the controller to find the path to the destination. Hence this
is rather easy, because the structure of the graph is simple and most of the steps are
fixed.

Coor
syst1

… Coor
syst2

Coor
syst1

… Coor
syst2

geographic
coordinate

change of
geodetic
datum

geographic
coordinate

The transformation of coordinate based on desing patterns.

Bol. Ciênc. Geod., sec. Artigos, Curitiba, v. 13, no 2, p.243- , jul-dez, 2007.

2 3 4

3. THE FACTORY METHOD
 This design pattern is supposed to create different instances out of a group of
classes during the life cycle of a program. According to the needs not only the
instance is created but also the behaviour of the complete program is influenced. In
the field of transformation, the creation of a vertex always implies different
algorithms. E. g. the creation of an instance of the type “UTM” activates a method
which is able to transform such a coordinate to another one of the type geographic
coordinate (see also listing 1).
 In this case also it is the task of the controller to create the vertices according
to the user’s choice. As a consequence the appropriate algorithms are provided by
the specific instance. In practice these behaviour is implemented by the design
pattern factory method. The controller forces the factory to create the vertices
needed for the transformation. Hence, the factory only acts on demand, i. e. at the
beginning of the program there exists no vertex nor an edge.
 Depending on the user’s input, the controller creates the appropriate elements
of the acyclic graph step by step and passes the specific vertices and edges until the
destination is achieved. In most cases this is any kind of a local plane coordinate
system (e.g. UTM) in a specific geodetic datum (e.g. WGS84).
 To explain the above mentioned we use a part of the implementation as an
example. Listing 1 depicts the hierarchy of the coordinate classes. It is important to
be aware that the class “GeneralCoordinates” encompasses the two methods
“coord2geo” and “geo2coord”. The first method stands for all edges connecting the
classes on the bottom level of the left branch of the graph in figure 1, whereas the
latter represents the edges to the bottom level classes of the left side. Note that all
superfluous code is omitted in the listings.

Listing 1:
abstract class Coordinates {
 String pointid;
} // end Coordinates

abstract class GeneralCoordinates extends Coordinates {
 // attributes and methods
 abstract GeographicCoordinate coord2geo(…);
 abstract void geo2coord(…);
 ...
} // end GeneralCoordinates

final class GeographicCoordinate extends Coordinates {
 // attributs und methods
…
GeographicCoordinate coord2geo(…)

Rösch, N.

 Bol. Ciênc. Geod., sec. Artigos, Curitiba, v. 13, no 2, p.231-243, jul-dez, 2007.

2 3 5

{// dummy}
void geo2coord(…)
{// dummy }
 ...
} // end GeographicCoordinate

 As the class “GeneralCoordinates” only comprises the two abstract member
functions “coord2geo” and “geo2coord” the specific implementation has to be done
on the bottom level of the hierarchy of the coordinate classes. Each coordinate class
(e. g. UTM) encompasses at least the above mentioned two member functions
which are supposed to implement the specific algorithm as already mentioned in
section 2. Listing 2 shows an example for such a bottom level coordinate class.
Note that in this listing the class “Gauss” is omitted. This class comprises all the
behaviour which is common for all gaussian coordinates.

Listing 2:
final class UTM extends Gauss {
 // attributes and methods
 ...
 GeographicCoordinate coord2geo(...)
{ // algorithm }
 void geo2coord(…)
 {// algorithm }
 ...
} // end UTM

 The factory itself is actually also a class (see listing 3). This class activated by
the controller “produces” the classes or mathematically expressed the vertices
which are necessary to find a path to the target of the transformation. The factory
class is depicted in listing 3. It consists only of one member function and has no
attributes.
 The process of the production of a new instance shall be explained within the
next few lines. The argument “System” in line 2 of listing 3 denotes the coordinate
system. In one of the next lines the new instance which represents the appropriate
coordinate system is created. Together with the data the according member
functions are activated too. Thus, the acyclic graph gets his first edge connecting
the bottom level class with the vertex “geographic coordinate” (see fig. 1, left side
of the graph).

The transformation of coordinate based on desing patterns.

Bol. Ciênc. Geod., sec. Artigos, Curitiba, v. 13, no 2, p.243- , jul-dez, 2007.

2 3 6

Listing 3:
class CoordFactory {
 public static GeneralCoordinates getCoord(String System, …) {
 // the variable System is analysed
 // create a vertex of type COORSYS1 if true
 if (System.equals(COORSYST1))
 return new COORSYST1(control);
 // create a vertex of type UTM
 else if (System.equals(UTM))
 return new UTM(…);
 // there may be more coordinate systems
 else if (System.equals(…))
 return new …(…);
 } // end getCoord
} // end CoordFactory

 Listing 4 shows, how the factory is implemented. Let us now assume that we
want to transform a coordinate of type “UTM” from one zone to another. In this
case no change of datum is needed. Thus the transformation gets rather easy.
 First of all we will have a look to line 3, where an instance of the type
“fromcoord” is created. In terms of graph theory this means that the first vertex of
the acyclic graph is built.
 Further on we expect a user input in the following line. In this line the user
takes his choice concerning the kind of transformation. In our case he simply wants
to change the zone number of the given coordinate (see above). Line 6 shows how
this coordinate is created by the factory. Actually the information about the kind
and extent of the transformation is stored in the controller which is denoted by
“control” in this line. Actually also the controller is a class. As a result of the
invocation of the factory another vertex is creates. This vertex which represents the
coordinate in the source system is denoted by “fromcoord” in line 6.

Listing 4:
class Transformation {
 public static void main(String[] args) {
 …
 // create an instance of coordinates of the source system
 GeneralCoordinates fromcoord = CoordFactory.getCoord(object,control);
 // line 5
 // compute the according geographic coordinate (i.e. transform it)
 GeographicCoordinate geographic = fromcoord.coord2geo();
 // line 7

Rösch, N.

 Bol. Ciênc. Geod., sec. Artigos, Curitiba, v. 13, no 2, p.231-243, jul-dez, 2007.

2 3 7

 // create an instance of coordinates of the target system
 GeneralCoordinates tocoord = CoordFactory.getCoord(object,control);
 // line 9
 // transform the coordinate back again
 tocoord.geo2coord(control,geographic);
 // line 11
 } // end main
} // end Transformation

 The transformation of this coordinate to a geographic coordinate takes place
in line 7. The next task in the flow of data is performed in line 9. Here the vertex on
the right side of beneath the geographic coordinate, which means the coordinate of
the target system (see fig. 2), is created. Although no transformation of the geodetic
datum is needed, we can assume a dummy transformation to fit the example in
figure 2.
 In our case we need a plane coordinate of the type UTM. The according
transformation with respect to the specific zone is computed by the method
geo2coord in line 11. This is the last step at least as far as the transformation
problem is concerned. The vertex tocoord represents the coordinate of the target
system.

 Actually this was a rather simple transformation problem. In the next section it
will get more complex and a transformation which includes a change of the
geodetic datum will be conducted. Therefore we introduce another design pattern,
which is called strategy.

4. THE DESIGN PATTERN STRATEGY
 Figure 3 gives a general overview about the principle of the design pattern
discussed in this section. The main thing is the Context-box, depicted upper left.
The strategy only decides on the algorithm which is needed to perform the
transformation.
 Before we can get more detailed about the algorithms, we discuss the different
cases for the geodetic datum transformation.
 In practise different kinds of geodetic datum transformations are in use. In
Europe most commonly the spatial similarity transformation which sometimes is
also called 7-parameter- transformation, is applied. With respect to the according
parameters, two different rotation matrices are possible. First we can think of a
finite rotation, which leads to a combination of the sine and cosine of the rotation
angles. The second solution assumes a infinite rotation. Thus the rotation matrix
encompasses only the real angles. The discussion of the advantages and
disadvantages of the different approaches is beyond the scope of this paper. So we

The transformation of coordinate based on desing patterns.

Bol. Ciênc. Geod., sec. Artigos, Curitiba, v. 13, no 2, p.243- , jul-dez, 2007.

2 3 8

simply notice that there are two different rotation matrixes. Nonetheless both
possibilities should be implemented in our transformation software.

Figure 3. The strategy pattern

 Still also the Molodenskii formulas fit the transformation problem. Also these
formulas are known in two variations. There exist a so called Molodenskii standard
and an abridged formula. The latter is more compact than the other one. In addition
to this for academic purposes there is still another transformation in use, known as
12-parameter transformation.
 Further on the implementation of the above mentioned approaches is
explained. Actually it is the user who decides about the kind of transformation. As a
matter of fact the controller has to check this decision and single out the appropriate
transformation. In terms of graph theory the controller has to find out the suitable
path. Thus all possible transitions have to be implemented as an edge. Therefore we
need the design patter strategy.
 We should be aware, that each transformation is nothing but an algorithm
which transforms a specific coordinate in another one of a different geodetic datum.
Actually we have to consider different interfaces. In the case of a Molodenskii
transformation we need a geographic coordinate whereas is the case of a 7- or 12-
parameter transformation we need a 3 dimensional Cartesian coordinate. Hence the
strategy should be able to handle all cases.
 Figure 4 shows, also referring to graph theory, how this interface is
implemented. It is nothing but a zoom in of the above depicted box denoted by
change of geodetic datum in figure 2. It is important to be aware that the graph
remains acyclic. Although there are multiple paths which could be passed for a
specific coordinate, the controller singles out only one. Thus the task of the strategy
is to create first the appropriate interface and afterwards activate the specific
transformation.

Rösch, N.

 Bol. Ciênc. Geod., sec. Artigos, Curitiba, v. 13, no 2, p.231-243, jul-dez, 2007.

2 3 9

Listing 5:
public interface Datum {
 public void datum(ControlParms control, GeographicCoordinate geo);
} // end interface Datum

In listing 5 the java interface added to the class definition of the different
transformation algorithms is shown. These java interface is different from the
interface mentioned in the clause above and shouldn’t be confounded with the
latter. Because the interface of the strategy is a class to which an algorithm is
applied whereas the java interface is used to hand over a method. The term is the
same but the sense is quite different.
 Further on we have to expand the class “GeographicCoordinates” by the
method apply_strategy depicted in listing 6. This method decides on the kind of
transformation. In fact it is the controller which takes this decision. In listing 6 the
specific variable is called kindoftrafo. The example in listing 6 encompasses only
three out of the six above mentioned datum transformations. The terms describing
the transformations are expected to be self- explanatory. The first one called
NO_TRAFO is the dummy transformation which is needed for cases explained in
section 3 (e. g. the change of a zone number).

Listing 6:
public void apply_strategy (ControlParms control) {
 Datum dat;
 if (control.kindoftrafo.equals(NO_TRAFO)) // dummy transformation
 dat = new NoTransformation();
 else if (control.kindoftrafo.equals(MOL_ABRIDGED))
 dat = new Molodenskii_trafo_standard();
 else if (control.kindoftrafo.equals(3D_INFIN))
 dat = new Spatial_similarity_infin();
 else
 … // unexpected error
 dat.datum(control,this);
} // end apply_strategy

Listing 7:
class Molodenskii_trafo_abridged implements Datum {
 public void datum (ControlParms control, GeographicCoordinate geo) {
 // algorithm }
} // end Molodenskii_trafo_abridged

The transformation of coordinate based on desing patterns.

Bol. Ciênc. Geod., sec. Artigos, Curitiba, v. 13, no 2, p.243- , jul-dez, 2007.

2 4 0

class 3D_similarity implements Datum {
 public void datum (ControlParms control, GeographicCoordinate geo) {
 // algorithm }
} // end 3D_similarity

class No_Transformation implements Datum {
 public void datum(control, GeographicCoordinate geo) {
 //dummy}
} // end No_Transformation

Listing 7 shows the formal implementation of the three possible datum
transformations listed in listing 6. The implementation of the class named
“No_Transformation” seems to be rather curious, because the body of the method
datum has no code. However these class is necessary to keep the overall design of
the transformation symmetric. Due to this approach, exceptions are neither allowed
nor are they needed.

Figure 4. The geodetic datum transformation

 The adjoining figure shows the implementation details concerning the five
transformations mentioned before. Also these terms are expected to be self-
explanatory. Note the interface which is denoted by GEO in actually the geographic
coordinate. Thus on the left as well as on the right the same interface is used.
However each box stands for an algorithm. E. g. the first box named with 7-Para-
infin references to the 7-parameter-transformation. Note that any further
transformation can be implemented rather easyly. Let us assume we would be
interested in a transformation based on a 12-parameter approach. Obviously this
transformation is not implemented so far.
 However, if we upgrade the program by a class Spatial_Affinity_Trafo
including a method datum, which comprises the appropriate algorithm, we can

Rösch, N.

 Bol. Ciênc. Geod., sec. Artigos, Curitiba, v. 13, no 2, p.231-243, jul-dez, 2007.

2 4 1

expand the functionality by this feature. At least we have to keep in mind that we
need to fit the method apply_strategy (see listing 6) and the controller. All other
parts of the program, especially the main program, remain unaffected. This short
example makes clear that the strict design facilitates the maintenance and benefits
the clearness of the program.
 Finally we will modify the example of section three to the extent of a datum
transformation. Therefore we assume, that now the user not only wants to change
the zone number of a UTM-coordinate but he wants to transform the UTM-
coordinate to a local coordinate system which may be the Gauss-Krueger-system.
Hence, as already mentioned, the geodetic datum of both systems is different. To
keep the example quite simple we omit all the interactions concerning the GUI (see
figure 1) and start with the creation of the UTM-coordinate which represents the
first vertex of the graph (see line 5 in listing 4).
 Once the class UTM is created there exists also an edge to the vertex
geographic coordinate as already outlined in section 3. These vertex is at the same
time an interface for the strategy pattern which delivers as an output a class of the
same type. However, the geographic coordinate is now transformed to an new
geodetic datum. Actually there are different possibilities to transform the coordinate
(see figure 4). Nonetheless, all different transformations can be treated as edges as
well. Hence the graph is still directed and remains acyclic.
 Referring to figure 2 we have now reached the vertex on the right top level
side. We now pass the last edge by creating a plane coordinate of the type Gauss-
Krueger and transform the geographic coordinate. The last step is exactly the same
as in the example in section 3 (see line 9 in listing 4).

5. THE SINGLETON
 A thorough analysis of the acyclic graph reveals that in any case an instance
of the type geographic coordinate is needed. This instance is a hub for the strategy
pattern. Further on we have to keep in mind that each transformation is treated as a
datum transformation. So the instance GeographicCoordinate is the most important
in the whole graph. Thus we try to assure that there exists exactly one instance of
such a type at any time.
 Therefore we have to expand the class GeographicCoordinate. The modified
class is shown in listing 8. The major difference to the former definition is the new
member function called getInstance. This function assures the existence of exactly
one instance of the class GeographicCoordinate because if there already exists such
an instance the method getInstance rejects the generation of another one.

Listing 8:
final class GeographicCoordinate extends Coordinates {
 ...
 private static GeographicCoordinate geo = null; // line 3

The transformation of coordinate based on desing patterns.

Bol. Ciênc. Geod., sec. Artigos, Curitiba, v. 13, no 2, p.243- , jul-dez, 2007.

2 4 2

 ...
 private GeographicCoordinate() {} // line 5
 ...
 public static GeographicCoordinate getInstance() {
 if (geo == null)
 geo = new GeographicCoordinate();
 return geo;
 } // end getInstance
} // end GeographicCoordinate

 Note that there are some other statements which are especially necessary if the
programming language Java is used (line 3 and line 5). For other languages (e.g.
Eiffel) there may be other statements required.
 One of the main benefits of the design pattern singleton is the improvement
of the program performance, because the system calls for the allocation of memory
are very time consuming. But this is exactly what the singleton avoids. Thus it may
be of interest to implement also other instances as a singleton. This is useful if we
think of the transformation of numerous points. In this case it would make sense to
implement the whole path or the elements of this path respectively as singletons.
Then only the vertices and edges needed by the transformation exist and nothing
else. Hence it would be difficult or almost impossible to parallelize the
transformation process.

6. SUMMARY
 Modern concepts of information science deliver new approaches in software
engineering. Among these are the design patterns. In this paper the benefits in the
field of coordinate transformation are outlined.
 From a purely mathematical point of view the whole transformation process
can be compared with a path in a directed acyclic graph. The different stages of a
coordinate within this process can be seen as vertices and the according algorithms
are the edges. Thus the graph consists as a set of all possible stages of all
coordinates. Hence, according to the requirements of the user, a certain coordinate
in a given geodetic datum passes different stages until the goal is reached.
 The implementation of this theoretical concept can be done in combination
with design patterns. Now all vertices and edges are treated as instances and
member functions. Thus step by step the program passes the different vertices and
edges which are in fact the different stages of a coordinate during the
transformation process until the final goal is reached. This is normally a coordinate
in a certain local system and geodetic datum respectively.
 Due to this approach the maintenance is quite simple. In the developing phase
errors can be localised fast and extensions can be implemented easily. Furthermore

Rösch, N.

 Bol. Ciênc. Geod., sec. Artigos, Curitiba, v. 13, no 2, p.231-243, jul-dez, 2007.

2 4 3

the structure of the program is quite strict and thus new developers will be soon
familiar with the concept and as a consequence the initial training will be shortened.

REFERENCES

GAMMA, E.: Design Patterns – Elements of reusable object-oriented software.

Addison-Wesley, 2000.
HECK, B.: Rechenverfahren und Auswertemodelle der Landesvermessung:

klassische und moderne Verfahren. Wichmann, 3. Aufl., 2003.
KUHN, T.: The structure of scientific revolutions. Univ. of Chicago Press, 3rd

edition, 1996.

(Invited paper. Recebido em agosto de 2007)

