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Abstract: 

In the traditional method of optimal design of displacement monitoring networks a higher 

precision, √2 times better than the desired accuracy of displacements, is considered for the net 

points in such a way that the accuracy of the detected displacements meets the desired one. 

However, in this paper, we develop an alternative method by considering the total number of 

observations in two epochs without such a simple assumption and we call it two-epoch 

optimisation. This method is developed based on the Gauss-Helmert adjustment model and the 

variances of the observations are estimated instead of the weights to optimise the observation 

plan. This method can deliver the same results as the traditional one, but with less required 

observations in each epoch. 

Keywords: Gauss-Helmert Model; Least-Squares; Optimal Variance; Precision of 

Displacements. 

 

 

Resumo:  

Nos métodos tradicionais de monitoramento de deslocamento de redes é exigida alta precisão 

dos pontos que compõem a rede, em torno de √2 vezes a precisão requerida, de forma que a 

precisão exigida no projeto seja alcançada. Neste artigo foi desenvolvido um método alternativo 

que considera o número total de observações obtidas em duas épocas, sendo chamado de 

otimização em duas épocas. Este método foi desenvolvido baseado no modelo de ajustamento de 

Gauss-Helmert e ao invés dos pesos são estimadas as variâncias das observações para otimizar o 

modelo de observação. Este método pode ter resultados iguais ao método tradicional, mas com 

menor quantidade de observações requeridas em cada época. 

Palavras-chave: Modelo de Gauss-Helmert; Minimos quadrados; Variância Otima; Precisão dos 

deslocamentos. 

http://dx.doi.org/10.1590/S1982-21702015000300027
mailto:mehdi.eshagh@hv.se


485                                                                    Two-epoch optimal... 

                                                             
Bol. Ciênc. Geod., sec. Artigos, Curitiba, v. 21, no 3, p.484 - 497, jul-set, 2015. 

1. Introduction 

 

 

The geodetic networks are designed for different purposes, but one of the most important 

applications of such networks is to monitor deformation of man-made structures or the Earth. 

Amongst numerous studies about the design of such networks, we mention the work done by 

Kuang (1991). Blewitt (2000) and Gerasimenko et al. (2000) studied the design problem of a 

monitoring network based on the geophysical parameters and fault-mechanics and Yetki et al. 

(2008) studied a numerical algorithm of particle swarm optimisation for a similar purpose.  

Generally, an optimal geodetic network is a network having high precision and reliability 

designed according to economic considerations. The precision of the network is related to the 

estimated errors of the coordinates of the net points and the reliability is the resistance of the 

network to the possible gross errors. The first step of the geodetic network design is so-called the 

zero-order design (ZOD) in which the best datum of the network is defined as it affects the 

precision of the network. Different criteria exist for the ZOD. Teunissen (1985) presented the 

ZOD according to the theory of generalised matrix inverses and its relations with datum and rank 

deficiency of the design matrix. Kuang (1996) presented different criteria for the ZOD, and 

Eshagh (2005) suggested the minimum norm and trace of the co-factor matrix as the best criteria 

for datum definition. There are three well-known ways to find the best configuration of 

networks, i.e., the first-order design (FOD). One can use the trial and error, the analytical or 

metaheuristic approaches. Here, we just explain the first two methods, and the reader is referred 

to Berné and Baselga (2004) for the metaheuristic method. In the former, the objective function 

(OF) is computed with a proposed solution for the problem. If the suggested solution does not 

satisfy the OF, the solution is changed and the OF is computed again. This process is repeated 

until the requirement is satisfied. The analytical approaches take advantage of a mathematical 

algorithm and design the network in such a way that the quality requirement of the network is 

satisfied. A pioneer in using optimisation theory for the FOD purpose was Koch (1982) and 

Koch (1985) who used the quadratic programming theory (Bazaraa and Shetty 1979) to optimise 

the configuration of a network. Kuang (1991), Kuang (1996) and Amiri-Simkooei (1998) studied 

this issue further and considered different types of optimisation methods. Berné and Baselga 

(2004) used the simulated annealing method for the FOD. Amiri-Simkooei (2008) presented an 

analytical approach for the same purpose.  

Grafarend (1975), Schmitt (1980) and Schmitt (1985) presented different approaches to the 

second-order design (SOD) where the observable weights and type are determined. Xu (1989) 

developed a multi-objective optimisation model (MOOM) for the SOD purpose and Kuang 

(1993) presented another approach to the SOD leading to maximum reliability using linear 

programming (see e.g. Bazaraa 1974, Smith et al. 1983). Amiri-Simkooei (2004) presented a 

new method for the SOD. Doma (2014) developed another method for the SOD and compared it 

with Kuang’s (1996) method and concluded the both of them can meet the precision criterion of 

the strain parameters.  

Using the method of Kuang (1996), one can obtain optimal weights and configuration of the 

network in one step by different optimisation algorithms and OFs. In fact, the approach proposed 

by Kuang (1996), to optimal design of the network, is a combination of FOD and SOD. In this 

method, the best configuration and observation precisions are determined simultaneously in an 

optimal way. Amiri-Simkooei (2001a) and Amiri-Simkooei (2001b) considered the analytical 

approach for FOD, SOD and also their combinations in robustness of the network to resist the 

outliers. This optimal design can be carried out using different criteria as an OF. If just one 
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criterion exists in the OF, it is called single-objective optimisation model (SOOM); if two criteria 

exist, it is a bi-objective optimisation model (BOOM) (Mehrabi 2002), and, if we have more than 

two criteria, we call it MOOM (Xu 1989). A simple comparison between different SOOMs has 

been carried out in Eshagh and Kiamehr (2007). This comparison shows that reliability is a much 

better criterion than the precision criterion in SOOMs. The capability of the BOOM versus 

SOOM was presented in Eshagh (2005). Bagherbandi et al. (2009) compared SOOM and 

MOOM in a simulated geodetic network and concluded the superiority of the MOOM with 

respect to SOOM. Alzubaidy et al. (2012) discussed the problem of the FOD and SOD in a 

micro-geodetic network. Amiri-Simkooei et al. (2012) presented some basic concepts related to 

the optimisation and design of geodetic networks. Eshagh and Alizadeh-Khameneh (2014) 

concluded that in the case of using a BOOM of precision and reliability, constraining the OF to 

the precision and reliability constraints are not necessary.  

In the optimal design of a monitoring network, the accuracies of the displacements and/or 

deformation parameters are also considered as some criteria. Displacements are important for 

monitoring networks as the deformation parameters are estimated from them, if the monitored 

object can be considered as a continuum medium. However, not all objects are of continuum 

nature, in such a case displacements in different parts of the object are considered instead of 

deformation parameters. So far, geodetic networks have been designed based on the precision 

and/or reliability of the network for one epoch of observations. In fact, in displacement 

monitoring networks the goal is to determine the displacements or the coordinate differences 

between two epochs of observations. Considering two epochs for optimising a displacement 

monitoring network is a new issue, which is studied for the first time and we will discuss in this 

study based on the precision of the estimated displacements. Here, we will discuss both methods 

of one-epoch and two-epoch optimisation and compare them in theoretical and practical view. 

 

 

2. One-epoch optimisation 

 

 

In optimisation and design of geodetic networks usually one epoch for measuring the necessary 

data is considered. However, if our goal is to determine the displacements, optimal design of a 

network by considering one epoch of observation is not fully correct. In the past, for designing 

monitoring networks, the quality of the observables has been assumed to be the same (Kuang 

1996, p. 302). Also, a similar configuration for the networks was assumed for all epochs of 

measurements. However, the configuration and number of data in one epoch can be different 

from another meanwhile preserving the precision of the displacements. In the following, we will 

explain the traditional method for optimal design of a monitoring network mathematically and 

we call this method one-epoch optimisation.    

Let the following Gauss-Markov model for least-squares adjustment of geodetic networks at the 

epoch i: 

where A stands for the design matrix, xk the vector of unknown coordinates, Lk the vector of 

observation and εk the errors of observations at epoch k.  represents the statistical 

expectation operator, 𝜎𝑘
2 and  Qk are the a priori variance factor and the cofactor matrix, 

respectively. 
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As can be seen in Equation 1, the design matrix remains the same in any epoch of k but the 

observation vector will change from one epoch to another and correspondingly their errors. The 

result of any change in the observation vector leads to changes in the coordinates of the points, 

which are recognised as displacements. However, some statistical tests should be performed to 

see if the displacements are meaningful and the observation changes are not due to the non-

random errors (see e.g. Kuang 1996, p. 274-275). If we consider two epochs of 1 and 2 and 

subtract the organised Gauss-Markov model of Epoch 2 from that of 1, we have: 

 
 

where ΔL is the difference of the vector of observations in both epochs and Δε their 

corresponding errors. The least-squares solution of the displacements Δx is: 

 
 

where 

 
 

where D is the datum matrix and P is the weight matrix of both epochs. In fact, the above least-

squares solution is the results of minimising the following OF: 

 
 

The variance-covariance (VC) matrix of the estimated displacements  ∆𝐱̂ is: 

 

where H is the matrix, which spans the null space of the design matrix A, and usually used for 

adjustment of the network by the inner constraints method; also E = HTDDTH. 

In the case that the same observables with the same qualities are observed in the network, the 

matrix P will be: 

 
 

Therefore, Equation 6 will change to: 

This means that the errors of the optimised network should be considered √2 times smaller than 

what we expect for an ordinary network, if the network is going to be used for displacement 

monitoring (Kuang 1996, p. 302). Let us consider a two-dimensional network for implying our 

mathematical presentation, but we emphasise that what we present for such a network will be 

valid for any type of displacement monitoring network. Now, if  𝐂∆𝐱 ̂ is expanded by the Taylor 

series we have: 

 
 

where m and n are the number of coordinates and observations, respectively. The partial 

derivatives of 𝐂∆𝐱 ̂  are (cf. Kuang 1996, p. 222-223): 
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and 

  
 

𝐂∆𝐱 ̂
0 is the initial VC matrix of the displacements in the present status; Δxi  and Δyi  are the 

position or configuration changes, and Δpj is the weight updates of the observations. In fact, by 

changing the configuration using Δxi  and Δyi; and observational plan  by Δpj, we fit 𝐂∆𝐱 ̂
0  to the 

desired criterion matrix, (
C

2
)  in a least-squares sense. Note that we divide the matrix C by 2 to 

emphasise that the desired errors of the points are √2 times smaller than the errors of 

displacements. To do so, we can write Equation 9 in the following matrix form:  

 
 

where  

T is constructed as a (2𝑚 × 2𝑚) × (2𝑚 + 𝑛) matrix, and the vectors w and u have the 

dimensions of (2𝑚 + 𝑛) × 1  and (2𝑚 × 𝑚) × 1, respectively. 

In order to derive w, the following optimisation model should be solved: 

 
subject to 

  

where  represents the L2-norm, A00 = (I -I)T with I being a 2m + n identity matrix and 
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where [a1i,a2i] and [b1i,b2i] are the boundary values of the unknown coordinate changes, Δxi, Δyi , 

and i=1,...,m.  For the weight improvements Δpj, j=1,...,n are introduced and 𝑝𝑗
0, j=1,...,n are the 

approximate weights for pj. Note that the coordinate changes, Δxi and Δyi, are the changes in the 

network configuration and not the displacements.  

All of these processes are done for designing a displacement monitoring network based on the 

traditional one-epoch optimisation. In fact, it is an ordinary network optimisation but only the 

criterion matrix is divided by 2; for more details see Kuang (1991) and Kuang (1996). 

 

 

3. Two-epoch optimisation 

 

 

The problem with one-epoch optimisation is that we cannot directly consider the observations of 

two epochs, and the optimisation is just done based on one epoch with those observations, which 

are not really observations, but the observation differences in two epochs. This is the restriction 

due to the use of Gauss-Markov model. Now, we use another mathematical model, which can 

consider all of the observations in two epochs, i.e. the Gauss-Helmert adjustment model. In this 

case, instead of Equation 2, we can write: 

The least-squares solution of Equation 20 is: 

where 

and the VC matrix of the displacement is: 

In fact, the solutions (3) and (21) are identical, where the former equation is derived based on the 

Gauss-Markov adjustment model, which is a particular case of the Gauss-Helmert adjustment 

models. Another problem of the one-epoch optimisation is that when one observable has an 

insignificant influence in the precision of network in Epoch 1, the corresponding one is also 

insignificant in Epoch 2. However, by using the Gauss-Helmert model we can separate the 

observation sets from each other, but mathematically connect them by the matrix B. In this case, 

we have two sets of observations from two epochs preserving the accuracies of the detected 

displacements. Now, if we expand 𝐂∆𝐱 ̂, Equation 23, by the Taylor series, we have: 

where 
𝜕𝑪∆𝐱̂

𝜕𝑥𝑖
  and 

𝜕𝑪∆𝐱̂

𝜕𝑦𝑖
  are defined in Equations 10 and 11, respectively and  

𝜕𝑪∆𝐱̂

𝜕𝑞𝑗
  can be written 

as: 
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where qj are the diagonal elements of  𝐂∆𝐱 ̂ or the variances of observations. 

It is of vital importance to note that j ranges from 1 to 2n, which means that when 𝑗 ≤ 𝑛 , qj 

belongs to the observations of Epoch 1 and when  j > n, to those of Epoch 2.  

The difference between Equation 24 and Equation 9 is related to their last terms. In Equation 9, 

the derivative of 𝐂∆𝐱 ̂is taken with respect to the weight of observations whilst in Equation 24 

with respect to their variances. Since we want to define a weight matrix, as we used in the 

Gauss-Markov model, we have to consider the addition of the VC matrices of both sets of 

observations and multiply them by B and BT. Therefore, we have to take the derivatives with 

respect to qj instead of pj, where  qj =1/ pj. In this case, the total number of observations will be 

2n for Equation 24, i.e. the total number of observations in both epochs. Equation 24 can be 

presented by the following matrix form: 

where 

 

 

   

The matrix T' and the vector W' have the dimensions of (2𝑚 × 2𝑚) × (2𝑚 + 2𝑛) and (2𝑚 +
2𝑛) × 1, respectively, while the dimension of vector  u' is the same as previous. 

Similar to Equation 17, an optimisation model can be formulated as:  

 
subject to Equation 18 in which the elements of matrix b00 are written as: 

In the two-epoch optimisation we do not have to divide the criterion matrix C by 2, and the 

variances of observations are estimated instead of their weights. Unlike the one-epoch method, in 

which the zero value of the weight means the removal of observation from the plan, in the two-

epoch optimisation, we have to avoid having zero values for the variances as they make the 

matrix K, Equation 22, singular. We have to select a small threshold for them to avoid this 

problem. Therefore, observations with large variances have an insignificant role in the precision 

of the displacements. In the following, both one-epoch and two-epoch methods are used for 

optimising a simulated trilateration network. 
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4. Numerical studies 

 

 

In order to test the presented theory for two-epoch optimisation, a simple trilateration network 

consisting of 7 net points and initially 21 length observations is designed and optimised for the 

purpose of displacement monitoring. At the first step, the one-epoch optimisation method is 

used. Here, we assume that the error of the displacements should be about 3 mm. In one-epoch 

optimisation we consider the error of each point smaller by √2  so that after using the error 

propagation law of the random errors, it will be √2  times larger for the displacements. In other 

words, 3 is divided by √2 meaning that the error of coordinates of each point should be 2.1 mm. 

However, in two-epoch optimisation 3 mm is directly considered as the desired precision of the 

displacements. 

Here, we use the optimisation toolbox of MATLAB® for our purpose and we assume that the 

position of the points can change not more than 2 metres. Also, we have found that to achieve 

high accuracy of the net points, Point 4 should be kept fixed as well as its direction towards Point 

1 to define a proper datum, i.e. the minimum constraints. At the first step, all possible distances 

are considered, and in optimisation we try to delete some of them from the plan according to the 

desired accuracies of the displacements and by changing the configuration. 

Figure 1a shows the optimised network by the one-epoch method on the background of the 

network prior to optimisation. As it is seen, the lengths L26, L32 and L 56 have been deleted 

from the observation plan, which means that the network is able to deliver displacement with the 

desired accuracy based on one-epoch method with 3 observations less than the planed one. All 

error ellipses of the displacements have been presented 5000 times larger than their true values 

for a better visualisation. They became larger after optimisation, which means that a precision of 

3 mm for the displacement is achievable with 3 less observations. 

Figures 1b and 1c show the optimised network based on the two-epoch method. The former 

presents the optimised one in Epoch 1 and the latter in Epoch 2. In the one-epoch optimisation, 

we considered a higher precision for the displacements by dividing the desired precession by √2, 

but in the two-epoch optimisation we do not have to do that as we can consider the observation 

plans of both epochs together and optimise them simultaneously. Lots of observations have been 

removed from the plan in the two-epoch optimisation. Also, we observe that the plan in Epoch 2 

has one observation less than that in Epoch 1. This means that measuring the same quantity as 

those in Epoch 1 is not necessary. The figure shows that in order to attain the accuracy of 3 mm 

for the displacement at each point, observing two lengths from the reference points is sufficient.  

However, this is not a general conclusion, but valid for the present network. One may say that 

the observations to the reference points are preserved. 
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 Figure 1: Network configuration and error ellipses of the displacements before and after 

optimisation. a) Optimised network based on one-epoch optimisation, b) and c) two-epoch 

optimisation of network in Epochs 1 and 2, respectively. 

Table 1 presents the observation plan after one-epoch and two-epoch optimisations. L23, L26 

and L56 are the observations to be deleted from the plan based on the former approach. In the 

latter, the variances of the observations are estimated instead of their weights. We assume a 

variance of 1 mm2 to avoid delivering zero variances for the observations and a maximum 

variance of 25 mm2 (as the inverse of the smallest weight value from one-epoch approach, which 

is rounded to zero in Table 1) as the criterion for deleting unnecessary observations. q1 and p1 are 

the variance and the corresponding weight in Epoch 1 and q2 and p2 are the corresponding ones in 

Epoch 2. As the table shows, the observation plan in both epochs remains more or less the same, 

i.e. the corresponding observations should be deleted from the plan. However, one more 

observation, L37, is deleted in Epoch 2 but not in Epoch 1. 
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Table 1: Observation weights after network optimisation by two approaches, q1 and p1 are the 

variance and weight in Epoch 1, and q2 and p2 contain the same definition in Epoch 2. 

 
 

Table 2 represents the errors of the displacements before and after optimisation. Since the 

network is designed for displacement monitoring purpose, therefore, the variances of all net 

points should be 2 times larger for the displacements. The table presents that the errors of the 

displacements are more or less about 3 mm before optimisation except for Point 1 because the 

direction of 4 to 1 is kept fixed in the network. If we assume that this network is optimised in 

such a way that the errors of displacements become 3 mm based on the one-epoch approach, we 

have to select the desired error of each point √2 times smaller. As the table shows, both one- and 

two-epoch approaches can deliver the same accuracies for the displacements. However, in the 

two-epoch approach, 9 observations are removed from the plan of each epoch, which leads to 

less observation redundancy and coordinate accuracy, likewise the cost reduction, and 

consequently affects the final accuracy of the estimated coordinates. Nevertheless, the accuracies 

of the displacements are preserved below the acceptable level. Another issue is that the weight of 

one observation may come out very large in one epoch with respect to another, in such a case, 

the use of highest weight is recommended as our goal in the two-epoch optimisation is to design 

the network and determine which observations at which epoch should be kept or deleted from the 

plan.  
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Table 2: Displacement error of net points before and after optimisation. 

 
Finally, Table 3 illustrates that the position changes of the net points and the configuration of the 

optimised network are the same in both approaches as expected. 

 

Table 3: Position changes after optimisation procedure, [m]. 

 
 

 

5. Conclusion 

 

 

In this paper, we used the Gauss-Helmert adjustment model to optimally design a geodetic 

network displacement monitoring network. In this method, two sets of observations in two 

frequent epochs are considered together and the network is designed considering all observations 

in two epochs. The developed two-epoch optimisation of displacement monitoring network 

delivers the same accuracies for the displacement as those of the traditional one-epoch method, 

but less observations are used in this approach. The reason is that the goal of the network is the 

precision of the displacements and not the coordinates (optimal solution) of the points. This 

means that the accuracies for the adjusted coordinates of the points are less than those of one-
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epoch method. The configuration and position changes of the points are the same in both 

approaches. In short, one- and two-epoch approaches both delivers similar accuracies of 

displacements and configuration, but the latter uses less observations in each epoch. Therefore, 

the two-epoch approach is more economical and practicable than the traditional one. One point 

that should be stated here is that the weight of one observation may come out considerably 

larger/smaller in one epoch than another. However, this point will not be significant if we 

consider the larger weight for that observation in both epochs. The important issue is the deletion 

of insignificant observations, which is done successfully in our approach. Since the observations 

of a displacement monitoring networking should be repeatedly measured, it is recommended that 

the two-epoch optimal design is performed just for the first two epochs. Later on, the same 

principle can be applied for designing an optimal observation plan for the subsequent epochs.  
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