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DESIGN, CONSTRUCTION, ENERGY MODELING, AND NAVIGATION OF A SIX-

WHEELED DIFFERENTIAL DRIVE ROBOT TO DELIVER MEDICAL SUPPLIES INSIDE 

HOSPITALS 

by 

MAKHLUK HOSSAIN PRIO 

(Under the Direction of Fernando Rios-Gutierrez) 

ABSTRACT 

Differential drive mobile robots have been the most ubiquitous kind of robots for the last few 

decades. As each of the wheels of a differential drive mobile robot can be controlled, it provides 

additional flexibility to the end-users in creating new applications. These applications include 

personal assistance, security, warehouse and distribution applications, ocean and space 

exploration, etc. In a clinic or hospital, the delivery of medicines and patients’ records are 

frequently needed activities. Medical personnel often find these activities repetitive and time-

consuming. Our research was to design, construct, produce an energy model, and develop a 

navigation control method for a six-wheeled differential drive robot designed to deliver medical 

supplies inside the hospital. Such a robot is expected to lessen the workload of medical staff. 

Therefore, the design and implementation of a six-wheeled differential drive robot with a 

password-protected medicine carrier were presented. This password-protected medicine carrier 

ensures that only the authorized medical personnel can receive medical supplies. The low-cost 

robot base and the medicine carrier were built in real life. Besides the actual robot design and 

fabrication, a kinematic model for the robot was developed, and a navigation control algorithm to 

avoid obstacles was implemented using MATLAB/Simulink. The kinematic modeling is helpful 

for the robot to achieve better energy optimization. To develop the object avoidance algorithm, we 

investigated the use of the Robot Operating System (ROS) and the Simultaneous Localization and 

Mapping (SLAM) algorithm for the implementation of the mapping and navigation of a robotic 

platform named TurtleBot 2. Finally, using the Webot robot simulator, the navigation of the six-

wheeled mobile robot was demonstrated in a hospital-like simulation environment.   
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CHAPTER 1 

INTRODUCTION 

Mobile robotics is an ever-growing and well-known field of technological research interest. 

It has seen revolutionary advancements over the last few decades. As the name suggests, mobile 

robots are capable of moving from one point to another in real-time indoors or outdoors, on the 

ground, and on aerial, or aquatic environments, employing locomotive elements such as wheels, 

artificial legs, artificial wings, and propellers (Wahab, Rios-Gutierrez, & El Shahat, 2015). The 

evolution of mobile robots has been governed by human necessities (Garcia, Jimenez, De Santos, 

Armada, & Magazine, 2007). Nowadays, mobile robots are being deployed to autonomously 

perform complicated, arduous, and risky tasks like exploration in hazardous areas, delivering 

medical supplies inside hospitals, rescuing injured people in disasters and calamities, carrying 

heavyweight industrial goods, assisting humans in household works, etc. (Prio and Rios 2019). 

Among all kinds of mobile robots, the differential drive robot is the most popular and widespread, 

which is the focal point of this research.  

 Differential Drive Mobile Robot  

The differential drive mobile robot architecture is one of the most commonly used robot 

architectures due to its simple construction and dynamics (Konduri, Torres, Pagilla, & Control, 

2017). It has the configuration used by most electric wheelchairs (Balkcom & Mason, 2000). The 

number of wheels placed on either side of the robot body can be one, two, or three depending upon 

the intended application. The robot is moved by controlling the rotation and speed of wheels on 

either side of the robot body separately. It often needs an extra castor wheel in front of the body to 
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maintain a better balance and support. Examples of differential drive robots can be the Sojourner 

and the IntelliBrain-Bot, as shown in Figure 1.1 (Mester, 2006). 

(a) The Sojourner                                                             (b) The IntelliBrain-Bot 

Figure 1.1: Examples of differential drive robots 

1.2 Motivation of the Thesis 

Nowadays, smart delivery differential drive autonomous robots have been promoted into 

the market. They are seen to deliver foods, packages, or industrial goods in indoor environments: 

restaurants, hospitals, or industries. An example of such a robot would be MO1 Smart Delivery 

Robot made by New Era AI Robotics Inc, as shown in Figure 1.2.  

In hospitals and medical environments, it is often necessary to carry or move medical 

supplies from a central location to other places where they are needed. This operation is typically 

performed by nurses who take the medicines to the places where they will be used. However, this 

operation is repetitive, time-consuming, and inefficient. An autonomous differential drive robot 

can be used to perform the delivery, freeing the nurse staff to do other more important activities.  

In medical environments, there are doors, corridors, and in general small available spaces to 

maneuver. An autonomous delivery vehicle needs to have the intelligence to move in these spaces. 
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Figure 1.2: M01 smart delivery robot (Source: New Era AI Robotics) 

Due to the above reasons, the primary purpose of this thesis is focused on the development and 

navigation of a six-wheeled differential drive, smart delivery intelligent robot for applications in a 

hospital or home environment where limited space is available.                       

One of the main constraints of any kind of robot is its limited energy storage capacity. It 

depends mostly on the energy provided by the principal power source, which typically are DC 

batteries that have a limited energy capacity. This inadequate amount of energy leads to a short 

time of functioning for the robot. Therefore, the energy optimization of the robot is needed to 

overcome this shortcoming to a certain extent. Hence, in this thesis, we investigated and developed 

a model for the kinematics of the proposed six-wheeled differential drive robot, its links to the 

dynamics, and some considerations regarding more accurate modeling for energy optimization. 

1.3 Objectives of the Thesis 

• To design a six-wheeled mobile differential drive robot using SolidWorks software to 

deliver medical supplies inside hospitals. 

• To build the robot in real life. 
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• To develop a kinematic model of the robot. 

• To learn and use the Robotic Operating System (ROS) to develop a navigation technique 

that uses the Simultaneous Localization and Mapping (SLAM) algorithm for controlling 

the navigation of the smart delivery robot. In particular, a TurtleBot 2 was used to test the 

navigation control algorithm, before finally implementing these techniques into the six-

wheeled robot.  

• To construct a standalone, password-protected, medical supply carrier on the robot’s body 

so that only authorized personnel can take the medical supplies from the robot.                         

• To develop and demonstrate the establishment of an indoor navigation system for the robot 

to avoid obstacles using Webot simulator software. 

1.4 Outline of the Thesis 

 The rest of the thesis is organized as follows. 

• Chapter 2 presents a brief description of the findings of previous research conducted on the 

design, kinematic modeling, and navigation of differential drive robots.  

• Our proposed design and construction of the six-wheeled differential drive robot are 

presented in Chapter 3. 

• Chapter 4 discusses the kinematic modeling developed for our robot to avoid obstacles and 

optimize energy loss.  

• Chapter 5 introduces the concepts and application of the Robot Operating System (ROS) 

and Simultaneously Localization and Mapping (SLAM) algorithm with the help of 

TurtleBot 2. 

• Chapter 6 demonstrates the navigation of the robot in a simulation environment. 
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• Finally, conclusions are drawn in Chapter 7. 
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CHAPTER 2 

LITERATURE REVIEW 

In the past decade, many researchers worked and proposed different designs and navigation 

control of six-wheeled differential drive robots. This chapter is organized with an aim to 

accumulate and review the works that have already been done by the researchers on the design, 

kinematic modeling, and navigation of six-wheeled mobile robots and use it as the background for 

the development and implementation of the proposed project. Implementation history of the 

Robotic Operating System (ROS) and Simultaneous Localization and Mapping (SLAM) algorithm 

are also presented in this chapter. 

2.1 Review of Six-Wheeled Mobile Robot Design 

 Gu et al., (Gu, Wang, & Zhao, 2007) proposed a lunar-bogie rover with six independently 

driven wheels mounted on an articulated passive suspension system in which four wheels were 

steerable. With this design, while traversing rugged terrain, each wheel tended to make contact 

with the ground. The scheme of this rover is illustrated in Figure 2.1. 

 

 

 

 

Figure 2.1: Six- wheeled lunar-bogie rover (Gu et al., 2007) 
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A six-leg-wheel hybrid mobile robot, consisting of six wheels and six swing legs, to move 

under uneven terrains, was designed by Yanjie Li (Li, 2010). The robot had the characteristics of 

multi-joints, multi-configuration, and adapting to multi-kinds of environments. The robot also 

possessed lateral symmetry with individually driven legs and wheels. The wheels were connected 

with the shaft by swing legs. The structure principle is shown in Figure 2.2. Adjusting the 

configuration of the robot using swing legs, the robot could improve its maneuverability and its 

terrain traversability. 

 

 

 

 

 

Figure 2.2: Structure of the six-leg-wheel hybrid robot (Li, 2010) 

Gupta and Gupta developed a multi-terrain six-wheeled robot that had the capability to run 

in rocky and sandy areas, to move on an inclined plane, and to climb on stairs (Gupta & Gupta, 

2013). The mechanical structure of the proposed robot consisted of six high frictional rubber 

wheels, two semicircular rocker structure, one connecting rod, and one rear chassis. The CAD 

model of the proposed mechanism is shown in Figure 2.3. The robot mechanism had lateral 

symmetry. The semi-circle rocker wheels were driven simultaneously by one actuator, and the rear 

wheels were driven individually for getting more power. The total degree of freedom of the six-

wheeled multi-terrain robot was ten, which provide more flexibility in rough terrain. The  
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Figure 2.3: CAD model for a six-wheeled multi-terrain robot (Gupta & Gupta, 2013) 

semicircular rocker joint moved independently to climb stairs and to adjust the height difference 

on uneven terrain. 

 Xixia et al. designed a six-wheeled bow-swing arm robot to cross obstacles (Xixia & 

Wenwen, 2017). The first half of the robot had two wheels, while the second half of the robot had 

four wheels. These four wheels could rotate 360 degrees around the hinge. The hinge and hydraulic 

cylinder were connected with the body of the robot. The design of the bow-arm robot was 

instrumental in improving the obstacle crossing performance of the robot. Figure 2.4 shows the 

CAD design of the bow-swing arm robot. 

An omnidirectional six-wheel-legged mobile robot was presented by Xu et al. (Xu, Hu, & 

Li, 2018). It used three walking mechanisms: double crank climbing mechanism, parallelogram 

rotating mechanism, and balancing mechanism. The six motorized wheels were mounted with 

steering motors to improve the mobility of the robot. The robot was also equipped with a robot 

arm for the rescue tasks. The design of the overall size and weight of the robot was in large scales 

because it would go through rescue missions in complex unstructured environments with necessary 

payloads. Figure 2.5 shows the overall structure of the robot. 
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Figure 2.4: CAD design of the six-wheeled bow-swing arm robot (Xixia & Wenwen, 2017) 

 

 

 

 

                        

 

 

 

Figure 2.5: Structure of omnidirectional six-leg-wheeled rescue robot (Xu et al., 2018) 

 Wang et al. (X. Wang, Xu, Feng, & Wu, 2018) demonstrated the design of a fast walking 

six-wheel-legged robot to overcome obstacles. The structure was divided into five parts, with a 
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total of six independent drive trains. The front-wheel adopted a planetary gear train mechanism, 

which was connected with the double crank mechanism to form the front body of the robot. The 

double crank mechanism was installed on the front end of the mainframe, and the parallelogram 

mechanism was symmetrically mounted on both sides of the mainframe. The balance mechanism 

was fixed at the rear end of the mainframe, which is called the rear body. Both the balance 

mechanism and the double crank mechanism were equipped with a steering motor to control the 

steering of the robot. The 3D model of the robot is shown in Figure 2.6. 

 

 

 

 

 

                      

Figure 2.6: 3D model of fast walking six-wheeled-leg robot (X. Wang et al., 2018) 

2.2 Review of Kinematic Modeling 

 Heikkinen et al. proposed three self-tuning fuzzy PID controllers for a three-wheeled 

differential drive mobile robot (Heikkinen, Minav, & Stotckaia, 2017). The fuzzy PID controllers 

were used to match the rotation and speed of two non-identical motors, which in turn helped the 

robot to follow a straight trajectory without deviation. In this process, a robot model was developed 

incorporating DC motor subsystem, kinematic model subsystem, and controller subsystem, as 
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shown in Figure 2.7. The kinematic model subsystem used speed and position values to calculate 

the current position of the robot's center point.   

Figure 2.7: MATLAB/Simulink robot model using fuzzy PID controllers 

To follow the circular path of the desired radius with constant velocity, a PID controller - 

used to control the desired angular velocity for both wheels of a two-wheeled differential robot – 

was presented by Singh et al., (Singh & Chouhan, 2017). They developed a mathematical model 

of the robot outlining the kinematic and permanent magnet DC motor models. The overall system 

model in MATLAB/Simulink included a kinematic subsystem, as illustrated in Figure 2.8. 

2.3 Review of ROS and SLAM Algorithm on Differential Drive Robots 

 Ibanez et al. implemented the Simultaneous Localization and Mapping (SLAM) algorithm 

using the Robot Operating System (ROS) framework and Arduino technology (Ibáñez, Qiu, & Li, 

2017). A simple, cost-effective, and SLAM capable three-wheeled differential robot was designed, 

leaving enough space to incorporate a Kinect 360 camera, a ROS running laptop, electronic 
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components, and batteries. ROS Hydro with packages like gmapping, RViz installed was used in 

Linux Ubuntu 12.04 LTS distribution. 

 

 

 

 

 

 

 

 

Figure 2.8: Simulation model of a two-wheeled robot in Simulink (Singh & Chouhan, 2017) 

A basic Arduino Mega 2560 microcontroller was interfaced with ROS using ros_lib 

library. The robot was used to generate an experimental map of the domestic environment in the 

RViz simulator while gmapping package aided the SLAM algorithm to create the map. Executable 

codes for the project were written both in Arduino microcontroller and ROS hydro. 

 Two cooperative self-driving autonomous robots, aimed to perform a certain task together 

in an unknown arena, were built by Park et al., (Park & Lee, 2017). SLAM algorithm was applied 

to recognize the robot’s positions and environments mapping in an unknown arena. ROS based 

control system hardware was promoted to maintain communication between two robots. 
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 Researchers intended to compare ROS-based SLAM systems in the past also. In 2018, 

Filipenko et al., developed a prototype of a four-wheeled unmanned ground vehicle housing a 2D 

lidar, a monocular camera, and ZED stereo camera for experimental purposes and presented a 

comparative analysis of mobile robot trajectories computer by various ROS-based SLAM systems 

(Filipenko & Afanasyev, 2018).  

 Nowadays, TurtleBot has become a very popular differential drive robotic platform 

because it is compatible with both ROS and SLAM. Oajsalee et al. evaluated the efficiency of the 

TurtleBot 3 and ROS in order to survey and map inaccessible areas such as old buildings, a disaster 

area, and tunnels (Oajsalee, Tantrairatn, & Khaengkarn, 2019). In this evaluation, the TurtleBot 3 

was housed with Lidar sensor, OpenCR board, and Raspberry Pi3 board, as shown in Figure 2.9. 

A lidar sensor was used to scan the environment while gmapping utilized the SLAM algorithm to 

create the map from the scanned data.  

 

 

 

 

Figure 2.9: Arrangement for survey robot (TurtleBot 3) (Oajsalee et al., 2019) 

 Liao et al. investigated a SLAM algorithm that uses the Adaptive Monte Carlo particle 

filter for the localization of the pose of a mobile robot (Liao, Wang, & Yang, 2019). They showed 

how effectively Adaptive Monte Carlo particle filter-based SLAM algorithm localizes a mobile 

robot in different indoor environments -static and dynamic. During the simulations, a differential 

drive robot was localized and autonomously navigated in Gazebo and Rviz environments.  
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2.4 Review of Simulation of Differential Drive Robots Indoor Navigation Using the Webot Robot 

Simulator 

 There are various software simulators available to test the navigation of mobile robots such 

as Webot, Gazebo, V-REP, Microwave Robotics Developer Studio, Roboguide. Among them, 

Webot is the most popular simulation platform for education and research purposes.  

 In the very early version of Webot simulator software, obstacle avoidance of Khepera – a 

miniature differential drive robot- was presented by Wang et al. (L. Wang, Tan, & Prahlad, 2000). 

The basic configuration of the Khepera robot and its development methodologies were introduced 

at first. Later, they showed how to utilize Webot environments to allow Khepera to move and 

avoid static obstacles. 

 Later in 2003, another essential step in the development of mobile robot navigation in both 

indoor and outdoor environments was taken when Magyar et al., developed the robot control 

algorithm under Webot professional simulation environment (Magyar, Forhecz, & Korondi, 2003). 

Two general approaches for robot navigation were also presented: the model-based, which uses a 

complete model of the environment to navigate efficiently, and the behavior-based approach, 

which uses no or only sparse modeling of the environment for the navigation. In this preparation, 

a two-wheeled differential drive robot, Khepera II, was chosen for the testing of robot navigation. 

 E-puck, a small two-wheeled differential drive mobile robot, basically used for educational 

purposes, was chosen by many researchers to test navigation in Webot simulation environments. 

A probabilistic, cell-based, multi-agent map-making and merging scheme was proposed using 

three E-puck robots (Scott & Yu, 2009). The scheme was shown in simulation to be effective in 

representing dynamic environments. A static obstacle avoidance controller using fuzzy logic and 

artificial neural networks was developed (Jeffril & Sariff, 2013). In doing so, both Webot PRO 
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and MATLAB software were used for the simulation. Alajlan et al. investigated the trajectory 

planning and collision avoidance algorithm for E-puck robots. They developed a line follower E-

puck robot that could detect and avoid any obstacles that emerged in its path (Almasri, Alajlan, & 

Elleithy, 2016). Low-cost infrared sensors - distance sensors and ground sensors - were used to 

measure and obtain the distance and orientation of the robot. Stan et al. presented a case study of 

using the Particle Swarm Optimization (PSO) algorithm to create a coordination method for a 

multi-robot system composed of 10 E-puck robots (Stan & Oprea, 2019).  

2.5 Conclusions  

 The design techniques of the previously built six-wheeled robot have been reviewed 

alongside the review of kinematic modeling, implementation of the SLAM algorithm, and 

navigation techniques in the simulation environment. These reviews are instrumental in 

developing the concepts for our research. 
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CHAPTER 3 

DESIGN AND FABRICATION OF THE SIX-WHEELED DIFFERENTIAL 

DRIVE ROBOT 

3.1 Introduction 

In hospitals and medical environments, it is often necessary to carry or move medicines 

and medical supplies from a central location to other places where they are needed. This operation 

is typically performed by nurses that take the medicines to the places where they will be used. 

However, this operation is repetitive, time-consuming, and inefficient. A robot can be used to 

perform the delivery, freeing the nurse staff to do other more important activities. Also, medical 

environments and buildings have doors, corridors, and in general small available spaces to 

maneuver. An autonomous vehicle needs to have the intelligence to move in these spaces. 

Due to the above, the primary purpose of this thesis focused on the design, fabrication and 

development of a navigation control for a six-wheeled differential drive robot for applications on 

medical or home environments where limited space is available. This chapter presents the first step 

of the investigation – the design of the robot.  

3.2 Robot Characteristics 

 The proposed six-wheeled robot possesses the following features. 

a) A robotic platform with characteristics that enable it to navigate in corridors and 

rooms on different types of surfaces autonomously and to deliver the medicines and 

medical materials safely with minimal human intervention. 
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b) Sensor arrays and corresponding interfaces that allows the detection of objects and 

autonomous navigation of the robotic platforms in an indoor or hospital environment. 

c) A well-planned intelligent control and navigation system.   

3.3 Design of the Robot in Solidworks 

 The entire design of the robot was carried out using Solidworks CAD software. The robot 

base or chassis was built using an aluminum frame to make it light and sturdy at the same time. 

The number of wheels chosen for the robot was six instead of four or two. The reason behind 

designing a six-wheeler robot is that it provides the robot with better traction and balance compared 

to a four or two-wheeler. Better traction is necessary as the robot will navigate on different types 

of surfaces and maneuver in small areas inside a hospital or home. The cabinet on top of the robot 

base was made of thin aluminum sheet and housed compartments of different sizes that are used 

to store medicines and documents securely.  

 The dimension of the robot base or chassis was chosen as length=17.25 inches, width= 

12.5 inches, and height= 2.25 inches. Under the robot chassis, the six DC motors and a Sabertooth 

motor controller were mounted. On top of the robot base, the cabinet was located, which houses 

five compartments. The lower compartment had a height of 8 inches and housed electronic 

components such as two 12 V batteries to power up the motors, a microcontroller, and a 9V battery 

to power up the microcontroller. The electrical circuit for the primary and Arduino batteries is 

shown in Fig. 3.1. 
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Figure 3.1: Power distribution circuit connection design for primary battery and some parts of the robot 

The three compartments in the middle were three drawers inside which medicines and 

medical supplies can be stored. Each of the middle compartments was 7 inches in height. The 3-

inch-high slanted compartment at the top was designed to keep medical documents. A matrix 

keypad and LCD display screen were also there in the design to make the medicine carrier 

compartments password protected.  Figure 3.2 shows the Solidworks design for some of the parts 

of the robot.   
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Figure 3.2: Solidworks design for some parts of the robot 

The side and front view of the robot showing the electronic components are shown in 

Figure 3.3. In this Figure, the cover that surrounds the electronic components in the lowermost 

compartment is made open. Figure 3.4 shows the top view and side view of the final design of the 

robot. 

3.4 Electrical and electronic components used in building the robot base 

 Electronic components, such as Arduino Mega 2560 microcontroller, Sabertooth 25×2 

motor controller, 24V DC motor, battery, sensor, etc. were used on or underneath the robot base 

in order to prepare it for proper navigation. 
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Figure 3.3: Design of the robot showing electronic components 

Figure 3.4: Final design of the robot 
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3.4.1 Arduino Mega 2560 Microcontroller 

We used the Arduino Mega 2560 microcontroller board because it has a higher number of 

PWM, analog, and digital input or output pins compared to other Arduino microcontrollers. It has 

54 digital input/output pins, a 16 MHz crystal oscillator, a USB connection, a power jack, an ICSP 

header, and a reset button. The microcontroller is shown in Figure 3.4. A 9V DC battery was used 

as a power source for the microcontroller. The Arduino Mega 2560 also offers a flexible 

programming environment where the complex task could be efficiently designed. The mainboard 

for the Arduino Mega is shown in Figure 3.5.  

 

 

 

 

 

 

 

Figure 3.5: Arduino Mega 2560 microcontroller 

3.4.2 Sabertooth Motor Controller 

 A Sabertooth 2×25 motor controller with an input nominal voltage of 6-30V was used to 

control the rotation of the wheels. Two 12V Lithium-ion batteries connected in series were used 

to provide the required voltage to the motor controller. It can supply up to 25A continuous output 



30 

 

 

 

current per channel. This motor controller has four terminals – M1A, M1B, M2A, M2B. Three 

24V DC motors were connected to M1A and M1B terminals. The other three 24V DC motors are 

connected to M2A and M2B terminals. The input signals that control the Sabertooth motor 

controller are connected to two terminals - S1 and S2. Any operating mode among analog input, 

R/C input, simplified serial, and packetized serial can be selected to initiate the operation of the 

motor controller.   The Sabertooth controller is shown in Fig. 3.6. The circuit diagram for the Motor 

controller connections to the 24V DC motors is shown in Figure 3.7.  

 

Figure 3.6: Sabertooth motor controller 

 Figure 3.8 shows the connection of the motor controller with batteries, four of the motors, 

and Arduino. In this Figure, right-sided motors connected in parallel are attached to the M1A and 

M1B terminals, whereas left-sided motors connected in parallel are attached to the M2A and M2B 

terminals. The battery terminals are connected to B+ and B- terminals of the motor controller. 

Signal pins are also there in the motor controller to maintain communication with the Arduino. 
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Figure 3.7: Motor controller circuit diagram 

Figure 3.8: Motor controller connection diagram 
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3.4.3 Sensors 

 The primary sensors needed for an autonomous robot to function are those that can detect 

objects in the vicinity of the robot. For this purpose, sensors need to have the capability to measure 

the distance to the nearest object. Several kinds of distance sensors with object detection and range 

measurement capability are available in the market. These sensors operate by broadcasting a 

signal, picking up the reflection of the signal, and calculating the distance based on the signal 

latency. The transmitted signal can be light, sound, or radiofrequency. In this project, several 

distance sensors: ultrasonic, infrared, and lidar were used. Ultrasonic sensors rely on high-

frequency sound waves, whereas infrared sensors measure and detect infrared radiation in its 

surrounding environment. The infrared sensor, ultrasonic sensor, and lidar sensor used in our 

project are shown in Figure 3.9, Figure 3.10, and Figure 3.11, respectively. 

 

  

 

 

 

 

Figure 3.9: Infrared sensor 

In the infrared sensor, a beam of modulated infrared light from the sensor illuminates an 

object. The beam reflects off the object and bounces back into the sensor. The reflected beam is 

focused on a Position-Sensitive Device or PSD. The PSD has a surface whose resistance changes 
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Figure 3.10: Ultrasonic sensor 

 

 

 

 

 

 

Figure 3.11: Lidar sensor 

depend on where light strikes it. As the distance between sensor and object changes, so does the 

linear position of the light falling on the PSD, as illustrated in Figure 3.12. Circuitry in the sensor 

monitors the resistance of the PSD element and calculates the distance based on this resistance. 

Besides, as the distance of the object from the infrared sensor decreases, both the resistance and 

analog voltage increase. Thus, the voltage change depends on how close an object is to the sensor. 

But when the object stays in very close proximity to the sensor, the voltage always decreases. 

Figure 3.13 shows the typical output voltage response of an infrared sensor. 
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Figure 3.12: Infrared sensor working principle 

 

Figure 3.13: Typical analog voltage output response of an infrared sensor 
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Ultrasonic sensors use high-frequency sound outside the range of human hearing; the 

typical frequency is around 40 kHz. The sound is emitted as a quick burst from a transducer, a 

kind of speaker. The sound bounces off an object, and the echo is received by the same or another 

transducer. A circuit then computes the time it took between the transmit pulse and the echo and 

comes up with a distance. Ultrasonic sensors can be operated using either mode 1 or mode 2. 

Ultrasonic sensor with Mode 1 operation has a separate trigger and echo pins, whereas, in 

ultrasonic sensor having Mode 2 operation, the same pin works to trigger the sound and receive 

the echo. In our project, we used an ultrasonic sensor having a Mode 2 operation. The signal control 

diagram of a typical Mode 2 ultrasonic sensor is shown in Figure 3.14.  

Figure 3.14: Ultrasonic sensor signal control diagram 

 From the signal control diagram in Figure 3.14, it is understandable that we only need to 

supply a short 10uS pulse to the trigger input of the ultrasonic to start the ranging. The ultrasonic 

sensor will then send out eight cycles burst of ultrasound at 40kHz and raise its trigger line high. 

It then listens for an echo, and as soon as it detects one, it lowers the trigger line again. The echo 

pulse is, therefore, a pulse whose width is proportional to the distance to the object. By timing the 
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pulse, it is possible to calculate the range in inches or centimeters or anything else. If nothing is 

detected, then the ultrasonic will lower its trigger line anyway after about 30mS. 

 A typical lidar sensor emits pulsed light waves into the surrounding environment. These 

pulses bounce off surrounding objects and return to the sensor. The sensor uses the time it took for 

each pulse to return to the sensor to calculate the distance it traveled. Repeating this process, 

millions of times per second creates a precise, real-time 3D map of the environment. An onboard 

computer can utilize this map for safe navigation. Figure 3.15 shows a typical signal control 

diagram of a lidar sensor. The figure depicts that a minimum of 10μS pulse is needed to trigger 

input of the lidar to start the ranging. After a pause, the echo pulse is received, whose width is 

proportional to the distance to the object.  

  

 

 

 

Figure 3.15: Lidar sensor signal control diagram 

3.5 Fabrication of the Robot Base 

 Six 24V DC motors coupled with six wheels and the Sabertooth 2×25 motor controller 

were mounted underneath the robot base, while batteries and Arduino Mega 2560 microcontroller 

are located on the robot base. Power sources: two 12V battery and a 9V battery were placed on the 

top of the robot base. Ultrasonic and infrared sensors used to detect the obstacles were mounted in 

front of the robot base. Figure 3.16 (a) shows the 24V DC motor mount, and Figure 3.16 (b) shows 
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the wheel attachment to the motor. Figure 3.17 and Figure 3.18 show the top view and the bottom 

view of the completed robot base, respectively. 

 

  

  

                                

 

 

 

 

                                  (a)24V DC motor                                       (b)Wheel attachment 

Figure 3.16: 24V DC motor and Wheel attachment 

3.6 Design and Fabrication of Password-Protected Medical Supply Cabinet 

 A standalone smart carrier box was built using a thin aluminum sheet inside which we can 

put medicines, hospital documents, or small-sized necessary things. The box was made password 

protected with the help of a 3×4 matrix keypad, a 16×2 LCD display, an Arduino Uno 

microcontroller, and a servo motor. The Arduino Uno was powered from a DC battery. Figure 3.18 

illustrates the Solidworks design of the smart medicine carrier box.Only the authorized person is 

allowed to open the box provided that the password he enters on the keypad matches with the 

actual password.This standalone smart carrier box can be placed on the top of the robot base. Thus, 

the robot will be able to navigate indoors along with the smart carrier box and deliver medical  
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Figure 3.17: Top view of the fabricated robot base 

 

 

 

 

 

 

 

 

Figure 3.18: Bottom view of the fabricated robot base 

supplies and small-sized necessary things to the authorized persons. The design and fabrication of 

the smart medical supply carrier are shown in Figure 3.19 and Figure 3.20, respectively.  
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Figure 3.19: Design of smart medical supply carrier box in Solidworks 

 

 

 

 

 

 

 

 

 

Figure 3.20: Prototype and Testing of the password-protected smart carrier box 
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3.7 Conclusions 

 This chapter presents the complete design and fabrication for our six-wheeled robot. In 

addition, the fabrication process of the robot base and password-protected medical supply carrier 

have been discussed. In doing so, a detailed connection for the electrical and electronic components 

used to build the robot has been presented. The robot maneuver was tested using a basic navigation 

program implemented in the Arduino microcontroller.  
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CHAPTER 4 

KINEMATIC MODELING OF THE ROBOT 

4.1 Introduction 

 Developing mobile robots is a very complex task. Most robotics projects require time and 

cost to develop, which is why it is very important to have a generic mobile robotic simulation 

platform for the purpose of research and development. This chapter presents the research to 

develop a MATLAB/Simulink kinematic model of the proposed six-wheeled differential drive 

autonomous navigation robot with obstacle avoidance capability. Kinematics is the study of the 

mathematics that describes the geometric relationships that govern the system as well as deals with 

the control parameters and behavior of a system in state space (Prio & Rios, 2019). Understanding 

the kinematics of mobile robots is extremely important because they provide a platform for 

designing navigation controllers. They also provide constraints on the motion of the robot, which 

should be taken into account before doing any kind of navigation planning. 

 There are two primary types of navigation techniques: reactive control and planning 

control. Reactive control is a low-level control in which the robot navigates in the environment 

while avoiding collision with real-time obstacles using its sensory system. In planning control, the 

robot's motion profile is generated before the robot has even moved. This technique doesn't utilize 

real-time information from the robot's workspace (Prio & Rios, 2019).  

 In this research, we will be mainly focused on reactive control because it deals with the 

issues of real-time obstacle avoidance (Fu-guang, Peng, Xin-qian, & Hong-Jian, 2005). There are 

many reactive control techniques available in the literature, but the most attractive of them is the 



42 

 

 

 

Potential Field method. This method is attractive because of its simplicity and time efficiency (Fu-

guang et al., 2005). It has also been widely used by many researchers. 

4.2 Reasons behind Investigating Kinematic Modeling 

 Designing an intelligent controller is a must to build an autonomous mobile robot capable 

of performing complicated tasks (Prio & Rios, 2019). An intelligent controller aids the robot to 

move from one place to another while avoiding a collision. One of the notable steps to design a 

controller is to understand the mechanical behavior of mobile robots - kinematics and dynamics of 

the system (Siegwart, Nourbakhsh, & Scaramuzza, 2011). Our research explores the development 

of a model for the kinematics of the six-wheeled differential drive mobile robot, its links to the 

dynamics, and some considerations regarding more accurate modeling for energy optimization. 

The kinematic model will also be used to help in developing optimal use of energy while the robot 

is navigating and developing a hybrid control system for navigation of the robot. 

4.3 Background 

 Basic concepts of kinematic modeling and potential field method is discussed in this 

section.  

4.3.1 Kinematic Modeling 

 The kinematic modeling of mobile robots is a bottom-up process. Every single wheel 

contributes to the robot's overall motion and also imposes constraints. Therefore, the forces or the 

driving vectors on each wheel must be clearly defined. The control or driving vectors on a 

differential drive robot are the rotation speed of the DC motors, which are attached to the wheels. 
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The difference in speed of the DC motors allows the robot to perform various rotations and 

translations (Siegwart et al., 2011).  

 In the literature, a three-wheeled differential drive robot with two fixed standard rear 

wheels and a caster in the front was proposed, as illustrated in Figure 4.1 (Kim, Kim, & Systems, 

2007).  

  

  

 

 

 

                                              Figure 4.1: Basic wheeled mobile robot kinematic diagram 

 The drive wheels have a radius of length r. The wheels are at a distance 2b from each other. 

The axes X and Y define the arbitrary inertial base on the plane as a global frame of reference. The 

angular velocities of the right and left wheels are ωR and ωL, respectively. Initially, we assume that 

the speed of the DC motors and the wheels are exactly the same. It is also assumed that there are 

no obstacles in the surrounding. 

 The robot's position in the global frame of reference is represented by a vector of three 

elements called the pose of the robot. It is given by (Prio & Rios, 2019),  

                                                                        ξ = (
𝑥
𝑦
𝜃

)                                                               (4.1) 

Then the differential drive robot’s kinematics are defined by (Prio & Rios, 2019), 
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                                                          x = v cos θ                                                            (4.2) 

                                                                   y = v sin θ                                                              (4.3) 

                                                            θ = ω                                                                           (4.4) 

Here, θ is the heading of the robot, v is the linear velocity, and the ω is the rotational velocity of 

the robot. The v and ω relationship to the motor's speed can be described by (Prio & Rios, 2019), 

                                                                 v = 
𝑟(𝜔𝑅+𝜔𝐿 )

2
                                                              (4.5) 

                                                                          ω = 
𝑟(𝜔𝑅−𝜔𝐿)

2𝑏
                                                             (4.6) 

4.3.2 Potential Field Method 

 The potential field method is a low-level navigation technique in which the robot is 

represented by a point in a configuration space moving under the influence of a potential field that 

is created as a result of attraction by the goal point and repulsion by the obstacles (Yin, Yin, & 

Lin, 2009). The resultant of these forces determines the direction of motion for the robot. This 

force is used to calculate the driving vectors or the rotational velocities of the wheels of the robot. 

This resultant force is given by, 

                                                                           𝐹𝑎𝑡𝑡 =  𝐹𝑎𝑡𝑡 + 𝐹𝑟𝑒𝑝                                                 (4.7) 

Here, Fatt is the force applied by the goal on the robot, and the Frep is the force applied by the 

obstacle. Many functions have been developed in the literature to model both the forces. 
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4.4 Assumptions for Our Model 

 Both attractive and repelling potential field was assumed to be included in the potential 

field method for our work. The assumptions made for our potential field model are presented next. 

4.4.1 Assumptions Made for the Attractive Potential Field 

 We assumed that the goal point is a circle with a very small radius rg. The goal attracts the 

robot by a force that is directly proportional to d1, which is the Euclidean distance between the goal 

and the robot. If the position of the robot is (x,y), then the distance is given by (Prio & Rios, 2019), 

                                                       d1 = √(𝑥𝑔 − 𝑥)2 + (𝑦𝑔 − 𝑦)2                                            (4.8)  

 The forces here will be represented by how fast the robot changes its coordinates towards 

the goal. Considering the field has a spread of s, the following three assumptions were applied in 

order to generate the force field. 

                                                         If, d1<rg, Δx=Δy = 0                                                        (4.9) 

                       If, rg ≤ d1 ≤ s+r , Δx = α(d1-rg) cos θ , Δy = α (d1-rg) sin θ                             (4.10) 

                                            If, d1 > s+ rg, Δx = α s cos θ , Δy = α s sin θ                                        (4.11) 

 The first assumption implied that the robot is not moving when it is within the radius of 

the goal, and hence no force is applied. The second assumption implied that when the robot is 

outside the circle of goal but inside the spread of the field, the force by which the goal attracts the 

robot is proportional to the distance between the goal and the robot. The third assumption 

suggested that when the robot is outside the spread of the field, the force by which the goal attracts 

the robot is maximum and proportional to the spread s of the field. The parameter α is greater than 

zero, and it is used to define the strength of the attractive force field. The higher the value of α is, 
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the faster the robot goes towards the goal. The angle by which the robot moved towards the goal 

is given by (Prio & Rios, 2019), 

                                                                       θg = 𝑡𝑎𝑛−1 (
𝑦𝑔−𝑦

𝑥𝑔−𝑥
)                                                     (4.12) 

4.4.2 Assumptions Made for the Repelling Potential Field 

 The second assumption was that the obstacle, regardless of its shape, is enclosed in an 

imaginary circle of radius r0. This imaginary circle is a barrier that the robot cannot cross. Anytime 

the robot comes closer to the obstacle, it will be repelled. Considering the coordinates of the center 

of the obstacle as (x0,y0) and the position of the robot is (x,y), then the distance, d2 between the 

obstacle and robot is given by (Prio & Rios, 2019), 

               d2 = √(𝑥0 − 𝑥)2 + (𝑦0 − 𝑦)2                                                       (4.13) 

Again, considering the field has a spread of s, we had the following two assumptions (Prio 

& Rios, 2019). 

                                      If, d2<r0, Δx = -β d2 cos θ and Δy = -β d2 sin θ                                  (4.15) 

                                                             If, d2>r0, Δx = Δy = 0                                                  (4.16) 

 The first assumption implied that inside the circle of an obstacle, the repelling force by the 

obstacle on the robot sustains and points out from the center of the obstacle. The repulsion force 

here means how fast the robot moved away from the obstacle. β is always greater than zero and is 

used to scale the strength of the repulsive field. The second assumption meant that no repelling 

force is applied to the robot by the obstacle if the robot is away from the vicinity of the robot. The 
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angle by which the robot moved away from the obstacle due to repelling force is given by (Prio & 

Rios, 2019),  

                                                                        θ0 = 𝑡𝑎𝑛−1(
𝑦0−𝑦

𝑥0−𝑥
)                                                            (4.17) 

4.4.3 Assumptions Made for the Resultant Potential Field 

 Once both the attractive field and repulse field were calculated in terms of the rate of 

change of the coordinates, they were added together to get the resultant force field. This resultant 

field gave us the linear velocity v and the direction of the motion θ of the robot. 

                                                                v = √(𝑥0 + 𝑥𝑔)2 + (𝑦0 + 𝑦𝑔)2                                           (4.18) 

                                                                        θ = 𝑡𝑎𝑛−1(
𝑦0+𝑦𝑔

𝑥0+𝑥𝑔
)                                                            (4.19) 

4.5 MATLAB/Simulink Kinematic Model of the Robot 

 In order to develop a realistic model for the six-wheeled robotic platform, we followed the 

steps described next. 

Step 1: The kinematic modeling process started with measuring parameters of one of the DC 

motors. These measured parameters are responsible for energy loss in the motor. Such 

parameters for the motor are armature resistance, armature inductance, armature 

capacitance, the moment of inertia, and angular velocity. At first, the DC motor was 

modeled using the following two equations (Prio & Rios, 2019),  

                                                               V = Ra Ia + Kb ωdc                                                       (4.20) 

                                                           J ωdc + F v ωdc = Kt I                                                      (4.21) 
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Here V is the terminal voltage, Ra is the armature resistance, Ia is the armature current, Kb 

is the back emf constant, and ωdc is the angular velocity of the motor, J is the moment of 

inertia the DC motor, and Fv is the viscous damping coefficient. To measure the armature 

resistance, a locked rotor test was conducted. In this test, the DC motor was kept locked 

while applying directly to the motor terminals. We measured the current withdrawn by the 

DC motor while the rotor was still in the locked state. Because of the locking, there was no 

back emf. Hence, the value of the back emf constant, Kb became zero. Thus, equation (4.20) 

was reduced to the following equation.  

                                                                                      Ra = 
𝑉

𝐼𝑎
                                                                  (4.22) 

Therefore, the armature resistance of the motor was measured using equation (4.22). 

Afterward, we took the help of an LCR meter to measure armature inductance and armature 

capacitance. The armature resistance, armature inductance, armature capacitance we 

recorded for the DC motor were 3.3994 Ω, 10.19 mH, and 19.80 nF, respectively. 

Step 2: The next step in the process was to model equations (4.2), (4.3), (4.4), (4.5), (4.6) to obtain 

the outputs of the plant: x, y, and θ. This step completed the modeling of the plant. 

Step 3: The final step was to implement the navigation controller to avoid the obstacles. For that 

purpose, we used MATLAB Function block to implement the logic presented by the 

assumptions for the potential field method. The outputs of this block were the linear 

velocity, v, and the direction of motion, θ of the robot. These two parameters were used by 

equations (4.5) and (4.6) to generate the control commands. Figure 4.2 shows the complete 

kinematic model for the proposed six-wheeled differential drive robot in 

MATLAB/Simulink. 
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Figure 4.2: Kinematic model of the six-wheeled robot 
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4.6 Simulation Results and Discussion 

The input to the model was the position of the goal. It showed the response on the robot's 

position when a rectangular-shaped obstacle is inserted into the kinematic model as input. The 

result of the obstacle avoidance is shown in Figure 4.3. Therefore, a smooth trajectory was 

achieved for the robot from the kinematic modeling to avoid obstacles, and the obstacle avoidance 

capability of the robot was observed in the presence of a rectangular shaped obstacle. 

 

 

 

 

 

Figure 4.3: Simulation results of obstacle avoidance by the robot 

4.7 Potential Utilization of the Kinematic Modeling in Energy Optimization of the Robot 

 Energy Modeling in mobile robots is the process of developing an equation that combines 

all the energy loss components in a robot system. Energy losses in a robot occur due to DC motors, 

gearheads of motors, kinetic energy, the friction of the wheels, and electronic components (Wahab 

et al., 2015). After measuring all the individual energy loss components of a robot system, those 

can be summed together to get the complete energy model. The energy equation to develop energy 

modeling is given by the following equation (Wahab et al., 2015). 

                                            Etot = Earmature + Egearhead + EKE + Efriction + Eelect                               (4.23) 
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Here, Etot is the overall energy consumption in the robot system, Earmature is the energy loss due to 

DC motor, Egearhead is the energy loss due to gearheads of the motors, EKE is the kinetic energy loss, 

Efriction is energy loss due to friction of the wheel, and Eelect is the energy loss due to onboard 

electronics.  

 In the process of developing kinematic modeling of the six-wheeled robot, we calculated 

the energy losses due to DC motors in terms of loss calculation of armature resistance, armature 

inductance, and armature capacitance. The kinetic energy losses were also calculated as we 

measured the linear and angular velocity of the wheels of the robot. The energy model or equation 

we developed for the energy modeling of the six-wheeled robot is the sum of DC motor energy 

loss and kinetic energy loss, while ignoring the energy loss due to the gearhead of the motor, 

energy loss due to friction, and energy loss due to robot onboard electronics. The energy model 

was used in the development of the kinematic model for the six-wheeled robot. The energy 

equation we developed for the six-wheeled robot can be utilized as a cost function to optimize the 

consumption in the robot. The robot will follow the optimal velocity profile brought forth by the 

kinematic model of the six-wheeled robot while moving from an initial point to a final location. 

This will result in the improved energy efficiency of the robot.                                                    

The kinetic energy losses are presented in Fig 4.4. It can be seen that we considered the 

kinetic energy losses for the whole operation time of the robot. The reason for that is the robot is 

functioning in an open-loop, and we don't have a feedback control in place to compensate for the 

sudden variation in speed, which could be caused by the unevenness of the surface and slipping. 

The open-loop was chosen to capture the natural response of the robot system. 
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From Figure 4.4, it is evident that when the robot was accelerating between 0 to 4.2 

seconds, the kinetic energy of the robot system was increasing. When the robot reached a 

somewhat steady velocity, there was no further increase in the system's energy. The dips shown in 

uniform speed phase between 4.2 and 8.2 sec in the figure are due to the sudden speed changes 

caused by the minute deviations of the robot from the straight path. 

The amount of kinetic energy gain is around 1.2J. This number makes a lot of sense because 

the test robot is going with a fairly slow linear speed of 0.58ms-1. We considered only a straight 

path for the robot because it is the dominant travel path. Even when there is a turn involved, the 

time for which the robot will be rotating to make the turn is much smaller than the time it will 

spend in a straight line. So, the translational kinetic energy is preeminent compared to the rotational 

component, and it is very safe to just select a straight path in order to make the measurement easy. 

4.8 Conclusions 

 This chapter of the thesis presents the kinematic modeling of the six-wheeled differential 

drive mobile robot on the basis of the potential field method to avoid obstacles. The position of 

the robot in the simulation was tested from an initial point to a final point in the presence of a 

rectangular shaped obstacle, and obstacle avoidance by the robot was observed. The entire 

kinematic modeling and testing were conducted using MATLAB Simulation. 
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Figure 4.4: Kinetic energy losses of the Robot (Wahab et al., 2015) 

 

 

 

 

 

 

 

 

 

 

  

   



54 

 

 

 

CHAPTER 5 

IMPLEMENTATION OF ROS AND SLAM ALGORITHM ON TURTLEBOT 2 

5.1 Introduction 

 Human-robot interaction has become one of the 'buzzwords' in the ever-widening field of 

robotics (Mishra & Javed, 2018). There are many indoor areas like hospitals, homes, warehouses, 

hotels, etc. where humans can be substituted by a minimal error robotic platform to do certain tasks 

(Mishra & Javed, 2018). The use of the autonomous wheeled mobile robotic platform for this 

purpose is also becoming ubiquitous. But, the robotic platforms, which are used to replace human 

activities, must have a proper navigation system and path planning algorithm. Proper navigation 

in an unknown indoor environment by an autonomous mobile robot is only possible when the robot 

is capable of localizing itself in the environment and creating a map of the environment 

simultaneously. Hence, the Simultaneous Localization and Mapping (SLAM) algorithm has come 

into the picture with a solution. By using SLAM techniques, a robotic platform localizes itself in 

the environment while creating a map of the same environment. Therefore, the combination of a 

SLAM algorithm and a low-cost Microsoft XBOX 360 Kinect depth sensor offers an effective 

solution for proper navigation (Mishra & Javed, 2018). Hence, we opt to implement the SLAM 

algorithm on our six-wheeled robot. But before doing that, we tested the SLAM algorithm on a 

popular robotic platform called the TurtleBot 2, because this is a smaller and lighter platform that 

is easier to move and test indoors. This chapter discusses our implementation of the SLAM 

algorithm on the TurtleBot 2 robotic platform. Since the SLAM algorithm is built on the Robot 

Operating System (ROS), the concept of ROS is also described in the chapter.   
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5.2 Building Blocks for the TurtleBot 2 Navigation 

 There are five major building blocks used to prepare the TurtleBot 2 functioning for indoor 

navigation and mapping. Subsection 5.2.1 describes the Robot Operating System (ROS) briefly 

while subsections 5.2.2 and 5.2.3 give some information about TurtleBot 2 and client PC, 

respectively. Finally, subsections 5.2.4 and 5.2.5 briefly sketch the workstation PC and networking 

technique, respectively. 

5.2.1 Robot Operating System (ROS)  

 ROS is a Linux distribution based open-source implementation for a public operated 

robotics system (Hamzeh & Elnagar, 2015). ROS operates by creating an ecosystem among a ROS 

node, a ROS master, and a ROS topic. ROS nodes are executable programs which are registered 

to a ROS master (Hamzeh & Elnagar, 2015). Nodes become capable of knowing each other's 

existence with the help of a ROS master (Mishra & Javed, 2018). Nodes need to communicate 

among themselves during runtime. They don't communicate directly; instead, they maintain the 

communication indirectly via publishing or subscribing messages to ROS topics (Mishra & Javed, 

2018).  Messages like odometry information, control commands, video streams or images, or any 

kind of information are passed among two or more nodes (Hamzeh & Elnagar, 2015). The 

communication process among nodes through ROS topics is kind of a decoupled system in which 

a node in need of data has to subscribe to the relevant topic and a node that produces data publish 

messages to the topic (Mishra & Javed, 2018). This decoupled system aids the robot in performing 

different functions without hampering each other (Mishra & Javed, 2018). Therefore, in case, one 

of the functions of the robot crashes, the entire robot doesn't stop functioning (Mishra & Javed, 

2018). 
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 There are many advantages to using ROS. Since ROS is an open-source implementation, 

the plugin source codes and libraries are easily accessible and available. Furthermore, ROS codes 

are reusable, which allows the researcher to proceed more from the already existing codes (Mishra 

& Javed, 2018). ROS provides hardware abstractions and low-level device controls to control the 

connected devices and also leverages algorithms implemented in projects to provide a navigation 

system (Hamzeh & Elnagar, 2015). Instead of typing command lines to execute each node, ROS 

makes the whole process easier by introducing 'packaged' functionality (Hamzeh & Elnagar, 

2015). The ROS packaged functionality reads an XML description of a graph and represents the 

graph on the cluster, optionally on specific hosts (Hamzeh & Elnagar, 2015). 

 The most important feature of ROS used in the mapping of a robot is RViz. RViz is a 

visualization tool which instantiates a graphical user interface to view images, point clouds, 

geometric primitives, sensor data, robot poses and trajectories, robot models, environmental maps, 

etc. (Hamzeh & Elnagar, 2015; Mishra & Javed, 2018). 

 The first ROS distribution version named 'ROS Box Turtle' was released in March 2010 

(Hamzeh & Elnagar, 2015). Since then, many popular versions of ROS distributions like ROS 

Indigo, ROS Kinetic, ROS Melodic, etc. have been released. Since a TurtleBot 2 is used for our 

project and most of the libraries of ROS Indigo support and sync with the TurtleBot 2, using ROS 

Indigo for our project was an obvious choice. 

5.2.2 TurtleBot 2  

 TurtleBot was first released in the market by Willow Garage back in 2010 (Aagela, Al-

Nesf, & Holmes, 2017). It is an improved version of TurtleBot (Bergeon, Křivánek, & Motsch, 

2019; Hamzeh & Elnagar, 2015; Hsu & Huang, 2016). The wheels, battery, integrated gyroscope, 
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wheel drop sensor, cliff sensor, and wheel encoders are housed in the Kobuki base (Hamzeh & 

Elnagar, 2015; Lee, Salam, Ibrahim, Rahni, & Mohamed, 2015). The Microsoft XBOX 360 Kinect 

sensor is mounted on the top of the Kobuki base, which provides the range of data and depth 

information (Hamzeh & Elnagar, 2015; Kondo, Ohba, & Kashiwase, 2016; Lee et al., 2015). The 

normal operating range for the Kinect sensor and the maximum speed of TurtleBot 2 are 0.5 to 3.5 

meter and 50 cm/s, respectively (Hamzeh & Elnagar, 2015; Lee et al., 2015). Both the Kobuki 

base and Kinect camera are powered up by a lithium-ion battery housed in the Kobuki base 

(Hamzeh & Elnagar, 2015). TurtleBot 2 is shown in Figure 5.1. 

5.2.3 Client PC 

 Client PC is connected to the robot and Kinect sensor. Linux distribution Ubuntu and ROS 

are installed on the client PC. The client PC receives depth information, video, and image stream 

from the Kinect sensor. It also collects odometry data from the wheel encoders of the TurtleBot 

(Hamzeh & Elnagar, 2015).  

 The depth_to_laserscan, map server, and the gmapping application are run on the client 

PC. The depth_to_laserscan application converts the depth information into laser scan data, which 

the G-Mapping application processes to build a grid map. Later, the map server application collects 

the built grid map from the G-Mapping application and dispatches a copy of the map to the 

workstation PC (Hamzeh & Elnagar, 2015). 
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Figure 5.1: TurtleBot 2 (Source: TurtleBot) 

5.2.4 Workstation PC 

 Workstation PC is a remote PC used to control the Client PC, to view the map and video 

stream, and to save the grid map. Ubuntu 14.04 and ROS Indigo is installed on the workstation PC 

(Hamzeh & Elnagar, 2015). Applications like ROS Core, teleoperation, RViz, and map saver are 

run on the workstation PC.  

 The ROS Master node operates using the ROS Core application while the robot's 

movement is controlled from the workstation PC. The user can visualize the current configuration 

of the robot on a virtual model utilizing the RViz application (Hamzeh & Elnagar, 2015). The 

sensor values are displayed on the RViz interface (Hamzeh & Elnagar, 2015). Fig. 5.2 illustrates 

an RViz interface. Finally, the map saver application saves the latest grid map on the workstation 

PC (Hamzeh & Elnagar, 2015). 
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Figure 5.2: Sample of RViz interface 

5.2.5 Network Technique 

 Both the client PC and the workstation PC are connected under the same WiFi. Any TCP/IP 

address works for ROS till the nodes have access to the ROS master (Hamzeh & Elnagar, 2015). 

Poor bandwidth may cause the robot to be disconnected or operating without having any video 

stream (Hamzeh & Elnagar, 2015). Poor latency causes the failure of teleoperation, which in turn, 

features an uncontrolled robot hitting the obstacle (Hamzeh & Elnagar, 2015). 

5.3 Simultaneous Localization and Mapping (SLAM) 

 In order to navigate properly in an unknown environment, an autonomous robot must 

localize itself within the environment and create a map of the environment simultaneously (Mishra 

& Javed, 2018). Simultaneous Localization and Mapping (SLAM) algorithm paves the way to do 

both simultaneously (Hamzeh & Elnagar, 2015; Hsu & Huang, 2016; Syaqur et al., 2018). 

 Map generation is the first and most important step before the robot can navigate itself in 

a precise indoor environment (Syaqur et al., 2018). Many kinds of SLAM algorithms like G-
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Mapping, Hector-SLAM, Core-SLAM, etc. are deployed to create maps (Syaqur et al., 2018). 

Depending upon the type of sensor used and the characteristics of the environment itself, each of 

these algorithms shows some advantages and drawbacks (Syaqur et al., 2018). G-Mapping has 

been selected in our project as it provides the best time and size-independent solution for TurtleBot 

2 (Mishra & Javed, 2018). 

 A map is required for localization, while a pose estimation is necessary for mapping (Wu, 

Abrahantes, & Edgington, 2016). An approximation is used to process the SLAM algorithm 

(Hamzeh & Elnagar, 2015). ROS comes with several packages for localization and automatic path 

optimization for G-Mapping of the SLAM algorithm (Hamzeh & Elnagar, 2015). 

 In the G-Mapping process, the Kinect sensor collects depth information and translates it in 

real-time to laser format data (Hamzeh & Elnagar, 2015). This initial data starts generating an 

initial local grid map and initial pose of the robot in each time frame for a limited region (Mishra 

& Javed, 2018). The latest laser scan data is used to detect obstacles in the path of the robot. The 

G-Mapping process generates a grid map in the Field of View (FOV) of the Kinect (Hamzeh & 

Elnagar, 2015). 

 Along with the odometry information received from the Kobuki base, the generated grid 

map is saved (Hamzeh & Elnagar, 2015). The estimation of the pose of the robot is based upon the 

above-received data (Hamzeh & Elnagar, 2015). The pose of the robot is evaluated as a particle 

within the previously built local grid map. Afterward, the local grid map itself is added to the 

global map with the help of a scan matching algorithm (Hamzeh & Elnagar, 2015). 
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5.4 Experimental Setup  

 The laptop, placed on the top of TurtleBot 2, was used as both client and workstation PC 

for the mapping in our project as shown in Figure 5.3. The laptop with Ubuntu 14.04 and ROS 

Indigo installed was connected to both the Microsoft XBOX 360 Kinect sensor and the TurtleBot 

2. The power circuit for both the Kobuki base and the Kinect sensor was housed in the Kobuki 

base itself. The purpose of the experimental setup was to move the TurtleBot 2 from an initial 

position to a final position inside the robotics lab, get the map of the indoor environment, and make 

the TurtleBot 2 capable of proper navigation. 

 

 

 

 

 

 

Figure 5.3: Experimental setup for TurtleBot 2 

5.5 Methodology 

We utilized the gmapping technique of the SLAM algorithm to bring forth the map of the 

indoor environment. The indoor movement of the TurtleBot 2 navigation, as well as the mapping 

of the environment, were set to be displayed on the laptop through the RViz interface. TurtleBot 2 

was controlled and operated through the keyboard manually by initiating a teleoperation 

application. 
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Figure 5.4 shows the flowchart for the mapping algorithm we implemented on the 

TurtleBot 2. At first, we gave the command on the laptop to move the Kobuki base. Then the 

movement of the Kobuki base was controlled by launching the teleoperating application on the 

laptop. Using the teleoperation application, we could maneuver the TurtleBot 2 by using the 

keyboard. Finally, we tried to launch the gmapping technique of the SLAM algorithm. According 

to our algorithm, the successful launching of gmapping would generate a map of the indoor 

environment, and the map could be saved in the map server application. 

 

 

 

 

 

 

 

 

 

 

Figure 5.4: Flowchart for our mapping algorithm 



63 

 

 

 

 A successful SLAM localization which follows our mapping algorithm will collect the 

odometry data and laser data from the Internal Measurement Unit (IMU) and laser sensor of 

TurtleBot 2, respectively, and localize itself in the environment. Each SLAM self-localization 

record is updated in the map server application. The flowchart for the SLAM self-localization is 

shown in Figure 5.5. 

Figure 5.5: Flowchart for SLAM self-localization 

5.6 Experimental Results  

 As we maneuvered the TurtleBot 2 in real life by initiating the commands to launch the 

Kobuki base and teleoperation application, it also moved in the RViz environment simultaneously. 

Figure 5.6 illustrates the window for our successfully launched of teleoperation application. 

Meanwhile, we began the gmapping technique and Rviz applications in the laptop by prompting 

their corresponding command lines. Figure 5.7 shows the robot in the RViz environment. Figure 
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5.8 depicts the robot's movement in real life while the maneuver of the robot in RViz environment 

is illustrated in Figure 5.9. 

Figure 5.6: Successful launching of teleoperation  

 

 

Figure 5.7: TurtleBot 2 in the RViz navigation environment 
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 Although the maneuver of the TurtleBot was made possible inside the robotics lab, the map 

of the environment hadn't been received due to the map error and camera error as shown in Figure 

5.10 and Figure 5.11, respectively. The map error and camera error were retrieved from the RViz 

window and gmapping window, respectively.  

5.7 Discussions 

 The errors suggest that the gmapping process and Kinect camera were trying to get the 

map, but those failed as the device timed out. We followed several different strategies to resolve 

the errors. We installed the Kinect driver again and checked the USB connection of the Kinect 

sensor. But none of these processes could solve the issues. Later, we scrutinized the Kinect image 

model, nodes and topics of the depth image, and debugging trees. But our investigation failed to 

generate the map of the indoor environment. Conclusively, we could initiate ROS and SLAM 

algorithms and successfully implement these to maneuver the TurtleBot 2 through teleoperation 

but failed to generate the map of the indoor environment of the robotics lab. 

5.8 Conclusions 

 We could successfully implement ROS and SLAM algorithms on TurtleBot 2 to maneuver 

it but were unable to get a map of the indoor environment, which is essential for proper navigation. 

Therefore, instead of implementing the ROS and SLAM algorithms on our six-wheeled robot, we 

simulated the six-wheeled robot in a simulation environment. The description of the simulation is 

given in the next chapter. 
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(a)Initial position of the TurtleBot 2 in                       (b)Final Position of the TurtleBot 2 in 

real-time environment                                                real-time environment 

Figure 5.8: TurtleBot 2 maneuver in real-time environment 

(a)Initial position of the TurtleBot 2 in                         (b)Final Position of the TurtleBot 2 in 

RViz environment                                                          RViz environment 

Figure 5.9: TurtleBot 2 maneuvers in RViz environment 

TurtleBot 2  
TurtleBot 2 
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Figure 5.10: Map error 

 

 

 

 

 

 

 

 

 

 

                    

Figure 5.11: Camera error 
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CHAPTER 6   

NAVIGATION OF THE SIX-WHEELED ROBOT IN SIMULATION ENVIRONMENT 

6.1 Introduction 

 The mapping, path planning, and exploration in an unknown space are necessary for an 

autonomous robot to navigate properly (Scott & Yu, 2009). Our plan was to map the indoor 

environment of the hospital by implementing ROS and SLAM algorithms for our six-wheeled 

robot. ROS and SLAM algorithms were tested for mapping the indoor environment before 

implementing these techniques on the six-wheeled robot. A robotic platform named TurtleBot 2 

was picked in this testing purpose. Although we maneuvered TurtleBot 2 inside the indoor 

environment, we couldn't retrieve the map of the surroundings due to some errors which we failed 

to solve. Hence, implementing ROS and SLAM algorithms on the six-wheeled robot to get a map 

of the indoor environment became ineffectual. Therefore, we opted to create a simulation model 

of the six-wheeled robot, develop an obstacle avoidance controller for the, and navigate the 

modeled six-wheeled in the simulation environment. The proposed simulation environment 

resembled the indoor environment of the hospital. Webot simulator software was used for the 

entire simulation work. We also maneuvered the six-wheeled differential drive robot in different 

directions in real life alongside developing a proper navigation scheme in the simulation 

environment. Figure 6.1 shows the navigation of the six-wheeled robot in a real-time environment.  
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        (a)Robot initial position              (b) Robot forward movement       (c) Robot backward movement 

 

 

 

                                    (d) Robot right turn                           (e) Robot left turn 

Figure 6.1: Navigation of the six-wheeled robot in a real-time environment 

6.2 Project Development Process in Webot Simulator 

 Webot simulator, a professional mobile robotics simulation package distributed by 

Cyberbotics, is very popular for the purpose of research and education in universities (Scott & Yu, 

2009).  It is a framework used to simulate, model, and program robots (Nandi, 2013). It provides 

3D visualization of simulation environments and utilizes the Open Dynamics Engine (ODE) for 

rigid body dynamics and collision detection (Scott & Yu, 2009). The development process of a 

robotic project that uses the software Webot normally runs in three stages (Obdržálek, 2016). 
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 The first stage is the phase of modeling, which consists of the design of the physical robot's 

body, including their sensors and actuators and the robot's physical environment. The model of 

mobile robots can be constructed from pre-built building blocks. Webot provides flexibility to 

change the properties like color, shape, sensors, actuators, etc. of the pre-built building blocks. The 

environment of the robots is created in the same way, by filling the space objects, such as walls, 

obstacles, etc. Values of parameters such as the distribution of mass, friction, reflection 

parameters, etc. can be modified in the process of creating an object. As soon as virtual robots and 

virtual environments are created, it is possible to go to the second stage (Obdržálek, 2016). 

The second stage is the phase of programming. We can program the behavior of each robot 

with the help of programming languages such as C, C++, Java, Python, or MATLAB (Obdržálek, 

2016).  

The third stage is the simulation phase. It illustrates whether the created program behaves 

according to our ideas in the simulation environment (Obdržálek, 2016). 

6.3 Simulation Environment in Webot  

 Figure 6.2 shows an example of the Webot simulation environment. It is composed of 

several parts. The virtual 3D scene allows us to track the robot into the virtual world and allows 

us to interact with them. 3D description of the properties of the robots and their environment is 

used to create this virtual world. Virtual Reality Modeling Language (VRML) is used as this 

description. Though the appearance of the world and the robots is described by the VRML tree, it 

does not contain code that ensures the behavior of robots. Behavior is implemented through a 

controller). The controller is a computer program compiled by C, C++, Java, Python or MATLAB 

programming language. It is used to load the sensory data and to issue instructions to the robot 
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actuators. The last two components constituting the Webot Graphical User Interface (GUI) are 

Text Editor and Console. The Text Editor is designed to edit the source code of the controller. The 

console is used to display the compilation results and the output of the robot's controller 

(Obdržálek, 2016). 

6.4 Simulation Setup for our Six-Wheeled Robot 

 We created a simulation setup for the six-wheeled robot in which the robot navigates and 

Figure 6.2: An example of Webot simulation environment 

avoids obstacles. We needed to model both the environment and the robot in the setup.  

 The environmental setup was started by creating a new world. A basic checkered floor 

appeared with basic world settings. The checkered floor was surrounded by the walls. We created 

the walls by adjusting the 'Geometry' and 'Appearance' nodes. We created four obstacles inside the 

environment. Each obstacle resembled the small rooms or pillars of the hospital. To create each 
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obstacle, a 'Solid' node was added, and we adjusted the 'children’ node inside it. ‘Bounding Object’ 

node and ‘Physics’ node were used to bind each object (Jeffril & Sariff, 2013). 

 A six-wheeled mobile robot model with five distance sensors mounted in front of it was 

created. A 180-degree Lidar sensor was also put on the top of the robot. These sensors are used for 

data collection and to detect obstacles within the environment. The robot controller is programmed 

using C++. Figure 6.3 illustrates the complete simulation setup for the navigation of the robot. 

Figure 6.3: Complete simulation environment for the six-wheeled robot 

6.5 Simulation Results and Discussions 

 In the hospital environment, the robot will sometimes need to move through a narrow 

passage. Figure 6.4 shows the six-wheeled robot moving through the narrow space between two 

obstacles. This validates the model is capable of navigating properly through the limited space.  
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 The robot is also capable of avoiding static obstacles and walls inside the hospital 

environment. Figure 6.5 and Figure 6.6 exhibit the robot avoiding the wall and the obstacle, 

respectively. Hence, the simulated robot model was validated to move inside the hospital indoor 

environment while avoiding obstacles. 

6.6 Conclusions 

 A hospital-like environment and a six-wheeled robot model were created using Webot 

robot simulator. The navigation controller programmed for the robot model was able to avoid static 

obstacles and walls. The robot model could also move through the narrow passage, which 

resembles the narrow passages of hospitals. 

  

  

 

 

 

 

 

                           Figure 6.4: Six-wheeled robot moving through narrow passage 
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(a) Position 1                                                        (b) Position 2 

                                                             

 

 

 

 

(c)Position 3 

Figure 6.5: Six-wheeled robot avoiding walls 

  

 

 

 

 

 

(a) Position 1                                                                 (b) Position 2 

Figure 6.6: Six-wheeled robot avoiding static obstacles 

 



75 

 

 

 

CHAPTER 7 

CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK 

 The goal of this research project was to develop the design and navigation technique of a 

six-wheeled differential drive robot from scratch. The robot was intended to carry medical supplies 

and hand over the supplies to the patients and authorized medical personnel.  

In the first step, we designed a six-wheeled differential drive robot that has compartments 

to keep and deliver medical supplies and patient records to authorized personnel while navigating 

in an indoor environment. The robot base and medical supply carrying compartment were built in 

real life. The maneuver of the robot base was tested in real life.  

Again, energy consumption plays an important role in the operation of a robot. Sometimes, 

even an advanced intelligent robot can’t operate for a longer period of time. Hence, investigating 

the energy or kinematic modeling comes into importance of having a better energy optimization 

of a robot. Therefore, we developed a kinematic model for our six-wheeled robot using Simulink 

and showed that it is avoiding obstacles using the potential field method.  

Mapping is one of the most important required capabilities that a mobile robot needs to 

have for indoor navigation. We investigated ROS and SLAM algorithms to establish a mapping 

scheme. These ROS and SLAM algorithms were implemented on a TurtleBot 2 before applying 

these to the six-wheeled robot. We faced difficulty with generating a map for the indoor 

environment of the robotics lab using ROS and SLAM algorithms. Therefore, a hospital-like 

indoor environment and a six-wheeled robot model were created in Webot simulator. The robot 

model was successful in avoiding obstacles and walls and maneuvered through limited space in 

the simulation. Hence, the robot model attained proper navigation techniques to move inside the 

hospital environment.  
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 In our thesis, the kinematic modeling of the robot was simulated utilizing an energy cost 

function developed on the basis of energy losses due to DC motors and kinetic energy. But the 

developed energy cost function is incomplete because it ignores energy consumption elements 

such as the gear mechanism attached to the DC motors, onboard electronics, friction between 

ground and wheels of the robot, and losses due accelerations and deceleration. Future researchers 

may dig deep to develop an energy cost function adding the above-mentioned energy consumption 

elements. This cost function or energy model can lead the way to establish a more accurate 

kinematic modeling for the six-wheeled robot. 

We may also use this improved energy cost function to have better optimization of the 

energy consumption in the six-wheeled robot. In the process, optimization techniques such as 

genetic algorithm, Lagrange Multiplier method, etc. can be utilized to develop a more accurate 

optimal velocity profile from the improved kinematic model. The robot will follow that profile 

while moving from a starting point to a goal point, and as a result, the energy efficiency of the 

robot will be improved. 

In the future, ROS and SLAM algorithms can be investigated more deeply to get a map of 

the environment. This map will help the six-wheeled differential drive robot to move from one 

position to another position in real life. In the process, the robot will be able to attain an effective 

navigation technique in real life alongside the simulation environment. Besides, MATLAB and 

lidar sensors can also be utilized to have a proper navigation algorithm for the robot in real life. In 

this process, a probabilistic grid map can be generated by maneuvering the robot first in the indoor 

environment of the hospital using the SLAM algorithm. The data of the map are stored as a 3D 

point cloud. MATLAB robotics system toolbox can be used to extract that 3D lidar scanned map 
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data. Finally, proper path planning and path following algorithms can be implemented to make the 

robot move from one point to another along a specific path inside the indoor map. 
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