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ABSTRACT  
The geoid is the reference surface used to measure heights (orthometric). These are 
used to study any mass variability in the Earth system. As the Earth is represented 
by an oblate spheroid (Ellipsoid), the geoid is determined by geoidal undulations 
(N) which are the separation between these surfaces. N is determined from gravity 
data by Stokes's Integral. However, this approach takes a Spherical rather than an 
Ellipsoidal Earth. Here it is derived a Partial Differential Equation (PDE) that 
governs N over the Earth by means of a Dirichlet problem and show a method to 
solve it which precludes the need for a Spherical Earth. Moreover, Stokes's Integral 
solves a boundary value problem defined over the whole Earth. It was found that the 
Dirichlet problem derived here is defined only over the region where a geoid model 
is to be computed, which is advantageous for local geoid modeling. Moreover, the 
method eliminates several of the sources of uncertainty in Stokes's Integral. 
However, estimates indicate that the errors due to discretization are very large in 
this new method which calls for its modification. So, here it is also proposed an 
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optimal combination of techniques by means of a Hybrid method and shown that it 
alleviates the uncertainty in Finite Difference Method. Moreover, a rigorous error 
analysis indicates that the Hybrid method proposed here may well outperform 
Stokes's Integral. 
Keywords:  Geoid Modeling; Ellipsoidal Dirichlet Problem; Finite Difference 
Method; Stokes's Integral. 

 
RESUMO 

O geóide é a superfície de referência utilizada para se medire altitudes (ortométrica). 
Estas são utilizadas para estudar qualquer variação de massa no sistema terrestre. 
Como a Terra é representada por um esferóide oblatado (elipsóide), o geóide é 
determinado por meio de ondulações geoidais (N) que são a separação entre essas 
superfícies. N é determinado a partir de dados gravitacionais pela integral de Stokes. 
Todavia, esta abordagem considera uma Terra esférica ao invés de elipsóidica. 
Neste artigo é deduzida uma equação diferencial parcial (sigla em inglês PDE) que 
governa N ao redor da Terra por vias de um Problema de Dirichlet. Também 
mostra-se aqui um método para resolver esta PDE que dispensa a necessidade de 
uma Terra esférica. Além do mais, a Integral de Stokes resolve um problema de 
valor de contorno definido por toda a Terra. Descobriu-se que o Problema de 
Dirichlet aqui proposto está definido apenas ao longo da região de cálculo o que é 
vantajoso para modelamento local do geóide. Além do mais, o método elimina 
diversas das fontes de incertezas presentes na Integral de Stokes. Todavia, 
estimativas indicam que o erro devido à discretização é muito grande neste novo 
método o que pede por modificações. Sendo assim, aqui também propõe-se uma 
combinação ótima de técnicas por meio de um método Híbrido. Mostra-se que que 
este método híbrido atenua as incertezas do método das Diferenças Finitas. Além do 
mais, uma rigorosa análise de erros indica que o método Híbrido aqui proposto pode 
bem desempenhar melhor do que a Integral de Stokes. 
Palavras-chave: Modelagem do Geóide; Problema de Dirichlet no Elipsóide; 
Método das Diferenças Finitas; Integral de Stokes. 
 
 
1. INTRODUCTION  

Present day needs for highly accurate geoid models have driven many attempts 
to modify Stokes’s Integral and to compute ellipsoidal corrections for it 
(MARTINEC and GRAFAREND, 1997; ARDESTANI and MARTINEC, 2003; 
HIPKIN, 2004; NAJAFI-ALAMDARI et al., 2006) which can be as big as 1m in 
some places (MARTINEC and GRAFAREND, 1997; NAJAFI-ALAMDARI et al., 
2006). Current high resolution geoid models do not consider these corrections and 
show decimeter big uncertainties, e.g. JGEOID2008 with 17cm for Japan 
(KUROISHI, 2009; ODERA et al., 2012) and USGG2009 with as much as 32.1cm 
for US (WANG et al., 2011). Users of geoid models require at least a decimeter 
quality as for oceanographers and geophysicists (KUROISHI, 2009) or a 1cm 
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quality as for geodesists (SANSO and SIDERIS, 2013; TAPLEY et al., 2004) which 
is hardly attainable without methods of improved accuracy. However, the ellipsoidal 
corrections do not eliminate the error from the spherical approximation but attenuate 
it. Moreover, they still have the following errors: limiting the area of integration to a 
small spherical cap (truncation error), approximating the normal derivative by a 
radial or other derivative, Earth's topography that cause to exist masses outside the 
geoid, discretization of the input gravity and propagation of the uncertainties of the 
input gravity. 

The Boundary Value Problem (BVP) from which Stokes’s Integral is derived 
is defined over the whole space on and outside the geoid and over the whole geoid. 
Consequently, its solution requires gravity data over the whole Earth to provide N at 
a single point. The Dirichlet problem derived here is defined only over the region of 
computation. Thus, besides computing N directly on the ellipsoid, its solution 
requires gravity data only over the region of interest. In solving a Dirichlet problem 
in the Ellipsoid these 3 major sources of error will be eliminated: the spherical 
approximation, the truncation of the integral and the Earth's topography.  

A Dirichlet problem whose PDE governs N over the geoid is derived here and 
it is shown how to numerically solve it by using the Finite Difference Method 
(FDM). However this method can handle considerably large matrices which 
increases its computational cost. Therefore, it is also proposed a modification on 
FDM (FDM with subgrids, FDM2) that allows the computation of geoid models of 
large regions by keeping the matrices involved at a small and constant size. It will 
be shown here that FDM has large errors due to discretization so it is also proposed 
a Hybrid method to alleviate those uncertainties. To derive it it will be needed a 
Spherical Dirichlet Problem which will also be derived here. The Hybrid method as 
opposed to FDM yields subcentimetric differences from Stokes's Integral. 
Moreover, an error analysis will be developed which indicates that the Hybrid 
method may well outperform Stokes's Integral. 
 
2. DERIVATIONS OF STOKES’S INTEGRAL AND DIRICHLET 

PROBLEM  
Stokes’s Integral is derived from the fundamental Equation of Physical 

Geodesy (HOFMANN-WELLENHOF et al., 2006): 

where T is the disturbing potential, ∂T/∂h is its vertical gradient, γ is the normal 
gravity, ∂γ/∂h is its vertical gradient and ∆g is the gravity anomaly (reduced to 
remove the effect of masses outside the geoid). Eq. (1) is used as a boundary 
condition for the PDE given by Laplace’s equation. This constitutes the third BVP 
of potential theory. The BVP is solved for T and N is derived from it by Brun’s 
formula (HOFMANN-WELLENHOF et al., 2006): 
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Stokes’s Integral makes a spherical approximation on Eq. (1) to then compute 
an integral solution for the BVP considering the whole space outside the geoid. To 
derive the Dirichlet problem for FDM it is considered the generalized Poisson’s 
Equation in ellipsoidal-harmonic coordinates (u, υ, λ) for the gravitational and the 
normal potentials to derive the Laplacian of T, which inside the Earth is as follows 
(SANSO and SIDERIS, 2013) (υ is the complement of the reduced latitude β, i.e. β 
= π/2 − υ , and λ is the geocentric longitude): 

where u is lesser than or equals b, E=(a2−b2)1/2 is the linear eccentricity, with a being 
the semi-major axis and b the semi-minor axis of the Ellipsoid of revolution, G is 
the gravitational constant and ρ is the Earth’s density. 
 
2.1 The Dirichlet Problem PDE 

The PDE that describes T over the Earth, and thus, solely as a function of T 
and its partial derivatives in υ and λ can be derived from Eqs. (1) and (3) after 
expressing Eq. (1) in ellipsoidal-harmonic coordinates u, υ and λ, for details refer to 
Appendix A. This PDE is as follows: 

where BN(υ), CN(υ), FN(υ), GN(υ, λ) are as follows: 

 

 

 

 
with u=b, F(υ)=−(1/γ)·(∂γ/∂h) (F(υ) is given explicitly by Eq. (A.2)). Furthermore, 
for the Earth 4πGρ is very small and can be neglected. 
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This PDE together with its boundary condition, which is to know T or N 
(geoidal undulation) at the boundary of the surface where it’s been applied, defines 
an Elliptic BVP with a Dirichlet boundary condition. This, in turn, defines a 
Dirichlet problem, which can be solved numerically by e.g. FDM. 
 
3. NUMERICAL SOLUTION OF THE DIRICHLET PROBLEM BY F DM 

AND FDM2 
To obtain T by FDM the partial derivatives of T must be expressed by their 

equivalent form in finite differences (DIEGUEZ, 2005). In other words, to make the 
following substitutions—considering data on a grid (j, i), 1<j<J−1 and 1< i< I−1: 

 

 

where ∆λ and ∆υ are the grid spacing. 
Substituting Eqs. (9), (10) and (11) in Eq. (4) yields the final expression for 

FDM: 

where BN, CN, FN and GN are given by Eqs. (5), (6), (7) and (8). 
T can be determined from Eq. (12) if gravity anomalies ∆g are provided on a 

grid and T or N are provided on the boundary of this grid, i.e. at j=1, j=J, i=1, i=I. 
The boundary values of T or N can be determined by: spirit levelling (HOFMANN-
WELLENHOF et al., 2006; SANSO and SIDERIS, 2013), a global geopotential 
model (PAVLIS et al., 2012; PAIL et al., 2011, 2010), satellite altimetry if the 
region is over the seas (HOFMANN-WELLENHOF et al., 2006; SANSO and 
SIDERIS, 2013) or the remove-compute-restore technique (HOFMANN-
WELLENHOF et al., 2006; SANSO and SIDERIS, 2013; ODERA et al., 2012) 
which can be based on ellipsoidal corrections (MARTINEC and GRAFAREND, 
1997; ARDESTANI and MARTINEC, 2003; HIPKIN, 2004; NAJAFI-
ALAMDARI et al., 2006). This way, T is determined from the linear system derived 
from Eq. (12) by solving it iteratively by e.g. Jacobi’s method. However, for small 
grids one can get very large systems, e.g. a 1min grid of a 4o by 4o region delivers a 
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linear system on more than 57 thousand variables which in double precision 
requires more than 24.3 Gigabytes of Random Acess Memory (RAM). This can be 
big for a personal computer to handle. Therefore it is proposed a Finite Difference 
Method with subgrids (FDM2) to compute geoid models of regions as big as desired 
while keeping the linear system as small as desired. FDM2 is best suited for high 
resolution geoid modeling. For further details on FDM2 refer to Fig. 1. 

 
3.1 Short Remark on Remove-Compute-Restore Technique and FDM 

In FDM, terrain reductions are not mandatory because the Dirichlet problem is 
derived from Poisson's equation as opposed to Stokes's Integral. Moreover for FDM 
and FDM2 the long wavelengths need not be removed because the Dirichlet 
problem is defined only over the region of computation as opposed to the BVP from 
which Stokes's Integral is derived which is defined over the whole Earth. Therefore, 
FDM does not require implementation of a remove-compute-restore technique. 
 

Figure 1 – How FDM2 works. The grid (big square) is divided in subgrids (small 
squares, as many as desired, here 16 for the sake of simplicity). FDM is applied 

individually to each subgrid instead of a single run on the grid. In addition, T or N 
must be known at the boundary of each subgrid. 
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Figure 2 - Region used for assessment of geoid modeling methods. The region 
where the geoid models were computed is represented by the solid black square. 

The island in the center corresponds to Japan. 
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Figure 3 - Input gravity anomalies used. The input data spans a larger area than the 
one to be modeled because boundary points were computed by Stokes’s Integral 

which requires a spherical cap, here 3 arc-deg. Contour interval 1.0mgal. 
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Figure 4 - Geoid model computed by FDM2 in a 1min grid. 
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Figure 5 - Map of the differences between FDM2 and Stokes’s Integral computed in 
a 1min grid. 
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Figure 6 - Histogram of differences between FDM and Stokes’s Integral (cm). The 
frequency is represented by means of probability, i.e. their sum equals 1. 

 
 
Table 1 - Differences between FDM and Stokes's Integral. Max, min, mean and sd 

are the maximum, the minimum, the mean and the standard deviation of the 
differences between the techniques. Values are in cm. 

Resolution Max Min Mean  sd 

1 arc-deg 0.0 -96.7 -69.0 132.2 

1 arc-min 0.0 -492.0 -189.7 121.6 

 
 
4. COMPARISON OF STOKES’S INTEGRAL WITH FDM AND FDM 2 

Using FDM and FDM2 it was computed geoid models on a 1degree and a 
1min grid respectively using ship-borne gravity data from Japan Oceanographic 
Data Center (JODC) and gravity anomalies derived from satellite altimetry by 
Andersen et al. (2010). For the Fortran 90 code written see Del Rio (2013a) for the 
code concerning FDM and Del Rio (2013b) for the code concerning FDM2. The 
whole data set and computer programs built may be provided by email upon request. 
The region is located in the Japanese seas and spans 34o − 37oN and 144o − 147oE, 
see Fig. 2. This region is known for the Kuroshio current which is as strong as to 
cause variations on the geoid (ADJAOUT and SARRAILH, 1997). 
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The differences between FDM and Stokes's Integral are displayed in Table 1 
for the 1deg and the 1min grids. It can be observed that an increase in resolution 
improves the quality of the grid as given by the standard deviation (sd). In both 
grids, the differences were very large, much greater than the decimeter. However, it 
is known that the sd of Stokes's Integral over Japanese lands is subdecimetric as 
measured by Kuroishi (2009) and Odera et al. (2012). Thus, this large deviation is 
mainly due to the errors of discretization of input and propagation of input 
uncertainties in FDM, see Eq. (A.5), Appendix B. 

Importantly, for the 1min grid the computation of such grid for N was not 
possible by FDM due to the large number of variables but only by FDM2 (FDM2 
was designed for the case when FDM cannot be applied). FDM2 was applied with 
squared subgrids sizing 1deg. In total, 9 subgrids were required. The 1deg grid has 
too few points to yield a reasonable implementation of FDM2. Therefore, the 1deg 
grid was computed only by FDM and the 1min grid was computed only by FDM2. 

The map of the grid concerning the input gravity anomalies is displayed on 
Fig. 3. The geoid model computed in a 1min grid using FDM2 is displayed on Fig. 
4. The map of the differences between FDM2 and Stokes’s Integral in the 1min grid 
corresponds to Fig. 5. In the difference map it can be observed significant deviations 
between the methods. The deviation is null at the boundary of each subgrid and 
generally increases towards their center. Moreover, a plot of the histogram of the 
differences is displayed on Fig. 6. As given by a -1.2 kurtosis, it indicates that the 
differences conform to a uniform distribution. 

To alleviate the large uncertainties in FDM it will be proposed here a Hybrid 
Method. Prior to its formulation it is necessary to derive a Spherical Dirichlet 
problem. 
 
5. DERIVATION OF A SPHERICAL DIRICHLET PROBLEM  

Considering Poisson's equation in spherical coordinates and the fundamental 
equation of physical geodesy in spherical approximation it can be derived a 
Spherical Dirichlet problem that will be used to alleviate the uncertainties in the  
Ellipsoidal Dirichlet problem. The equations read as follows: 

The Spherical Dirichlet problem can be derived in an analogous way to that of 
the Ellipsoidal Dirichlet problem. Its Partial Differential Equation (PDE) reads: 
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where BN(υ), CN(υ), FN(υ), GN(υ , λ) are as follows: 

for the Earth 4πGρ is very small and can be neglected. 
Its finite difference expression is similar to that of the Ellipsoidal Dirichlet 

problem and reads: 
 
 
 
 
 
 
 
 
 

 
where BN(υ), CN(υ), FN(υ), GN(υ, λ) are given by Eqs. (16), (17), (18) and (19). 
 
6. THE UNCERTAINTIES INVOLVED IN EACH TECHNIQUE FOR  

GEOID MODELING  
Here it will be derived expressions that give the true N at a point as N 

computed by a technique plus uncertainties due to each error source. In symbols, 
denoting the N computed from an Ellipsoidal Dirichlet problem by NFDME, from a 
Spherical Dirichlet problem by NFDMS and from the remove-compute-restore (RCR) 
technique by NRCR it follows: 

where ε1 and ε′1 are the errors due to the approximation of normal derivatives to the 
ellipsoid by radial derivatives, ε2 and ε′2 are the errors due to discretization of input 
and propagation of input uncertainties, εE is the error due to the spherical 
approximation done to the fundamental equation of physical geodesy, εTopo is the 
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error due to the topographical masses outside the geoid and εT is the error due to 
truncation of Stokes’s Integral. εTopo and εT are alleviated because of the 
implementation of RCR technique. εE and ε1 are considered equal or very similar for 
both NRCR and NFDMS because the same approximation is done in both cases. 
 
7. ALLEVIATION OF THE UNCERTAINTIES IN FDM BY AN OP TIMAL 
COMBINATION OF TECHNIQUES  

The uncertainty due to discretization of input and propagation of input 
uncertainties can be alleviated if N is computed by the following formula: 

Note that Eq. (22) gives N as a combination from N computed by several 
techniques. This optimal combination shifts the error due to discretization to that of 
Stokes’s Integral, which is much smaller. Moreover, εT , εTopo and ε′1 are small, with 
εT and εTopo being alleviated by RCR’s implementation and the same being possible 
for ε′1 in future. So, the error of this new method is mainly due to discretization of 
input and propagation of the uncertainties of the input in Stokes’s Integral, which 
are much smaller compared to FDM. Hereafter, I will refer to the N given by this 
method as NHybrid, i.e. 
 

 
Figure 7 - Geoid model computed by the Hybrid method in a 1min grid. 
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Figure 8 - Map of the differences between the Hybrid method and Stokes’s Integral 
computed in a 1min grid. 

 
 
 

Figure 9 - Histogram of differences between the Hybrid method and Stokes’s 
Integral (cm). The frequency is represented by means of probability, i.e. their sum 
equals 1. 
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Table 2 - Differences between the Hybrid Method and Stokes's Integral. Max, min, 
mean and sd are the maximum, the minimum, the mean and the standard deviation 

of the differences between the techniques. Values are in cm. 

Resolution Max Min Mean  sd 

1 arc-min 0.0 -2.86 -1.30 0.83 

 
8. COMPARISON OF THE HYBRID METHOD WITH STOKES’S 

INTEGRAL  
It was computed N in a 1min grid over 34o − 37oN and 144o − 147oE using the 

same input grid of gravity anomalies. In this region NHybrid and the difference NHybrid 
− NRCR were computed. The differences are dislayed on Table 2. Kurtosis is -1.20 
which indicates that the differences again conform to a uniform distribution. 
Moreover, the difference may be expressed as follows: 

so that the difference is a measure of the uncertainty due to the Earth’s ellipticity 
that is usually not accounted for in RCR. From Eqs. (9) and (10) NHybrid’s 
uncertainty is expected to be inferior to that of NRCR as ε1 and ε′1 may be 
considered as approximately equal. NHybrid has the advantage over Stokes’s Integral 
of eliminating εE and possibly eliminating ε′1 in future. The maximum observed 
difference is very small in magnitude and σ is below centimeter which is 
remarkable. Moreover, the differences were again null at the boundary of each 
subgrid and tended to increase towards their center. The same trend was observed 
here for the Hybrid method. The geoid computed by the Hybrid method is displayed 
on Fig. 7 and represents the geoid over the region much more accurately than the 
sole FDM. The difference map is displayed on Fig. 8. The histogram of the 
differences is displayed on Fig. 9. 
 
9. CONCLUSIONS AND FUTURE WORK  

In this article the formulations of a Dirichlet problem to compute geoidal 
undulations and its numerical solution by FDM were proposed. The main 
advantages are the elimination of the errors due to the neglection of Earth's 
flattening, truncation of Stokes's Integral and the Earth's topography. The major 
drawback of this approach is the error due to the limited density of the input gravity. 
Moreover, an optimal combination of techniques was proposed here and named 
Hybrid method. 

Boundary points in FDM/FDM2 can always be determined by Stokes's Integral 
in a standard remove-compute-restore procedure or a global geopotential model. 
The remaining points are the vast majority and can be determined by FDM or 
FDM2. Moreover, for large regions the computation of a geoid model by FDM may 
become difficult thus highlighting the usefulness of FDM2. 
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However, FDM and FDM2 are not as yet alternatives for highly accurate geoid 
determinations in this time when a 1cm geoid is desired. This is mainly due to the 
error due to discretization of input and the propagation of uncertainties in the input 
which were shown to be much larger in FDM and FDM2 than in Stokes's Integral. 
Therefore, future work should concern with the treatment of such uncertainties in 
order to make FDM and FDM2 comparable or even better than Stokes's Integral just 
in the way that was done here by means of the Hybrid method. Afer all, an increase 
in resolution decreased the uncertainty of FDM, so it is expected that in future, with 
more gravity data of higher quality and denser coverage available, the overall 
uncertainty of FDM will decrease. Moreover, FDM and FDM2 eliminate 3 major 
sources of uncertainty in Stokes's Integral. 

The error analysis was derived here and it was found that the uncertainty in the 
Hybrid method is mainly due to the discretization of input and propagation of input 
uncertainties in Stokes's Integral because other uncertainties cancel each other or are 
comparably small. This led to very small uncertainties and a remarkable agreement 
with Stokes's Integral as opposed to FDM. 

The differences between the Hybrid method and Stokes's Integral are due to 
the Earth's ellipticity so that it is expected that the use of ellipsoidal corrections in 
future work may further improve NRCR and consequentely NHybrid as well. Moreover, 
these differences show that for a centimetric geoid a Spherical Earth should not be 
used. 

Further suggestions for future work: if the required data is available, it would 
be good to compute a geoid model in land in order to compare results with geoidal 
undulations determined by spirit levelling. Also good would be to compare 
FDM/FDM2 with Stokes's Integral on ellipsoidal correction in order to improve 
accuracy of boundary points and slightly improve overall accuracy of geoid model. 
To derive a PDE for the Dirichlet problem based on a more accurate approximation 
of the vertical gradient of T, e.g. using the normal to the Ellipsoid, is the final 
suggestion for future work. 

Furthermore, once the error due to the Earth's ellipticity is similar for NRCR and 
NFDMS techniques, from the error analysis developed here it is expected that the 
Hybrid method will outperform Stokes's Integral which would be a step towards a 
centimetric geoid. 
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APPENDIX A – DETAILS ON THE DERIVATION OF DIRICHLET  
PROBLEM PDE 

To express Eq. (1) in ellipsoidal-harmonic coordinates, the vertical gradient of 
T will be approximated by its derivative with respect to u as follows 

where ∂T/∂n denotes the normal derivative measured along the outward unit normal 
to the ellipsoid. 

Hence, 

where F(υ) is given by: 

where M = a2/ [b(1+e′2cos2υ)3/2] and N = a2/ [b(1+e′2cos2υ)1/2]. In M and N (these 
are the radius of curvature in the direction of the meridian and the normal radius of 
curvature in the direction of the prime vertical), υ is the ellipsoidal latitude and e′ is 
the second eccentricity, where e′ = (a2−b2)1/2/b. 

Consequently, by derivating Eq. (A.1) with respect to u yields: 

where ∂∆g/∂u is approximated by the vertical gradient of the gravity anomaly 
∂∆g/∂h or its radial derivative with respect to the Earth’s center of mass. The PDE 
for the Dirichlet problem is obtained by substituting the first and second derivatives 
of T with respect to u from Eqs. (A.1) and (A.3) in Eq. (3). 
 
APPENDIX B – THE ERROR INTRINSIC TO STOKES’S INTEGR AL  

A major source of error that is present in geoid modeling is the discretization 
of the input and the propagation of the input errors. It is considered that the error 
due to discretization/propagation is approximately equal for all techniques. Thus, 
letting N be the true geoidal undulation and N′ be the computed geoidal undulation 
yields: 

where ε0 is the error due to approximation of the normal derivative of T by ∂T/∂u,   
ε′0 is the error due to approximation of the normal derivative of T by the radial 
derivative, ε1 is the error due to the Earth’s flattening and truncation, ε2  and ε′2 are 
the errors due to discretization of input gravity and propagation of overall 
uncertainty in gravity measurements. 
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Letting ∆N = NFDM−NStokes with NStokes=NFDM implies: 

 
Thus, by comparison with FDM/FDM2 the uncertainty in due to 

discretization/propagation can be estimated fairly according to Eq. (A.5) because ε′0 
− ε0 is small compared to the other terms. 
 
(Recebido em outubro de 2013. Aceito em fevereiro de 2014). 
 


