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Abstract:  

Shadows exist in almost all aerial and outdoor images, and they can be useful for estimating Sun 

position estimation or measuring object size. On the other hand, they represent a problem in 

processes such as object detection/recognition, image matching, etc., because they may be 

confused with dark objects and change the image radiometric properties. We address this problem 

on aerial and outdoor color images in this work. We use a filter to find low intensities as a first 

step. For outdoor color images, we analyze spectrum ratio properties to refine the detection, and 

the results are assessed with a dataset containing ground truth. For the aerial case we validate the 

detections depending of the hue component of pixels. This stage takes into account that, in deep 

shadows, most pixels have blue or violet wavelengths because of an atmospheric scattering effect. 

Keywords: Shadow Detection; Aerial Images; Terrestrial Images. 

 

Resumo:  

Sombras estão presentes na maior parte das imagens aéreas e terrestres, e elas podem ser úteis para 

estimação da posição do Sol, ou para medir os tamanhos de objetos. Por outro lado, elas 

representam um problema em processamentos tais como detecção/reconhecimento de objetos, 

correspondência entre imagens, etc., pois podem ser confundidas com objetos escuros e mudar as 

propriedades radiométricas da imagem. Neste trabalho esse problema foi tratado em imagens 

aéreas e terrestres. Utilizou-se um filtro para encontrar áreas com baixas intensidades. Para as 

imagens terrestres, foram analisadas propriedades da razão do espectro das imagens para refinar a 

detecção, e os resultados foram avaliados por meio de um conjunto de dados contendo a verdade 

de campo. Para o caso aéreo as detecções são validadas dependendo da componente da matiz dos 

pixels. Esse estágio leva em consideração que em sombras profundas a maior parte dos pixels 

possuem comprimentos de onda na região do azul e violeta por conta de um efeito de espalhamento 

atmosférico. 

Palavras-chave:  Detecção de Sombras; Imagens Aéreas; Imagens Terrestres. 
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1. Introduction 

 

 

Detecting shadows in digital images is an important preprocessing step for many applications. 

Shadows are frequently confused as scene objects, causing problems in algorithms such as object 

detection and recognition, image matching, and applications like traffic monitoring and 

surveillance. In some applications, however, the shadowed areas can be labelled and enhanced to 

enable information extraction in these areas. Also, shadowed areas can be used to compute 

brightness variation for vignetting correction, as it was presented by Imai et al (2014).  In some 

processes like camera calibration and image registering, shadowed areas can cause problems in 

the feature extraction and point measurements which will affect the final results. Stereomatching 

in aerial photogrammetry is also a problem which requires shadows detection and labeling, 

because shadows change during the image acquisition because of earth rotation.  

Shadows are classified in two major groups: cast and self shadows. Cast shadows are projected by 

objects of the scene. Self shadows are those projected on the object by itself, in areas where there 

is deficient illumination. Self shadows usually have higher intensity values than cast shadows, 

because they receive more secondary light from near objects. Umbra and penumbra are other two 

sub categories of shadows which must also be considered. Umbra represents a shadow region 

where the primary source of light is completely obscured. Penumbra is the region around the edge 

of a shadow where the light source is only partially obscured, or where secondary sources of light 

illuminate it with low intensity (Dare, 2005). Moreover, in deep shadows, the spectrum is skewed 

to the blue/violet wavelength, which means that shadow areas are dark and saturated at the 

blue/violet wavelength (Adler-Golden et al., 2002). 

In this work we present two shadow detection algorithms, one to deal with aerial images and the 

other for outdoor color images taken from ordinary cameras. Both use an adapted version of the 

algorithm proposed by Santos et al. (2006) for high-resolution aerial images. For the aerial case, 

we introduce a treatment to pixels with certain hue values, based on the hypothesis that most deep 

shadows have blue and violet wavelengths (Adler-Golden et al., 2002; Polidorio et al., 2003). The 

algorithm for outdoor color images uses a different approach that considers a spectrum ratio 

analysis (Tian et al., 2016). 

We performed experiments with 5 aerial images taken in Sao Paulo state, Brazil. Results are 

assessed visually only, since there is no ground truth for this case. Furthermore, we assessed the 

algorithm for terrestrial images from a dataset with 355 images (Guo et al., 2011). For both cases 

we compared the outcomes to other existing methods. 

 

 

2. Related papers  

 

 

Polidorio et al. (2003) developed a technique for detecting shadows in orbital and aerial images. 

They used a shadow quantifier index, which is computed using the intensity and saturation 

components from the HSI color space. The algorithm takes into account the low intensity and high 

saturation of shadow pixels, caused by a physical phenomenon of atmospheric dispersion of the 

sunlight, best known as the Rayleigh scattering effect. This technique proved to be efficient with 

aerial and orbital images, but its use with terrestrial images was not mentioned by the authors. In 
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a previous work, we employed an adaptive version of this shadow index in high-resolution 

terrestrial images, which performed well in some cases.  

There are many techniques for shadow labeling on high-resolution satellite and aerial images 

(Dare, 2005, Devi et al., 2011, Santos et al., 2006, Centeno and Pacheco, 2011, Tian et al., 2016), 

using thresholding, region encoding, spectral, textural and geometric properties, masks and other 

strategies.  

Santos et al. (2006) created a 3x3 filter to detect shadows in high-resolution aerial images, 

choosing pixels with lower radiometric response as shadow pixels. This filter, named shadow filter 

(SF), is the base of our algorithms, because of the good results in preliminary tests we performed. 

Their mask has interesting properties: computational efficiency, easiness of implementation, does 

not depend on free parameters, and seems to be noise-resistant, probably because its principle is 

similar to the median filter. In this paper we employ this mask along with some physical hypothesis 

of shadow properties to increase its efficacy. 

The technique presented by Blajovici et al. (2011) detects the pixels with low intensity values 

through the analysis of the Y component of YCbCr color space. They consider as shadows those 

pixels having intensity values lower than a percentage of the average of a sliding window. This 

window moves through the image and its size decreases after each iteration. To avoid false 

positives they consider as shadows only dark areas with smooth borders. As a final step, they apply 

the median filter to remove noise. 

Centeno and Pacheco (2011) used a modified co-occurrence matrix, and an adaptive threshold, 

which is obtained through the frequency histogram of the co-occurrence matrix main diagonal. 

They split the histogram into two parts based on a local minima analysis and this point of 

separation is set as their threshold. This process considers that shadowed neighbor pixels have 

similar radiometric response. It means that the main diagonal of the co-occurrence matrix will 

have shadow pixels at the beginning (low intensities). Finding the split point is the key process. 

Most techniques have problems with targets which have radiometric properties similar to shadows, 

namely water, trees and dark elements. Dare (2005) applies a variance-based region filtering to 

separate shadow from falsely detected non-shadow regions. In our algorithm we perform a 

validation step using the hue band from HSI color space for aerial images. 

Tian et al. (2009) used an RGB attenuation model (Tricolor Attenuation Model – TAM), 

considering the image formation theory. The process is entirely automatic and does not depend on 

additional information. In a more recent work, Tian et al. (2016) developed a technique based on 

spectrum ratio properties of shadows for outdoor color images. In our algorithm for terrestrial 

images we apply this technique after the shadow mask as a combined strategy. 

There are algorithms with training steps (Guo et al., 2011) that introduce a dependence on training 

sets. For this reason, different training sets may result in different outcomes. Positive aspects of 

our techniques are that they do not rely on training data, are easy to implement and fast to run. 

 

 

3. Aerial images  

 

 

The shadow filter proposed in Santos et al. (2006) was originally developed for aerial images 

(Figure 1).  
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Figure 1: Shadow mask proposed by Santos et al. (2006). 

This filter convolves a template through a monochromatic input image and the resulting pixels 

with intensity larger than 255 are considered shadow free, while the rest are labeled as shadows. 

In Equation 1, Sij represents the binary result of shadow detection at coordinates (i, j), and C is the 

image produced by the convolution process. 
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In our approach the image is first converted from RGB to grayscale, through Equation 2, and is 

smoothed by a bilateral filter (Fisher, 2016), to reduce noise.  
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Next, C is calculated and then S with Equation 1. False detections are removed through the use of 

hue information given by Equations 3 and 4 (Gonzalez and Woods, 2010). 
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Hue is discretized into 10 bins and its probability is computed for the entire image. Those bins 

correspond to red, yellow, olive, green, cyan, azure, blue, violet, magenta and pink, respectively. 

The result is the probability of each bin as shown in Figure 2. 

 

Figure 2: Probabilities associated to each bin. 

Pixels classified as shadows by the shadow filter are labeled as shadows if their hue component 

has a probability of less than 0.1. This 0.1 value was defined experimentally after observing the 

response of many aerial images.  

We attempted to classify pixels with low intensity and hue in the interval of blue and violet 

wavelengths, as suggested by Adler-Golden et al. (2002) and Polidorio et al. (2003). The filter we 

use is able to find low intensities and the detector becomes good for deep shadow labeling when 

considering only the aforementioned wavelengths. To include cast shadows in the package, one 

must add hue intervals with small probability in the image. 

We performed experiments with five images, containing urban areas, grass, trees, asphalt, crop, 

etc. The performance of our technique can be visually assessed when compared with the Santos' 
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and Polidorios’s approach (Figure 3). Polidorio’s technique is based on the difference between I 

and S components of HIS color space. Subtracting S from I gives a shadow index, which is 

compared to a threshold. The authors stated that negative values correspond to shadows for the 

aerial case. Using this threshold value in our images does not detect more than a few shadowed 

pixels. This can be explained because this technique was originally created for satellite images, 

although they had also defined the threshold for aerial images. To improve their results we tuned 

the values empirically until the detection results were acceptable. We realized that the more the 

threshold is increased the more the vegetation is misclassified as shadows.  Shadows from asphalt 

are not detected until the threshold is high enough to classify almost all vegetation as shadows. 

Figure 3 presents the Polidorio’s technique with manually tuned thresholds. 

Results of Figure 3 show that Santos’ approach overperformed the detection. Our technique uses 

Santos' filter to find the low intensities but removes detected pixels that do not meet the 

requirement of low probability in the hue histogram. 

Table 1 shows that blue, violet and magenta have the lowest probabilities. The cases in which their 

associated pixels have low intensities suggest they belong to shadow areas. 

Figure 4 shows the pseudocode with the entire process. 

 

 

4. Terrestrial images 

 

 

This section deals with the problem of shadow detection in terrestrial images taken from off-the-

shelf cameras.  

The spectrum ratio properties of shadows described by Tian et al. (2016) was shown to be 

promising when combined with the shadow filter developed by Santos et al. (2006). In this section 

we show how to combine both techniques to detect shadows in terrestrial images. Further, we are 

interested in shadow areas and not only in shadow edges (Tian et al., 2016, Lalonde et al., 2010). 

Detecting areas instead of edges gives clues about regions to be avoided or differently approached 

in algorithms such as image matching, object detection/recognition, and traffic monitoring.   

As shown in Section 3, the input image is converted to grayscale and is also smoothed to remove 

noise before the process. Moreover, the thresholding step described in Equation 1 is replaced by 

an adaptive process. Here the threshold k is not static, but the mean value   of the input image in 

grayscale multiplied by 1.3, i.e, k = 1.3  . This value was achieved empirically, after many 

simulations with different images.  
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Figure 3: Results with aerial images. First column is the original input image, second is our 

result, third is Santos’, and last is the Polidorio’s approach with manually tuned thresholds. 

 

Figure 5 shows a comparison between the two thresholding processes - static and adaptive. As one 

can verify, the static threshold may classify more shadows than necessary. The opposite is also 

true, because it does not change according to input image. Our adaptive threshold solves this 

problem for most cases. 

After applying the shadow filter, the resulting image does not usually contain every shadow pixel 

detected. Hence we use the spectrum ratio theory (Tian et al., 2016) to find the remaining pixels. 

The spectrum ratios are calculated using Equation 5, as follows 

 



584                                                                                                                                                        Automatic ... 

Bull. Geod. Sci, Articles Section, Curitiba, v. 23, no4, p.578 - 590,  Oct - Dec, 2017. 

Table 1: Hue probabilities associated to aerial images from Figure 3. 

 Images 

Reference color 1 2 3 4 5 

Red 0.521 0.476 0.429 0.299 0.346 

Yellow 0.197 0.221 0.205 0.334 0.117 

Olive 0.022 0.025 0.033 0.126 0.323 

Green 0.006 0.007 0.010 0.021 0.120 

Cyan 0.018 0.014 0.018 0.049 0.013 

Azure 0.035 0.032 0.032 0.012 0.002 

Blue 0.004 0.004 0.004 0.001 0.000 

Violet 0.004 0.004 0.005 0.001 0.000 

Magenta 0.017 0.016 0.017 0.001 0.001 

Pink 0.176 0.201 0.247 0.157 0.078 

 

 
 

Figure 4: Shadow detection pseudocode for aerial images. 
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in which H represents a color channel, FH is the average value in a predefined shadow free area 

and fH from a shadowed one. In other words, k is function of contrast. 
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Figure 5: Comparison between the static and adaptive thresholding for shadow mask usage. 

Static is always 255 and adaptive is 1.3 times the mean of the input image. 

 

Tian et al. (2016) observed shadowed regions at different Sun angles and calculated their spectrum 

ratios. Their experimental results showed that shadows present the following properties: 

Property 1. The values of KH decrease as Sun angle increases. 

Property 2. The values of KH (H=R,G,B) satisfy KR>KG>KB. Polidorio et al. (2003) also considers 

that shadows have the blue component higher than red and green. This results in KB being smaller 

than KR and KG.  

Property 3. The differences between KH satisfy R G G BK K K K   . Similarly, it confirms one of 

the assumptions of Polidorio et al. (2003), that the contrast in blue is smaller because shadows are 

blue. 

Property 4. The value of angle

HK  at any angle is less than twice the value of 10angle

HK  . Their 

experimental results considered Sun angles within the interval [20o, 80o], varying in steps of 10o. 

The aforementioned properties are checked as follows: 

Properties 1 and 4. 0 20. .H H H H HK K K   , with 80

HK representing HK at a Sun angle of 80o. The 

tolerance coefficients are H = 2-1 and H  =22, representing the possibilities for Sun angles within 

the interval [0o,90o], according to Property 4. 

Property 3. For this case, 80 80( ) / 2R GK K   is the lower bound for the difference between KR and 

KG, and shadow regions must satisfy Equation 6. 
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In our approach we do not rely on shadow borders as Tian et al. (2016), but regions. They 

calculated this ratio using pixels from both sides of a shadow border, expecting that they belonged 

to the same object. Here KH depends on FH calculated with known shadow free zones, and fH is 

computed from a shadow candidate window. 

Known shadow free zones are defined right after applying the shadow mask, with pixels classified 

as shadow free. fH is computed in a 3 x 3 window that moves through the input color image. The 

central pixel of this window is labeled as shadow when KH fits the four properties. 

Finally the output image goes through a morphology operation of closing to remove noise. Figure 

6 shows the pseudocode with the complete process. 

The values of those predefined spectrum ratios, namely 80

HK and 20

HK , were extracted from Tian et 

al. (2016): 20

RK = 12.11, 80

RK  = 3.18, 20

GK = 10.40, 80

GK = 2.86, 20

BK = 8.10, 80

BK = 2.53. 
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Figure 6: Shadow detection pseudocode for terrestrial images. 

 

 

4.1 Results and discussion 

 

 

Results are assessed via comparison with reference shadow maps, using metrics P and R based on 

true positives, false negatives and false positives. 

P represents the detection precision, which is given by the ratio between true positives TP and the 

total region of shadows, which is the sum of TP and false negatives FN (Equation 7). It shows the 

percentage of true shadows correctly detected. 

TP
P

TP FN



                                                            (7) 

R is given by the ratio between true positives TP of Equation 8 and the total region of pixels 

classified as shadows. This measure tells how many of the classified shadows are true shadows. 

TP
R

TP FP



                                                              (8) 

A third factor, called F-measure, corresponds to a combination of P and R. It is given by Equation 

9. 

.
2

P R
F

P R



                                                              (9) 

The three measures correspond to pixel-wise analysis of the predicted shadow map and the 

respective ground truth. The higher they are, the better the results. 

We assessed our technique with Guo’s dataset (Guo et al., 2011) containing 355 images with a 

great variety of targets, including grass, trees, buildings, houses, snow, sidewalks, asphalt, etc. 

Figure 7 shows the results of the proposed technique in comparison with Blajovici et al. (2011).  
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Figure 7: Results of shadow detection in Guo’s dataset. 

 

Our results are quite similar, but with the difference that our technique performed the detection in 

about 60 seconds, while their algorithm took about 4 hours. Tian et al. (2016) evaluated their 

algorithm with the same dataset, but considered only shadow edges (not areas) and achieved P/R/F 

= 0.69 / 0.73 / 0.66. 

Some results of the technique proposed in this paper can be seen in Figure 8. 

Figure 9 shows detection problems. Dark objects are sometimes labeled as shadows because of 

their similar radiometric response. Besides, very complex scenes, containing various targets such 

as trees, buildings, roads, grass, sidewalks, etc., may confuse the spectrum ratio analysis. It 

happens because here we calculate FH for each component as an average of the non-shadowed 

area. To increase the detection quality, one should detect shadow edges and analyze the spectrum 

ratio properties for each separately (Tian et al., 2016). 

 

 

5. Conclusion 

 

 

The problem of shadow detection in aerial and outdoor color images was addressed in this paper 

by modifying and combining existing techniques. In both cases the algorithms used a shadow filter 

to find low intensities, which is a characteristic of shadows. 

For aerial images we employed a validation process that considers as shadows only pixels with 

low probability in the hue histogram. It follows the assumption that deep shadows usually presents 

wavelengths in the interval of blue and violet, and aerial images usually have a small number of 

pixels with those properties. Furthermore, we considered not only blue and violet, because cast 

shadows often present a wider range of colors. 
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Figure 8: Some results of the proposed pipeline of techniques. 

 

 
Figure 9: Examples of false positives/negatives. 
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The algorithm for aerial images was assessed in an experiment with five images and the results 

were visually compared to other two techniques, showing good detection efficacy. 

The second part of this work focused on outdoor color images taken by off-the-shelf cameras. As 

in the aerial case, the algorithm starts with the shadow filter, but it does not rely on a validation 

step. Instead, it uses a spectrum ratio analysis which consists of a comparison between the non-

shadowed region spectrum and the spectrum of a candidate area. When this ratio meets certain 

properties, it classifies the candidate area as a shadow region. Individually, the shadow filter 

detects fewer shadows than expected. Meanwhile, when combined with this spectrum ratio 

analysis, results became better. 
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