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Abstract: 

This paper investigates an alternative classification method that integrates class-based affinity 
propagation (CAP) clustering algorithm and maximum likelihood classifier (MLC) with the purpose 
of overcome the MLC limitations in the classification of high dimensionality data, and thus improve 
its accuracy. The new classifier was named CAP-MLC, and comprises two approaches, spectral 
feature selection and image classification. CAP clustering algorithm was used to perform the image 
dimensionality reduction and feature selection while the MLC was employed for image 
classification. The performance of MLC in terms of classification accuracy and processing time is 
determined as a function of the selection rate achieved in the CAP clustering stage. The 
performance of CAP-MLC has been evaluated and validated using two hyperspectral scenes from 
the Airborne Visible Infrared Imaging Spectrometer (AVIRIS) and the Hyperspectral Digital Imagery 
Collection Experiment (HYDICE). Classification results show that CAP-MLC observed an enormous 
improvement in accuracy, reaching 94.15% and 96.47% respectively for AVIRIS and HYDICE if 
compared with MLC, which had 85.42% and 81.50%. These values obtained by CAP-MLC improved 
the MLC classification accuracy in 8.73% and 14.97% for these images. The results also show that 
CAP-MLC performed well, even for classes with limited training samples, surpassing the limitations 
of MLC.  

Keywords: Affinity Propagation; Band selection; Maximum Likelihood Classifier; Classification; 
Hyperspectral image 
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Resumo: 

Este artigo investiga um método de classificação alternativo que integra o algoritmo de 
clusterização propagação de afinidade baseado nas classes (PAC) e o Classificador Máxima 
Verossimilhança (MAXVER) com a finalidade de superar as limitações do MAXVER na classificação 
de dados de alta dimensionalidade e, assim, melhorar a sua acurácia. O novo classificador foi 
designado PAC-MAXVER, e compreende duas abordagens, seleção de características espectrais e 
classificação de imagem. O algoritmo de clusterização PAC foi usado para realizar a redução de 
dimensionalidade da imagem e seleção de características enquanto o MAXVER foi utilizado para a 
classificação da imagem. O desempenho do MAXVER em termos de acurácia da classificação e 
tempo de processamento é determinado em função da taxa de seleção realizada na fase de 
clusterização PAC. O desempenho de PAC-MAXVER foi avaliado e validado usando duas cenas 
hiperespectrais do AVIRIS (Airborne Visible Infrared Imaging Spectrometer) e HYDICE 
(Hyperspectral Digital Imagery Collection Experiment). Os resultados da classificação mostram que 
PAC-MAXVER observou uma enorme melhoria na acurácia, atingindo 94.15% e 96.47%, 
respectivamente, para AVIRIS e HYDICE se comparado com o MAXVER, que obteve 85.42% e 
81.50%. Esses valores obtidos pelo PAC-MAXVER melhoraram a acurácia da classificação MAXVER 
em 8.73% e 14.97% para essas imagens. Os resultados também mostraram que o PAC-MAXVER 
teve um bom desempenho, mesmo para as classes com número limitado de amostras de 
treinamento, superando as limitações do MAXVER. 

Palavras-chave: Propagação de Afinidade; Seleção de bandas; Classificador Máxima 
Verossimilhança; Classificação; Imagem hiperespectral 

 

1. Introduction 

 

High dimensionality data can offer a discriminating power much higher than traditional 
data at low dimensionality (Lee and Landgrebe, 1993; Jimenez and Landgrebe, 1999; Serpico and 
Bruzzone, 2001; Ablin and Sulochana, 2013). According to Fukunaga (1990), classes very similar 
spectrally can be separated satisfactorily in higher dimension spaces. This is one of the motivations 
for the development of sensor systems with large number of spectral bands, known as 
hyperspectral sensors. 

Classification of hyperspectral data is a challenging research topic in remote sensing 
domains and pattern recognition (Bartels and Wei, 2006; Brzank and Heipke, 2007). However, one 
of the main difficulties that arise in the classification process of hyperspectral images through 
parametric classifiers like Maximum Likelihood Classifier (MLC) refers to the low number of 
training samples (limited in general) in comparison with the number of parameters to be 
estimated (Cortes and Vapnik, 1995; Camps-Valls et al., 2014). A limited number of training 
samples results in an unreliable estimation of parameters in parametric classifiers and, 
consequently, in a reduced value on the accuracy of the produced thematic image (Landgrebe, 
2002). 

By starting the classification process with reduced dimensionality data, the thematic image 
accuracy tends, initially, to increase to the extent that additional information (spectral bands) is 
included. At a given moment, the accuracy reaches a maximum and then reduces, to the extent 
that the data dimensionality continues to increase. This problem is known as Hughes phenomenon, 
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and has been studied by researchers such as Hoffbeck and Landgrebe (1996) and Jimenez and 
Landgrebe (1999), among others.  

Data dimensionality reduction by means of extraction techniques or selection of variables, 
introduction of semi-labelled training samples, regularised discriminant analysis techniques, are 
approaches that have been investigated by researchers in order to minimize the consequences of 
such phenomenon. Several approaches have been proposed for hyperspectral image 
classification. Roessner et al. (2001) have combined MLC with linear spectral unmixing. Segl et al. 
(2003) used thermal hyperspectral imagery for building detection improvement. A comparative 
study on hyperspectral data classification, including multilayer neural network, MLC and support 
vector machine (SVM) was conducted by Mather (2003).  

In this paper, we explore the use of affinity propagation (AP) algorithm for feature selection 
prior to supervised classification of hyperspectral images using MLC. The proposed classification 
strategy here called CAP-MLC (Class-based AP-MLC) aims to overcome the limitations of 
traditional MLC, and improve the mapping accuracy in hyperspectral images. For comparison and 
evaluation purposes, two hyperspectral data sets, namely the Airborne Visible Infrared Imaging 
Spectrometer (AVIRIS) and Hyperspectral Digital Imagery Collection Experiment (HYDICE) were 
used. This work has as main contributions the following: (i) the use of limited training samples for 
classification of high dimensionality data; and (ii) class-based hyperspectral image band selection 
and dimensionality reduction through supervised AP. 

 

2. Affinity Propagation algorithm 

 

Affinity propagation (AP) is an algorithm that identifies centres of clusters, also called 
exemplars to form its clusters around them. This algorithm simultaneously considers all the points 
in the set as probable candidates to become centres of the clusters and propagate exchanges of 
messages between the points until the emergence of good exemplars and clusters (Frey and 
Dueck, 2007). 

AP uses as input real-valued similarities S(i,j), describing how well the j-th point is 
appropriated to become an exemplar for the i-th point. When the points lay along the matrix 
diagonal, i.e., i = j, the similarity matrix S(i,j) is called preference, and indicates how probable the 
i-th point is to be selected as an exemplar. Preferences can be set to a global value, or for particular 
data points. High preference values will cause AP to find many clusters, while low values will lead 
to a small number of clusters. A good initial choice to determine the preference is to take the 
minimum or the median similarities.  

The similarity is commonly expressed as a negative squared Euclidean distance according 
to equation (1), in which the parameters xi and xj are the positions of data points i and j in 2D space 
(Dueck, 2009). 

                                                                   
2

),( ji xxjiS −−=                                         (1)  

The number of defined centres of clusters is mainly influenced by the values of preference, 
but it either emerges from the message exchanging process in the factor graph. A factor graph is 
defined as a bi-partite graph consisting of a set of nodes representing random variables and a set 
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of functions. This graphical model represents global functions or probability distributions that can 
be factored into simpler local functions (Frey and Dueck, 2007). 

The process of sending messages is presented in Figure 1. In the figure, availability and 
responsibility messages are exchanged. Responsibilities are sent from data point i to candidate 
exemplar point k, and show how evident point k is to be an exemplar for point i, counting with 
other potential exemplars for point i. Availabilities, are sent from candidate exemplar point k to 
point i, and show the chance the point k has to be selected as its exemplar, considering the support 
the other points give (Dueck, 2009). 

 

 

 

 

 

 

 

 

 

Figure 1. Propagation of two messages between data points: (A) “responsibilities” r(i,k) 
are sent for data point i to candidate exemplar k, and (B) “availabilities” a(i,k) are sent 

from candidate exemplar k to data point i. 

 

The responsibility and availability values are adjusted as follows: 

 

      
𝑟(𝑖, 𝑘) = 𝑆(𝑖, 𝑘) − 𝑚𝑎𝑥[𝑆(𝑖, 𝑘') + 𝑎(𝑖, 𝑘')]

𝑘':𝑘'≠𝑘

   
                                     (2)                     

𝑎(𝑖, 𝑘) = ∑ 𝑚𝑎𝑥[0, 𝑟(𝑖 ', 𝑘)]    𝑓𝑜𝑟 𝑘 = 𝑖, 𝑖 ': 𝑖 ' ≠ 𝑖                                         (3) 

𝑎(𝑖, 𝑘) = 𝑚𝑖𝑛 [0, 𝑟(𝑘, 𝑘) + ∑ 𝑚𝑎𝑥
𝑖':𝑖'∈{𝑖,𝑘}

[0, 𝑟(𝑖 ', 𝑘)]]  𝑓𝑜𝑟  𝑘 ≠ 𝑖                       (4)        
 

In the equation (2), the letter i represents a data point and k’ stands for a competing 
candidate exemplar. In the first iteration the availabilities are initialized to zero, and r(i,k) is set to 
the input similarity between point i and point k as its exemplar, minus the maximum of the 
similarities between point i and other candidate exemplars k’.  
In equations (3) and (4), the availability a(i,k) is set to the self-responsibility r(k,k) plus the sum of 
the positive responsibilities candidate exemplar k receives from other supporting points i’.  

At each iteration, the assignment of items to exemplars is defined as: 

 

                                  𝜑(𝑥𝑖)   =   𝑎𝑟𝑔𝑚𝑎𝑥   𝑘{𝑟(𝑖, 𝑘) + 𝑎(𝑖, 𝑘)}                                                    (5) 
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In the equation (5), ϕ(xi) is the exemplar for data point xi. At any point, summing 
Responsibility r(i,k) and Availability a(i,k) matrices gives the clustering information needed for 
point i. The k with maximum r(i, k) + a(i, k) represents point i’s exemplar.  

The message propagation process stops as soon as it reaches a specified number of 
iterations or when the cluster structure stabilises with a given number of iterations, that is, the 
process converges if every exemplar ϕ(xi) remains unchanged for some constant iterations, usually 
10 (Dueck, 2009). 

 

3. Materials and Methods 

 

 

3.1 Materials 
 

This research was performed using the following materials: MATLAB R2016a software for 
running affinity propagation routines; ENVI 4.6.1 software, used for removal of noisy bands and 
those with irrelevant information. This software was also used for image classification and for 
accuracy assessment; MultSpec was used for collection of training and testing samples used in the 
supervised clustering stage with affinity propagation. And, finally, ERDAS IMAGINE 2014 software 
was used to assist in the collection of training and testing samples for final image classification, 
and to save ENVI images into other formats readable in MATLAB.  

 

3.1.1 AVIRIS hyperspectral image 

 

This is a hyperspectral image 92AV3C, available at http://www.tec.army.mil/Hypercube. 
The image was provided by the AVIRIS sensor in 1992, and corresponds to the Indian Pine Test 
Site in North western Indiana. The image originally has 224 bands, a spatial dimension of 145 x 
145 pixels and a spatial resolution of 20m per pixel (Baumgardner et al., 1992). Classes range from 
20 to 2468 pixels. In it, three different growing states of soya can be found, together with other 
three different growing states of corn. Woods, pasture and trees are the bigger classes in terms 
of number of samples (pixels). Smaller classes are steel towers, hay-windrowed, alfafa, drives, 
oats, grass and wheat. In total, the dataset has 16-labelled classes (Landgrebe, 2003). The AVIRIS 
hyperspectral image and the ground truth used to perform the experiments are shown in Figure 
2. 
  

http://www.tec.army.mil/Hypercube
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Figure 2: AVIRIS image for study site and ground truth. 

 
The classes considered for classification, training and testing samples collected in AVIRIS image 
are given in the Table 1. 
 

Table 1: Classes and ground truth for training and test. 

 
 

Nr. Classes Training Test Total 

1 Alfafa 22 17 39 

2 Corn-notill 515 373 888 

3 Corn-min 443 232 675 

4 Corn 112 56 168 

5 Pasture 313 107 420 

6 Trees 420 149 569 

7 Pasture-mowed 20 9 29 

8 Hay-windrowed 355 62 417 

9 Oats 16 5 21 

10 Soybeans-notill 618 152 770 

11 Soybeans-min 1628 239 1867 

12 Soybean-clean 353 112 465 

13 Wheat 147 47 194 

14 Woods 558 234 792 

15 Bldg-GTD 262 103 365 

16 Stone-steel  80 30 110 
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3.1.2 HYDICE hyperspectral image 
 

This image was collected in October 1995 by the HYDICE sensor, is available at 
http://www.tec.army.mil/Hypercube, and represents the location of an urban area in Copperas 
Cove, in United States. There are 307 x 307 pixels, each of which corresponds to an area of 2 x 2 
m2. There are 210 wavelengths in the image, ranging from 400 nm to 2500 nm, resulting in a 
spectral resolution of 10 Nm. There is also a ground truth with 4 classes:  asphalt, grass, tree and 
roof. The study area image and ground truth are given in Figure 3.  

 

 

Figure 3: HYDICE image for study site and ground truth. 

 
The classes considered for classification, training and testing samples collected in HYDICE 

image are given in the Table 2. 
 

 
Table 2: Classes and ground truth for training and test. 

 

 

 

 

 

 

 

  

Nr. Classes Training Test Total 

1 Asphalt 9898 7871 17769 

2 Grass 16552 4704 21256 

3 Tree 10228 2732 12960 

4 Roof 3866 1722 5588 

http://www.tec.army.mil/Hypercube
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3.2 Methods 
 

The steps of the methodology used in this paper are shown in the flowchart of Figure 4.   
 

Hyperspectral 

Image
Pre-processing

Class training 

samples

Construction 

of Similarity 

matrix

Squared 

Euclidian 

distances

Update 

responsibilities

 r (i,k)

Update 

availabilities

a (i,k)

Decide exemplars
Change on 

Decision?

Class 

representative 

clusters

Class-based 

selected bands

Maximum 

Likelihood 

Classifier

 Classification 

training samples 
Testing Samples

Classified image
Accuracy 

assessment

Final Validated Map

No

Yes

 

Figure 4: Flowchart for implementation of the methodology proposed. 

 

The proposed hyperspectral image classification approach can be divided into four main 
stages: Image pre-processing, affinity propagation-based image band selection and dimensionality 
reduction, image classification and, accuracy assessment and validation. 

3.2.1 Image pre-processing 
 

High dimensionality images have spectral regions with noise bands caused by atmospheric 
effects. This noise may cause inconveniences at the time of data analysis and processing (Refianti 
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et al., 2016). For this reason, perform a preliminary phase for exclusion and removal of noisy bands 
is recommended (Ramakrishnan and Bharti, 2015). In this paper, the preprocessing stage was 
performed for both AVIRIS and HYDICE images. 

AVIRIS image is composed of 224 spectral bands, but includes regions of the spectrum with 
noise bands due to the interference of water vapor from the atmosphere (Baumgardner et al., 
1992). ENVI 4.6.1 software was used to remove 20 bands (104 - 108, 150 - 163, 220) from the 
original image, due to absorption of water and low signal to noise rate. Additional 10 bands were 
excluded from this image due to irrelevant information, and the final preprocessed image 
remained with only 190 bands.  

For HYDICE image, the same procedure was used, and bands 1-4, 76, 87, 101-111, 136-153 
and 198-210 were removed due to the dense water vapour and atmospheric effects, and after 
pre-processing only 162 bands remained. 

3.2.2 Class-based Affinity Propagation image band selection and dimensionality reduction 
 

The affinity propagation image band selection and dimensionality reduction was firstly 
supervised (clustering based on class training samples) and then unsupervised (band-based 
clustering), and comprised the following steps:   

 

3.2.2.1 Construction of Similarity Matrix 

 

The similarity matrix is used to group points or nodes into clusters. After data pre-
processing stage, Multispec software was used to collect training samples to construct the 
similarity matrix. Two approaches were considered in construction of the similarity matrix: class-
based (supervised) and band-based (unsupervised).  

In the supervised AP phase, various training samples with pixel vectors belonging to the 
same class were selected. Then, all pixel vectors were organised in a table (row and column) 
according to the class they belong, and the pixels digital values extracted using a MATLAB code 
developed throughout this research.  

After extraction of pixel values for different training samples, class similarity matrices were 
constructed. To do that, the pixel digital values were used, and the negative squared Euclidean 
distance given by equation (1) was used to compute the distances between pairwise points (pixel 
values) for one class each time. These class similarities were then used as input data to AP 
clustering algorithm.  

This procedure was repeated for all sixteen classes in AVIRIS image and for the four classes 
existing in HYDICE image. At the end of this stage, singular class-based similarity matrices were 
constructed, one for each class selected during the collection of training samples.  

In the unsupervised phase, each image band obtained from supervised AP clustering was 
considered as a data point as can be seen a Figure 5, and similarities were constructed by 
computing squared Euclidian distances between these points. 



Class-Based Affinity Propagation for Hyperspectral Image Dimensionality Reduction and Improvement…                   10 

Bulletin of Geodetic Sciences, 25(1): e2019004, 2019 

 

 

 

 

 

 

 

 

 

 

Figure 5. Representation of a hyperspectral image cube. 

 

From the figure, can be seen that a hyperspectral imagery is a three dimensional array with 
the width and length corresponding to spatial dimensions and the spectral bands to the third 
dimension. These dimensions are denoted by M, N and L in sequence, and R is an image cube with 

each band Rl  RM x N being an image matrix. Each band image can be considered as a data point 
with M x N dimensions.  

 

3.2.2.2 Evidence Calculation 

 

The evidence calculation comprises the responsibility and availability messages 
propagation process in the factor graph. This procedure initializes with availability a (i,k) = 0 for 
the first iteration, and the responsibility r(i,k) is initialized as S(i,k). From the second iteration, a 
(i,k) will no longer be equal to zero, and then responsibilities and availabilities matrices are 
updated, using the equations (2), (3) and (4).  

All the evidence computation in this class-based and supervised AP clustering was 
performed considering the preference parameter as the minimum of the similarities laying on the 
matrix main diagonal (p = min S(i,i)) to obtain a reduced number of clusters, and dumping factor 

  = 0.9 to avoid oscillations caused by the message passing mechanism.  

The unsupervised phase was the last and performed separately using all class 
representative bands obtained from the supervised phase. For these phase the evidence 
calculation was considered with preference parameter set to the median of similarities and 

dumping factor   = 0.9. The preference set to median allowed for moderate clustering solutions.   

 

3.2.2.3 Cluster Exemplars Assignment 

 

In order to assign exemplars or cluster centres from the similarity matrix, first the 
responsibility and availability matrices are created and updated. After successful creation and 
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update of these two matrices, the clustering results will be determined and the exemplars 
assigned using equation (5).  

From the matrix obtained in equation (5), the exemplars can be easily assigned by selecting 
diagonal values greater than zero. This process of message propagation and responsibility update 
until cluster identification will be repeated until it reaches a specified number of iterations or when 
the cluster structure stabilises with a given number of iterations (Dueck, 2009). 

The final step of AP-based band selection is the decorrelation, performed by choosing only 
the representative bands of each cluster. In these conditions, the cluster centres are generally 
considered preferable bands as they are highly correlated to the remaining bands in the same 
cluster (the similarity within clusters is high and the similarity between clusters is low). The removal 
of correlated bands is a very important step to reduce the dimensionality of the hyperspectral 
image. The selection of the centres of the clusters as representative of the bands was performed 
considering for one class each time, and the resulting bands as representative of that class. 

 

3.2.2.4 Image Classification Stage 

 

After image band selection and dimensionality reduction, ENVI 4.6.1 software was used to 
perform the image classification. For this purpose, MLC was adopted.   

MLC is the traditional method most commonly used when it is necessary to obtain informational 
classes from remote sensing images. Before performing the classification, the following 
assumptions were considered: 

 

▪ The spectral distribution of the classes is considered as being Gaussian or normal, i.e., 
objects belonging to the same class will present spectral responses next to the average 
values for that class (Maselli et al., 1992; Richards, 1999). 

▪ The method considers the weighted average distances, using statistical parameters for the 
distribution of pixels within a given class (Crósta, 1993).  

▪ To achieve a good result with this classifier, it is necessary to choose a fairly high number 
of pixels for each sample of training class, and that they have a statistical distribution closer 
to the normal distribution (Crósta, 1993; Landgrebe, 2003). 

 

The general procedures for MLC are the following:  

 

1. The number of land cover types (classes) within the study area was determined for 
both AVIRIS and HYDICE hyperspectral images with support of Figures 2 and 3.  

2. The training samples (pixels) for each of the desired classes were collected from the 
AVIRIS and HYDICE hyperspectral images based on the information of the study area 
(ground truth), as can be seen in Tables 1 and 2.  

3. The collected and trained samples were then used to estimate the mean vector and 
covariance matrix of each class.  

4. And, finally, each pixel in the image was classified in one of the desired land cover types 
or labelled as unknown. 



Class-Based Affinity Propagation for Hyperspectral Image Dimensionality Reduction and Improvement…                   12 

Bulletin of Geodetic Sciences, 25(1): e2019004, 2019 

In this stage of the proposed approach the final classification maps have already been 
performed. To enable classification performance comparison, three traditional classification 
methods namely PCA, MLC and AP were used. 

 

3.2.2.5 Classification Accuracy Assessment and Validation 

 

The last step in our approach consists to assess the image classifier accuracy, and validate 
the classification. To do that, confusion or error matrix and kappa coefficient were used. The 
confusion matrix is given by the overall accuracy (OA), producer’s accuracy (PA) and user’s 
accuracy (UA), while the kappa statistics is represented by the kappa coefficient (KC). The OA 
represents the ratio between the number of samples correctly recognized by the classification 
algorithm and the total number of test samples. According to Scepan (1999), the minimum 
acceptable OA is 85%. 

The producer’s accuracy (PA) informs the image analyst about the number of correctly 
classified pixels in a specific category, and measures the omission errors. The user’s accuracy (UA) 
is computed using the number of correctly classified pixels and the total number of pixels assigned 
to a particular category (Story and Congalton, 1986).  

The Kappa coefficient (KC) is a measure of the relationship between the possibility of 
agreement and disagreement expected. This is the second measure of classification accuracy that 
incorporates the elements off the diagonal as well as those of the diagonal of the confusion matrix, 
giving a more robust accuracy assessment than the overall accuracy. The value of KC is in the 
interval [-1, 1]. The more the KC value close to one, the better the classification. Although negative 
KC values are possible, Cohen (1960) notes that are unlikely to happen in practice, and when it 
happens it is an indicator of a serious problem, because negative values of KC represent a 
disagreement. According to (Cohen, 1960; Landis and Koch, 1977), the KC coefficient can be 
interpreted in accordance with Table 3. 

 

Table 3: Interpretation of kappa coefficient values. 

Agreement levels values for KC 

0-0.2 None 0-4% 

0.21-0.39 Minimum 4-15% 

0.40-0.59 Weak 15-35% 

0.60-0.79 Moderate 35-63% 

0.80-0.90 Strong 64-81% 

>0.90 Almost perfect 82-100% 
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4. Results and Discussion 

 
The experiments were performed considering two hyperspectral images, AVIRIS and 

HYDICE. In order to assess the accuracy of the proposed, here called CAP-MLC, three commonly 
used classifiers namely PCA, MLC and the original AP were used. The final experimental results are 
presented in Figures 6 - 8 and Tables 4 - 7.  
 

 
AVIRIS Image Experiments 

 
 
 
 
 

 
Figure 5: Classified hyperspectral images for CAP-MLC, PCA-MLC, AP-MLC and MLC. 

 

 
Figure 6. Classified hyperspectral images for CAP-MLC, AP-MLC, PCA-MLC and MLC. 

 

Table 4: Accuracies and kappa statistics for the experiments. 

 CAP-MLC AP-MLC PCA-MLC MLC 

Accuracy (%) PA OE UA CE PA OE UA CE PA OE UA CE PA OE UA CE 

Alfafa 92.9 7.1 100 0 100 0 100 0 88.2 11.8 100 0 Not classified 

Cornot 43.3 56.7 81.3 18.8 48 52 63.2 36.8 46.2 53.9 92.3 7.7 57.1 42.9 99.5 0.5 

Cormi 100 0 100 0 91.4 8.6 100 0 89.5 10.5 100 0 73.7 26.3 100 0 

Corn 100 0 96.6 3.5 100 0 73.7 26.3 100 0 80 20 Not classified 

Grasp 100 0 100 0 100 0 100 0 100 0 100 0 97.2 2.8 100 0 

Grasst 100 0 92.6 7.4 93.1 6.9 93.1 6.9 100 0 100 0 98.7 1.3 96.1 3.9 

Grasspm 100 0 100 0 100 0 100 0 100 0 100 0 Not classified 

Haywind 100 0 97.9 2.1 100 0 100 0 100 0 100 0 100 0 100 0 

Oats 100 0 100 0 100 0 83.3 16.7 100 0 100 0 Not classified 

Soynot 81.3 18.8 100 0 61.1 38.9 91.7 8.3 80 20 100 0 94.7 5.3 98 2 

Soymin 100 0 54.8 45.2 100 0 66.7 33.3 100 0 70.6 29.4 100 0 50.3 49.7 

Soyclean 100 0 100 0 94.3 5.7 89.2 10.8 100 0 97 3 90.2 9.8 100 0 

Wheat 100 0 100 0 100 0 100 0 100 0 100 0 Not classified 

Woods 100 0 92.3 7.7 100 0 91.8 8.2 100 0 83.8 16.2 100 0 95.5 4.5 

Bgtd 87.1 12.9 100 0 84.4 15.6 96.4 3.6 81.8 18.2 81.8 18.2 88.4 11.7 100 0 

Stonst 100 0 100 0 100 0 100 0 100 0 100 0 Not classified 

OA 94.15 92.20 93.24 85.42 

KC 0.94 0.92 0.93 0.83 

PA- Producer’s Accuracy, OE= Omission Errors, UA= User’s Accuracy, CE= Commission Errors, 
OA=Overall Accuracy, KC=kappa coefficient. 
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Table 5: Summary of overall accuracies and kappa coefficients for the experiments. 

 

 

 

 

 

 

In the experiments performed with the AVIRIS hyperspectral image, a total of sixteen (16) 
classes were considered, namely: alfalfa, cornot, cormi, corn, grassp, grasst, grasspm, haywind, 
oats, soynot, soymin, soyclean, wheat, woods, bgtd and stonst. The classification method 
proposed for this study was CAP-MLC, which integrates class-based supervised AP and MLC, and 
the methods AP-MLC, PCA-MLC and MLC were used for comparative purposes. 

According to the results presented in Table 5, the method CAP-MLC presented better 
separation between the classes, with an overall accuracy of 94.15% and kappa coefficient of 0.94. 
The classification using the PCA-MLC method resulted in an overall accuracy of 93.24% and kappa 
coefficient of 0.93, being the second best method to separate the classes, as illustrated in Table. 

The AP-MLC method had an overall accuracy of 92.20%, slightly below PCA-MLC, and a 
kappa coefficient of 0.92. The worst separation between classes has been verified by the 
traditional MLC method, with an overall accuracy of only 85.42%, which according to Scepan 
(1999) this is the minimum acceptable value. The value of the kappa coefficient for MLC was 0.83. 

According to Table 5, the accuracy values obtained by employing these methods explain 
that 94.15%, 93.24%, 92.20% and 85.42% of the pixels in the image were correctly classified, and 
respectively 5.85%, 6.75%, 7.8% and 14.58% of the pixels were erroneously classified. 

The MLC method was applied with the original image, considering all 190 bands, and 
classified only 10 classes, contrarily to the other methods presented here which classified the 16 
classes, as shown in Figure 6 and in Table 4. This limitation of the MLC in classifying some of the 
classes such as alfafa, corn, grasspm, oats, wheat and stonst, is attributed to the fact that these 
classes have a small number of training samples in a high dimensionality feature space, as is 
evidenced by Landgrebe (2003) and Camps-Valls et al. (2014). 

From the Table 4, it can be observed that the proposed CAP-MLC method resulted in a 
producer's accuracy of 100% for a total of 12 classes, meaning that only 4 classes, namely alfalfa, 
cornot, soynot and bgtd had errors in classification. During the classification process, the class 
alfalfa was omitted in 7.14%, cornot was omitted in 56.67% and allocated by commission in 
18.75%, soynot was omitted in 18.75% and bgtd omitted in 12.9%. Within the classes with errors 
in the producer’s accuracy, cornot class was the one that had lower accuracy in all experiments. 
The values obtained were 43%, 48%, 46% and 57% respectively for CAP-MLC, AP-MLC, PCA-MLC 
and MLC. 

The best accuracy in the classification obtained by the proposed CAP-MLC method, has 
proved that this method presents discriminative features that make it not sensitive to the limited 
number of training samples when classifying high dimensionality data, as is supported by the 
literature (Peng et al., 2016). 

Method OA KC Bands Classes 

CAP-MLC 94.15 0.94 14 16 

AP-MLC 92.20 0.92 09 16 

PCA-MLC 93.24 0.93 09 16 

MLC 85.42 0.83 190 10 



15                                                                                                                                                                      Moiane and Machado 

Bulletin of Geodetic Sciences, 25(1): e2019004, 2019 

As regards the producer’s accuracy obtained by the PCA-MLC method, this was 100% for 
the same classes that of the CAP-MLC, differing only in a class, cormi. The PCA-MLC method 
classified correctly 11 classes. The remaining 5 classes with classification errors, namely alfalfa, 
cornot, cormi, soynot and bgtd, were omitted in respectively 11.76%, 53.85%, 10.53%, 20% and 
18.18%. The commission errors in this method were 7.69% and 18.18% respectively for cornot 
and bgtd. 

From the 10 classes classified by MLC method, only 3 (haywind, soymin and woods) were 
correctly classified, being the remaining 7 with classification errors. During the Classification, the 
classes were erroneously omitted in the following way: cornot (42.90%), cormi (26.29%), grassp 
(2.80%), grasst (1.34%), soynot (5.26%), soyclean (9.82%) and bgtd (11.65%). In the same process, 
commission errors were observed, and classes were wrongly attributed to cornot in 0.47%, grasst 
in 3.92% and 2.04% to soynot. 

The values of the kappa coefficients for the experiments with CAP-MLC, AP-MLC, PCA-MLC 
and MLC were respectively 0.94, 0.93, 0.93 and 0.83. According to Cohen (1960) and Landis and 
Koch (1977), these values suggest that the methods CAP-MLC, AP-MLC and PCA-MLC that reach 
Kappa coefficient above 0.9, showed an almost perfect agreement between classes and good 
classification accuracy. The MLC method, with kappa coefficient equal to 0.83 showed an 
agreement between classes from moderate to strong, and a moderate accuracy. 

As these KC values evaluate the homogeneity of the samples among themselves and, once 
they have been taken from the image, between the samples and the rest of the image, there is a 
difficulty of using old images and lacking of ground truth. This causes the homogeneity of the 
samples on the image, thus limits the resulting accuracy, and in some cases the generalization of 
the methods. 
 

HYDICE Image Experiments 
 

 

 

 

 

 
 
 
 
 
 
 
 

Figure 7: Classified hyperspectral images for CAP-MLC and PCA-MLC. 
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Figure 8: Classified hyperspectral images for AP-MLC and MLC. 
 

Table 6: Accuracies and kappa statistics for CAP-MLC, AP-MLC, PCA-MLC and MLC. 

 CAP-MLC AP-MLC PCA-MLC MLC 

Accuracy (%) PA OE UA CE PA OE UA CE PA OE UA CE PA OE UA CE 

Asphalt 97.5 2.5 99.7 0.4 95.6 4.4 99.3 0.7 97 3 99.9 0.1 100 0 99.9 0.1 

Tree 99.4 0.6 85.1 14.9 98.6 1.4 86.7 13.3 98.9 1.1 89 11 0 0 0 100 

Grass 92.6 7.4 98.6 1.5 92.1 7.9 96.5 3.5 93.9 6.1 96.9 3.1 0.5 99.5 100 0 

Roof 97.6 2.4 98.1 1.9 97.1 2.9 89.9 10.1 99.1 0.9 95.7 4.3 0 100 0 0 

OA 96.47 95.26 96.69 81.50 

KC 0.95 0.93 0.95 0.45 

 
 

Table 7: Summary of overall accuracies and kappa coefficients for CAP-MLC, AP-MLC, PCA-MLC 
and MLC. 

Method OA(%) KC Bands Classes 

CAP-MLC 96.47 0.95 09 04 

AP-MLC 95.26 0.93 09 04 

PCA-MLC  96.69 0.95 09 04 

MLC 81.50 0.45 162 04 

 

The HYDICE hyperspectral image was used to perform the experiments. To do that, a total 
of four (04) classes, namely: asphalt, grass, tree and roof were considered. The classification 
method proposed in this paper is CAP-MLC, and three additional classification methods, namely 
AP-MLC, PCA-MLC and MLC were used for comparison purposes. 

According to the results presented in Table 7, the PCA-MLC method presented the best 
separation between classes with an overall accuracy of 96.69% and kappa coefficient of 0.95. The 
classification obtained by using the CAP-MLC method has resulted in an overall accuracy of 96.47% 
and kappa coefficient of 0.95 as well, being jointly with the PCA-MLC method, the best to separate 
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the classes. The traditional AP-MLC method was the third method which classified better the 
image, resulting in an overall accuracy of 95.26% and kappa coefficient of 0.93. 

In analogy to the results obtained using the AVIRIS image, the traditional MLC was the method 
with the lowest accuracy to separate the classes, having an overall accuracy of only 81.50% and 
kappa coefficient of 0.45. According to Scepan (1999), this accuracy value is below 85% which is 
the minimum acceptable, revealing the poor performance of this classifier for urban 
environments. 

From Table 7 it can be observed that the accuracy values obtained by employing the four 
methods explain that 96.47%, 95.26%, 96.69% and 81.50% of the pixels in the image were 
correctly classified, and respectively 3.53%, 4.74%, 3.31%, and 18.5% of the pixels were miss 
classified. 

The MLC method was applied with the original image, considering 162 bands remaining 
after the pre-processing stage. The method classified only the major features of the 4 classes, 
contrarily with CAP-MLC, AP-MLC and PCA-MLC that presented detailed classification for all the 
features in all classes as shown in Figures 7 and 8.   

According to Landgrebe (2003) and Camps-Valls et al. (2014), this limitation of MLC in 
classifying some of the classes can be attributed to the fact that the non-classified features present 
a small number of training samples in a feature space of high dimensionality. 

According to the results in Table 6, the method CAP-MLC resulted in a producer’s accuracy 
of 97.54% for asphalt, 99.38% for tree, 92.60% for grass and 97.56% for roof. It can also be 
observed that the errors committed to classify the classes asphalt, grass and roof were below 2%, 
and that only the class tree has experienced a commission error of approximately 15%. 

During the classification process, the class asphalt was omitted in 2.46%, tree was omitted 
in 0.62% and allocated by Commission in 14.94%, grass omitted in 7.40% and 2.44% for roof. 
Within the classes with errors in producer’s accuracy, the classes tree and roof had the lowest 
accuracy when using the MLC method, being 0% for both. In other methods such as CAP-MLC, AP-
MLC and PCA-MLC, the same classes obtained accuracies above 90%. The best classification 
accuracies were obtained by PCA-MLC, CAP-MLC and AP-MLC methods, confirming the theoretical 
evidence that these methods as the discriminative are not limited to the size of training samples 
when performing classification in high-dimensionality data (Peng et al., 2016). 

The producer accuracies obtained by the PCA-MLC method were 97.04%, 98.94%, 93.92% 
and 99.07% respectively for the classes asphalt, tree, grass and roof. The four classified classes 
were omitted respectively in 2.96%, 1.06%, 6.08% and 0.93%. In this method, the commission 
errors were 0.13%, 11.03%, 3.14% and 4.26% respectively for the classes asphalt, tree, grass and 
roof. The MLC method, classified correctly only the class asphalt, while the remaining 3 classes 
(tree, grass and roof) were classified with errors. During the Classification, the classes grass and 
roof were omitted in 99.54% and 100% respectively. This process also observed commission 
errors, where they were wrongly allocated classes for asphalt at 0.10% and tree at 100%. 

The kappa coefficient values for the experiments with CAP-MLC, AP-MLC, PCA-MLC and 
MLC were respectively 0.95, 0.93, 0.95 and 0.45. According to Cohen (1960) and Landis and Koch 
(1977), these values suggest that the first three methods (CAP-MLC, AP-MLC and PCA-MLC) with 
Kappa coefficient above 0.9 present an almost perfect agreement between classes and good 
accuracy. The last method (MLC) had kappa coefficient equal to 0.45, the reason why it presents 
a weak agreement between classes. 
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5. Conclusion 

 

This paper proposes a method named CAP-MLC which integrates Class-based AP and MLC 
to improve the MLC accuracy even in cases where limited number of training samples is used to 
classify hyperspectral images. After discussion of results, the following conclusions were made:  

Compared with PCA-MLC, AP-MLC and MLC, using AVIRIS and HYDICE hyperspectral data, 
the proposed CAP-MLC method presented the best classification with an overall accuracy of 
94.15% and kappa coefficient of 0.94. The MLC method obtained the lowest separation between 
classes, with overall accuracies of only 85.42% and 81.50% and kappa coefficients of 0.83 and 0.45, 
respectively, for the AVIRIS and HYDICE images. Considering the second image, the PCA-MLC 
method presented a slight improvement in the classification accuracy (96.69%) if compared with 
the proposed CAP-MLC method, with 96.47% of overall accuracy, and both with a kappa 
coefficient of 0.95. 

Considering that the KC values evaluate the homogeneity of the samples among 
themselves and, that they have been taken from the image, between the samples and the rest of 
the image, the use of old images, lacking of ground truth causes the homogeneity of the samples 
on the image, limiting the classification accuracy, and in some cases the generalization of the 
methods. 
The CAP-MLC method proposed in this research has proven to be very efficient for classification 
of land covers on hyperspectral images. The accuracies obtained from the proposed method were 
at a level above the recommended for use in urban and rural applications.  

The proposed CAP-MLC method improved the MLC classification accuracy in 8.73% and 
14.97% respectively for AVIRIS and HYDICE image. The accuracies obtained by using this method 
were higher than those of other methods, and the classification was detailed even for classes with 
small training samples, enabling all the cover types in the images to be correctly classified 
regardless of the training sample size.  

Despite the fact of reducing the image dimensionality, the proposed approach has shown 
the potential to remove redundant information between bands and keep only relevant spectral 
information. Thus, the hyperspectral image classification performed, resulted in a high accuracy 
for both AVIRIS and HYDICE image, and outperformed the other three methods evaluated, 
indicating that the proposed method is promising for classification of hyperspectral data sets.  

The main contribution of the proposed CAP-MLC method is that it improved the Maximum 
Likelihood classified hyperspectral image accuracy even in cases of limited training samples and 
produces the clusters basing on the classes collected.  

 

Acknowledgements 

 

The authors would like to thank the Purdue University for the provision of AVIRIS and 
HYDICE hyperspectral data sets. They would also like to express their gratefulness to Professor 
Jorge Silva Centeno from Federal University of Paraná (UFPR) for the valuable support in this 
research. 

 



19                                                                                                                                                                      Moiane and Machado 

Bulletin of Geodetic Sciences, 25(1): e2019004, 2019 

References 
 

Ablin, R; Sulochana, C.H. A Survey of Hyperspectral Image Classification in Remote Sensing. 
International Journal of Advanced Research in Computer and Communication Engineering, v. 2, n. 
8, 2013. 

Bartels, M; Wei, H. Rule-based Improvement of Maximum Likelihood Classified LIDAR Data fused 
with coregisterd band. Computational Vision Group, School of Systems Engineering the University 
of Reading, 2006. 

Baumgardner, M; Biehl, L; Landgrebe, D. 220 band AVIRIS hyperspectral image data set: June 12, 
1992 indian pine test site 3. Purdue University Research Repository vol. 10, p. R7RX991C, 2015. 

Brzank, A; Heipke, C. Classification of LIDAR into Water and Land in Coastal Areas. Institute of 
Photogrammetry and Geoinformation, 2007. 

Camps-Valls, G; Tuia, D; Bruzzone, L; Benediktsson, J.A. Advances in hyperspectral image 
classification. IEEE Signal Processing. Mag, vol. 31, p. 45-54, 2014. 

Cohen, J. A. Coefficient of agreement for nominal scales. Educational and Psychological 
Measurement, vol. 20, p. 37-46, 1969. 

Cortes, V; Vapnik, V. Support vector networks. Machine Learning, vol. 20, p. 273-297, 1995. 

Crósta, A. P. Processamento Digital de Imagens de Sensoriamento Remoto. Campinas, P, Unicamp, 
ed. rev, 1993. 

Dueck, D. Affinity Propagation: clustering data by passing messages. University of Toronto, 
September 24, 2009. 

Frey, B. J; Dueck, D.  Clustering by passing messages between data points. Science, vol. 315, n. 
5814, p. 972-976, 2007. 

Fukunaga, K. Introduction to Statistical Pattern Recognition. Second Edition. Academic Press, 1990. 

Hoffbeck, J. P; Landgrebe, D.A. Covariance Matrix Estimation and Classification with Limited 
Training Data. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 18, n. 7, 1996. 

Jimenez, L. O; Landgrebe, D.A. Hyperspectral Data Analysis and Supervised Feature Reduction Via 
Projection Pursuit. IEEE Transactions on Geoscience and Remote Sensing, vol. 37, n. 6, p. 2653-
2667, 1999. 

Landgrebe, D. A. Hyperspectral image data analysis. IEEE Signal Process. Mag, vol. 19, n. 1, p. 17-
28, 2002. 

Landgrebe, D. A. Signal Theory Methods in Multispectral Remote Sensing. John Wiley & Sons: New 
York, NY, USA, p. 503, 2003. 

Landis, J. R; Koch, G.G. The measurement of observer agreement for category data. Biometrics, 
vol. 33, n. 1, p. 159-174, 1977. 

Lee, C; Landgrebe, D. A. Analyzing high-dimensional multispectral data. IEEE Transactions on 
Geoscience and Remote Sensing, v. 31, p. 792 - 800, 1993. 
 



Class-Based Affinity Propagation for Hyperspectral Image Dimensionality Reduction and Improvement…                   20 

Bulletin of Geodetic Sciences, 25(1): e2019004, 2019 

Maselli, F; Conese, C; Petkov, L; Resti, R. Inclusion of prior probabilities derived from a 
nonparametric process into the maximum likelihood classifier. Photogrammetric Engineering and 
Remote Sensing, vol. 58, p. 201-207, 1992. 

Mather, P. M. Support Vector classifiers for Land Cover Classification. Map India 2003 Image 
Processing &Interpretation, 2003. 

Peng, Y; Pan, Z; Zheng, Z; Li, X. Hyperspectral Image Classification by Fusion of Multiple Classifiers. 
International Journal of Database and Theory and Application, vol. 9, n. 2, 2016. 
 
Ramakrishnan, D; Bharti, R. Hyperspectral remote sensing and geological applications. Current 
Science, vol. 108, n. 5, 2015. 

Refianti, R; Mutiara, A.B; Syamsudduha, A.A. Performance Evaluation of Affinity Propagation 
Approaches on Data Clustering. International Journal of Advanced Computer Science and 
Applications, vol. 7, n. 3, 2016. 

Richards, J. A. Remote Sensing Digital Image Analysis. Springer-Verlag: Berlin, Germany, p. 240, 
1999. 

Roessner, S; Segl, K; Heiden, U; Kaufmann, H. Automated differentiation of urban surfaces based 
on airborne hyperspectral imagery. IEEE Transactions on Geosciences and Remote Sensing, vol. 39, 
n. 7, p. 1525-1532, 2001. 

Scepan, J. Thematic validation of high-resolution global land-cover data sets. Photogrammetric 
Engineering and Remote Sensing, vol. 65, p. 1051-1060, 1999. 

Segl, K; Roessner, S; Heiden, U; Kaufmann, H. Fusion of spectral and shape features for 
identification of urban surface cover types using reflective and thermal hyperspectral data. ISPRS 
Journal of Photogrammetry and Remote Sensing, vol. 58, n. 1-2, p. 99-112, 2003. 

Serpico, S. B; Bruzzone, L. A New Search Algorithm for Feature Selection in Hyperspectral Remote 
Sensing Images. IEEE Transactions on Geoscience and Remote Sensing, vol. 39, n. 7, July 2001. 

Story, M; Congalton, R. Accuracy assessment: a user’s perspective. Photogrammetric Engineering 
and Remote Sensing, vol. 52, p. 397-399, 1986. 

 

 

 


