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PHASE-LOCKED LOOP CONTROL IN LOW-INERTIA GRID-CONNECTED

VOLTAGE-SOURCE CONVERTERS

by

IFECHUKWUDE ODOGWU

(Under the Direction of Masoud Davari)

ABSTRACT

As the integration of renewable energy on the grid increases, the number of voltage-source

converters (VSC) installed also does. VSC controls both switch turn-on and turn-off, al-

lowing a dc voltage source to be switched between phases. For the converter to accurately

synchronize with the grid, a phase-locked loop (PLL) is used for the frequency measure-

ments of the grid. However, the implementation of PLL with measurement delay introduces

harmonics, noise, high frequency, and voltage oscillation to the system due to its dynamics.

The dynamics introduced to the grid can be ignored under stiff grid conditions, but power

from renewable sources decreases the grid inertia creating a weak-grid condition. Older

grids accommodate this by using generators that compensate for the rate of change of fre-

quency (RoCoF). Modern grids have less generator to accommodate the RoCoF, so there

is a desideratum to implore a robust controller that responds quickly to the RoCoF, distur-

bance/distortion rejection, and noise immunity to the grid. In recent literature, the effect

of the PLL dynamics on a weak grid has been of great concern because of its unmodeled

dynamics that destabilize the converter under the weak-grid condition. This thesis proposes

showing the impact of the weak-grid on the VSC as the dynamic of the grid changes. It

also provides remedies to the grid instability and high-power injection levels. The detailed



PLL dynamics model, including the ac-bus voltage dynamics with constant frequency, is

developed and linearized. Even at a fixed frequency, there are various factors that play a 

role in grid instability, and this tremendously affects the ability of the VSC to control the

grid efficiently. The effect of the PLL gain under the weak-grid condition is analyzed.

INDEX WORDS: Phase-locked loop dynamics, Low-inertia grid, Voltage-source 
converter (VSC), Weak grid.
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CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

With society looking to reduce the carbon footprint generated by the consumption

of fossil fuels and the release of CO2 emissions, there has been a surge in the discovery

of alternative means to supply clean, sustainable, and reliable power to the grid. Modern

grids thereby have higher penetration from renewable energy sources to accommodate the

demand for power and CO2 emission reduction.

The distributed generation microgrid is a topic of great interest because it provides a

solution to the environmental emission, asynchronous interconnection, and diversifies the

utility of the grid by providing dc [1]–[4], ac [5], and hybrid ac/dc [6]–[8] power control

and utilization. Examples of the diversity it brings to the grid is its provision of direct power

supply to dc loads such as electric vehicles, communication, and data centers, along with

light-emitting diodes. Power quality factors could be improved, and fewer transformers

are needed in the utility grid, improving the cost, size, and efficiency of power transfer

[9]–[14].

All these advancements are made possible due to power electronics. One significant

power electronic that enables the interconnection of the dc and ac grids, is the VSC. Al-

though these benefits are exciting, they also provide some challenges to the existing grid

structure, which is further discussed [13], [14]. The problem with this approach is that

as more power from renewable energy resources are integrated, there is evidence that the

stability is compromised due to the low-inertia of the grid [15], [16].

One of the significant problems to grid integrity is the rate of change of frequency

(RoCoF). RoCoF disturbance caused by generator trip, load rejection, and short circuit

fault is usually accommodated by rotational inertia of synchronous generators (SG) in older
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grids [17]. The dynamics of the synchronous generator are designed to absorb energy

from the grid when there is an increase in frequency and transient grid active power. It

stores this excess power as kinetic energy by increasing the SG speed [18]. When there

is a shortage of active power and a fall in grid frequency, the SG compensates for this by

decreasing the rotor speed as the kinetic energy is released to the grid to provide stability

[18]. Modern power systems have low mechanical inertia to combat the RoCoF, so there is

more probability for instability [19].

The voltage-source converter (VSC) plays an essential role in both transmission and

distribution of power, by being responsible for the efficient transfer of power between the ac

and dc networks. The VSC connected grid can then separate into the ac and dc sides. Due

to grid duality, the dc energy source, such as the solar and wind farm along with dc loads

such as the electric car, communication, and data center, can be connected to the dc side of

the grid [14]–[20].

VSC control operation performance under unbalanced and distorted grid conditions

is based on its fast, reliable, and accurate synchronization. Synchronization can either be

open-loop or closed-loop synchronization [21]. The synchronization method dictates dis-

tortion rejection, frequency adaptivity, structural simplicity, and phase-angle adaptivity to

guarantee a high-quality operation of the VSC. Open-loop synchronization is built on the

knowledge that voltages are in-phase and orthogonal to the grid voltage [22]. It directly

estimates the magnitude, phase, and frequency of an incoming signal. An example of the

open-loop synchronization is the low-pass filtering (LPF) technique and the space vector

filtering (SVF) technique. The drawback to this method is its sensitivity deviation of the

grid frequency, its lack of precise adjustment, and high sensitivity to noise and harmonics.

The closed-loop synchronization method is a more common approach because of its accu-

racy. It regulates an error signal to zero due to its feedback loop. A well-known closed-loop

method is the phase-locked loop (PLL) system [22]–[24].
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1.2 MOTIVATION

RoCoF is just one of the factors that affect grid stability and performance. Another

factor that contributes to instability is the grid impedance to the VSC. A couple of fac-

tors lead to an increase in grid impedance, but one of such is the control scheme selected

together with the PLL implemented.

The PLL dictates the location of poles and zeros that manipulates the open-loop output

impedance. The PLL parameters that govern this location are the loop filter gains, Kp, and

Ki. Short circuit ratio (SCR) is a tool used to categorize grid impedance between a strong

or weak grid. The larger the values of SCR, the stronger the grid stability. A reliable

grid is ideal for grid performance and stability. The SCR values work together with the

PLL parameters to ensure VSC stability. Higher SCR values are resilient to PLL gains,

but lower values are vulnerable to substantial PLL gains. The relationship between PLL

gains to specific SCR values plays a significant role in VSC and the entire grid stability.

A large grid impedance would undermine the output impedance of the VSC and control

performance. This relationship would be analyzed in this work because it is relevant to

control the performance of distributed generation.

This work is of high relevance when sizeable renewable energy sources are connected

to a preexisting grid to increase power supply. Wind and solar farms are located away from

the loads, meaning they have to be connected to the preexisting grid to serve their purpose.

The control scheme and facilities of these grids may not accommodate this change. Fa-

cilities would have to be upgraded, costing time and money. Understanding the condition

of a grid also enables the engineers to decide either between a line-commutated converter

(LCC) or a VSC.
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1.3 OBJECTIVE AND SCOPE

This study would improve the design capability of the distribution generation (DG)

power electronics to counter the change in grid impedance, transitioning to various steady-

state to connect and reconnect to the system without disrupting the power supply.

1.4 THESIS ORGANIZATION

The remainder of the thesis is organized as follows. Chapter 2 presents the litera-

ture relevant to the research and current work. It also presents the two major categories

of HVDC, which are discussed with emphasis on VSC. The concept of a weak grid is

introduced, and its importance to this literature is stressed. Stability evaluation and phase-

locked loop design is presented. In Chapter 3, the dynamic model is proposed for analysis

and simulation. Results and discussions are presented in Chapter 4. First, the active and

reactive power stability is presented. Next, the simulation of the system stability at vari-

ous Kp gains are depicted on a pole map to investigate grid stability. Chapter 5 concludes

the thesis with a summary of the present work and the scope of future works are briefly

outlined.
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CHAPTER 2

LITERATURE REVIEW

2.1 HIGH-VOLTAGE DIRECT CURRENT

HVDC converters are very popular because they provide bi-directional power sup-

ply, converting high voltage alternating current (ac) to direct high-voltage current (HVDC)

called rectification. It can do otherwise, which is known as inversion [25]. This prop-

erty permits efficient power flow from where it is needed to where it is abundant. It saves

the cost of operation and ensures the power balance in the system. In distributed energy

sources such as solar farms, it provides system functions such as real and reactive power

regulation, voltage and frequency support during islanding conditions. Line-commutated

and voltage-source converters are two significant categories of HVDC converters.

2.1.1 LINE-COMMUTATED CONVERTER

In LCC, the reversal of current flow is only possible when the polarity of the voltage

on both stations is reversed [25]. It is a standard configuration because it is older and well

established compared to its counterpart. The configuration utilizes thyristors for switch-

ing, which only offers one degree of control because switches can only be turned on. This

configuration introduces sizable harmonic distortion, which needs significant filtering. An-

other drawback to this configuration is that it requires additional equipment for a black

start. Apart from its site size and other drawbacks, its high power capability, low station

losses, high reliability, and excellent overload capability are features that make it of high

demand in the industry.
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2.1.2 VOLTAGE-SOURCE CONVERTERS

It is a modernized version of an LCC because it utilizes an insulated-gate bipolar

transistor (IGBT). It provides two degrees of freedom enabling improved harmonic filtering

and creating more exceptional reactive power control with fewer filters.

There are three major types of VSC connections. They are grid-imposed frequency

VSC system, controlled-frequency VSC system, and variable-frequency VSC system. Grid-

imposed frequency VSC systems are typically interfaced with a relatively sizable stiff util-

ity ac system. Therefore, the operating frequency is constant and dictated by the ac system.

Controlled-frequency VSC are converters with control schemes that regulate the ac system

frequency. Its reference frequency may be obtained from a supervisory control system. In

the variable-frequency VSC system, the converter is interfaced with an electric machine,

and the operating frequency is a state variable of the overall VSC system. VSC is mar-

ketable because it serves a significant role in interconnecting a weak grid. It has a compact

site size and is used with conventional transformers.

VSC is often sought in DG because it can perform when connected to a weak grid.

It has the ability to self commutate at specific SCR values. Stability can be preserved

when active power injection capability is reduced to 0.5–0.6 per unit (pu) under SCR as

low as 1 [26]. The significant risk to VSC is commutation failure because it changes the

output of the VSC. Other risks associated with extremely weak grids are high temporary

overvoltages, voltage instability, low-frequency resonances, and long fault recover times

[27].

2.1.3 TWO-LEVEL CONVERTER

Like the LLC configuration, the two-level converter has IGBT and inverse-parallel

diodes in place of thyristors to improve controllability. It comprises six valves with two
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valves corresponding to one phase of the ac output. The two halves which make a half-

bridge are turned on simultaneously to avoid uncontrolled discharge of the capacitor [28].

It provides a bidirectional power-flow path between the dc-side and the three-phase

ac system. It can also be controlled in αβ-frame and dq-frame. Although this sounds

great compared to the LLC, its operation accompanies a lot of harmonic losses due to high

switching loss. These losses can be reduced with more switches but that would increase

costs.

2.1.4 THREE-LEVEL CONVERTER

The need to achieve higher voltage switching and improve the poor harmonic per-

formance has led to the development of a multilevel converter with improved harmonic

performance for utility and high power applications [29], [30]. The typical configuration is

a neutral-point-clamped (NPC) or sometimes diode-clamped converter. Each phase in this

topology contains four IGBT valves with ratings to withstand half of dc line-line voltage

and two clamped diode valves [31]. It provides a better three-phase ac voltage with lower

harmonics.

2.2 WEAK GRID

Grid strength is measured either with short circuit ratio or inductive-resistive ratio

(IRR). SCR is defined as a Thevenin representation of the approximate estimation of the

system. It does not serve as a full system analysis but provides an insight into the equivalent

impedance to the source. SCR can be defined mathematically as the ratio of short circuit

level to that of the terminal power. It can also be defined as the ac system per unit admit-

tance of the dc power. This ratio is important because when this value is low, it introduces

harmonic distortion, voltage fluctuation, varying frequency, line overload, and voltage vari-

ations [32], [33]. Reactive power supplied from the VSC can also affect the SCR, but some
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solutions used in the industry to solve these problems are capacitor banks, synchronous

condensers, synchronous compensators (SC), and static var compensator (SVC) [34].

Analysis from [27] shows that the grid becomes weaker using SVC but provides quick

response to over-voltage. SC improves SCR but has a slower response. This paper consid-

ers combining SVC and SC to take advantage of its benefits, which seem appropriate, but

more substantial voltage levels and loads would require a lot of expensive compensations.

+vsa –

+vsb –

+vsc –

AC 

System
Lgrid

Lgrid

Lgrid

igrid_a

igrid_b

igrid_c

Ps and Qs

vnull

PCC

Rgrid

Rgrid

Rgrid

Figure 2.1: Power Flow

The SCR has an inverse relationship with the impedance of the grid Zgrid. This

impedance comprises load, voltage regulators, line impedance, and the internal impedance

of the input. Stiffer grid has more excellent power transfer capability because the transfer

power is inversely proportional to the amplitude between the PCC and the grid, as illus-

trated in (2.1). The first term of (2.1) represents the relationship between the power flow

and the load angle. If Vpcc and Vgrid are assumed to be 1.0 pu at steady-state operation the

difference between δ and αz, which is the converter’s load angle cannot be greater than 90◦

at steady-state given that at 90◦ it is at its theoretical limit. The second term is the active

power dissipated in the equivalent resistance between the PCC and the grid. Another factor

that affects grid stability which would be intensively discussed in this work is the PLL in a

weak-grid condition.
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P12 =
VpccVgrid
|Ztotal |

sin (δ − αz) +
V 2
pccRtotal

|Ztotal |2
(2.1)

αz = arctg

(
Rtotal

Xtotal

)
+
V 2
pccRtotal

|Ztotal |2

and δ is the load angle [35].

2.3 EVALUATING SYSTEM STABILITY

Stability in the ac system can be classified but not bound to small-signal stability, sub-

synchronous resonance, mid-to-term stability, and transient stability [36]. This stability

analysis is dependent on the source of power, and the amount of power delivered.

The PLL’s contribution to the operating point’s power system stability cannot be over-

stated due to its role in maintaining synchronization during a disturbance.

• Small-Signal Stability: The stability analysis of this thesis is based on the small-

signal model. It is the ability of the power system to be synced during small distur-

bances. Without synchronous generators in a modern distributed system, disturbance

is limited to insufficient damping of systems oscillations [36]. This is due to the

power electronics connecting the source to the grid. Small-signal stability can be ex-

amined by an understanding of the components characteristic dynamics and equation

providing sufficient information for modeling.

• Transient Stability: As earlier discussed in chapter 1, on the role of synchronous

generators in maintaining reference voltages and angles under transmission faults,

transient disturbance, and low generation. The synchronous generator dynamics is

well studied to guarantee grid stability. In the same way, the converter in this work

ensures the adequate control schemes to safeguard grid strength.
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• Sub-Synchronous Resonance Stability: Sub-synchronous resonance stability is done

for extensive ac systems such as hydropower or coal plants, which typically generate

hundreds of megawatts. This stability would not be discussed further in this work.

• Mid-to-Long Term Stability: This stability is concerned with power flow from the

generation to load regulated by the VSC. It is also considered for DG operation in

islanding mode [36].

In a large grid, they are many factors that determine grid stability that vary from

voltage control, current control, and PLL. This parameter provides the control scheme that

shapes the VSC impedance to ensure grid stability. The focus of this thesis would be to

outline the effect of the output impedance due to the PLL dynamics.

2.4 PHASE-LOCK LOOP DESIGN

There are four major outline specifications in designing a basic PLL for accurate

frequency and phase-lock [37].

• Hold Range ∆ωH: This is the range of frequency where the PLL can maintain phase-

lock constantly. There is no phase-lock when input frequency exceeds this range.

∆ωH = KPDKVCOLF (0) (2.2)

where KPD is the gain of the phase detector. KVCO is the gain of voltage controlled

oscillator and LF (0) is the dc gain of the loop filter.

• Pull-in Range ∆ωP : The pull-in range of frequency is when the PLL is locked into

the phase angle of the input signal. TP is the pull-in time needed by the PLL to

become locked.
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TP =
π2

16

∆ω2
n

ζω3
n

(2.3)

where ζ is the damping factor and ωn is the natural frequency.

• Pull-out Range ∆ωPO: The pull-out range is smaller than the hold range. This is the

range of stability operation of a PLL. Out of this range, the PLL loses tracking and

falls into the hold range.

∆ωPO = 1.8ωn(ζ + 1) (2.4)

• Lock Range ∆ωL: This is the best range for the PLL. At this range, the PLL will be

locked quickly in this range. Utilizing a PI filter, the lock range can be calculated

with the equation below.

∆ωL = 2ζωn = 2ζ
√
KpKi (2.5)

The relationship and operation of these specifications can be best summed up below.

∆ωL < ∆ωPO < ∆ωP < ∆ωH

There are various control schemes used in DG, such as sliding mode control, nested-

loop dq control, and direct power control. The use of the control schemes depends on

the system and its intended application. The focus of this thesis is the PLL dynamics that

employ the nested-loop dq-frame control.

2.5 PHASE-LOCKED LOOP

The criteria in designing a closed-loop system is that it provides fast-tracking and

excellent filtering characteristics. A PLL is a negative feedback system, as illustrated in
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(3.1), which consists of a phase detector (PD), that measures the phase difference between

the input signal and the desired signal created by the voltage-controlled oscillator (VCO).

This output is then passed to the loop filter (LF), the proportional-integrator (PI) controller,

to cut off the noise signal. It has to accurately estimate the phase angle of the grid voltage,

ensuring the correct generation of the reference signal, system stability, and accuracy of the

systems control loop. Signal is sent to the control system to determine the switching signal

of the converter. The value from LF is used as input to the VCO to create once again the

desired signal wave, which is typically 60Hz sine wave. Apart from the power grid, it is

utilized in electronics and in communication to match an existing signal in phase with its

internal oscillator.

Vs H(s)0 0t 

Compensator Saturation

ρ
e 1

s–

Figure 2.2: PLL Control Block

Limitations to the PLL dynamics such as frequency adaptivity, unbalance robustness,

and distortion rejection have led to more research to enhance the performance or create

better synchronization methods. These limitations have introduced recent research on en-

hancing its performance. A recent work on the extended three-phase PLL-based method,

accommodates the unbalanced voltages. The innovation in this method is the replacement

of all-pass filters with extended phase-locked loops, which are adaptive notch filters. Its

frequency mirrors the grid center frequency, thereby reducing the sensitivity of frequency

variation, and due to its band-pass filter, it extracts the positive sequence with no distortion

[22].
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2.6 CONTROL TECHNIQUE

VSC’s efficient use involves an understanding of its intended application and deter-

mining what control methodology is most appropriate. Some of these control schemes used

in industry are sliding mode control [38], direct power control [39], and the most popular,

is the nested-loop direct-quadrature (dq) current control [28], [40].

2.6.1 SLIDING MODE CONTROL

The sliding mode control (SMC) is designed for nonlinear systems. It is used for

systems where the plant model cannot be accurately derived or is not needed for the control

design. The control scheme operates by switching/sliding between boundaries of different

continuous structures based on the current position of the state space [38], [41]. Therefore,

it is known to be a variable structure control. It is applied in VSC because it offers better

stability notwithstanding load or plant parameters [42], [43].

2.6.2 DIRECT POWER CONTROL

This is an alternative to the conventional vector control. It regulates the active and

reactive power without the use of the current control loop [39], [44], [45]. It is easy to im-

plement and offers a simple structure with direct control capacity of the active and reactive

power [46], [47].

2.6.3 NESTED-LOOP DIRECT-QUADRATURE CURRENT CONTROL

Conventional control in the dq-frame is based on the nested-loop dq control scheme,

which generally includes an outer control loop, either power control or dc voltage control,

and an inner current control loop [40]. This control requires a frame of reference transfor-

mation. The ac voltage/current is transformed into their respective dq quantities via Park’s
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transformation. The outer control loop generates the respective dq current references while

the inner control loop regulates the dq currents and generates the appropriate switching

pulses for converters.

The VSC adopts two proportional-integral (PI) controllers for the inner controller and

two outer controllers for the dc-link and ac-bus voltage control. The dc-link controller gen-

erates the d-axis reference frame while the ac-bus generates the q-axis reference current

component. The benefit of this control scheme is that it regulates the dc-link and ac-bus

voltage and decides the injection and absorption of reactive and active power. This advan-

tage provides both PQ bus control and PV bus control [48].
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CHAPTER 3

SYSTEM MODEL

A 30kVA, 500V (in dc), 260V (in ac), 60Hz, weak-grid connected bidirectional VSC

is shown in Figure 3.1. It depicts a lossless power processor with a dc bus capacitor CDCeq ,

a current source on the dc side modeling the power loss ploss due to fast recovery and tailing

current of the power switches.

Parameter Value

VSC DC Source 500 V

Base Voltage 260 V

System Frequency 60 Hz

Filter R = 0.01 Ω,L = 2.4 mH,C = 1 µF

Switching Frequency 8100 Hz

VSC Capacity 30 kVA

Table 3.1: System Parameter

The dc side of the VSC is interfaced with each phase with the ac system. The ac

system Vsabc is a sinusoidal signal. An L-based filter is implemented by the L represent-

ing the transformer leakage inductance and the filter, while R is the equivalent resistance.

The internal loss is modeled by ron and resistance R commonly adopted in high-power

converters.
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Figure 3.1: VSC Connected weak ac Grid

The ac system equivalent model is analyzed by its Thevenin’s equivalent circuit viewed

from the PCC. The internal voltage is represented by Vs and grid inductance by Lgrid. The

system parameters can be seen in Table 3.1. The ac grid and the dc grid dynamics cannot

be combined together to design the converter dynamics because it makes the design more

ambiguous. Therefore as stated in [26], [49]–[52], the equivalent model is obtained from

the ac grid observed from the point of common coupling (PCC) for the design and anal-

ysis. The ac grid is mainly represented by the Lgrid because the grid is mainly inductive,

especially when viewed from the sub-transmission or transmission levels. The ac system

voltage in the VSC system of Fig. 3.1 is expressed as below.

Vsa(t) = V̂s cos[ω(t)] (3.1)

Vsb(t) = V̂s cos

[
ω(t)− 2π

3

]
(3.2)
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Vsc(t) = V̂s cos

[
ω(t)− 4π

3

]
(3.3)

V̂s is the peak value of the line-to-neutral voltage. The source ac system frequency ω0 and

θ0 is the initial phase angle of the source.

~Vs(t) = V̂se
j(ω0t+θ0) (3.4)

Symmetrical three-phase system can be described by a complex-valued function called

space-phasor equations, as seen in (3.4). Space-phasor equation can be expressed in polar

coordinates. It is essential when the magnitude and phase of a system dynamics are of

interest.

Dynamics of the ac side

Lgrid
d~igrid
dt

= ~Vpcc − ~Vs (3.5)

Substituting ~Vs from (3.4) in (3.5)

Lgrid
d~igrid

dt
= ~Vpcc − V̂sej[ω0t+θ0] (3.6)

For control design implementation, it is essential to map the space-phasor equation in

the cartesian coordinate system, where one deals with real-valued functions of time. This

is known as αβ-frame control. In order to achieve zero steady-state error in the αβ-frame

control, the bandwidth of the closed-loop system must be adequately more significant than

the ac system frequency. After mathematical manipulation, the dq-frame representation of

the ac-side dynamics is described in (3.7) and (3.8)

Lgrid
digridd
dt

= Lgridω(t)igridq + Vpccd − V̂s cos[ω0t+ θ0 − ρ] (3.7)
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Lgrid
digridq
dt

= −Lgridω(t)igridd + Vpccq − V̂s sin[ω0t+ θ0 − ρ] (3.8)

dρ

dt
= ω(t) (3.9)

In the dq-frame control, zero steady-state error is readily achieved by including inte-

gral terms in the compensator given the control variables are dc quantities. The real and

reactive power are controlled in dq-frame, where VSC and the grid become proportional to

the d and q-axis, respectively. Compared to the αβ-frame control, the dq-frame control re-

quires a synchronization mechanism that is achieved through the phase-locked loop. ρ(t),

which is the synchronization mechanism, utilizes the phase angle to govern the adjustment

of the rotational speed of the dq-frame [18].

3.0.1 PHASE-LOCKED LOOP

Lgrid
digridd
dt

= Lgridω(t)igridq + Vpccd − V̂max cos(ω0t+ θ0 − ρ) (3.10)

Lgrid
digridq
dt

= −Lgridω(t)igridd + Vpccq − V̂max sin(ω0t+ θ0 − ρ) (3.11)

dρ

dt
= ω(t) = H(p)VPCCq(t) (3.12)

When ρ converges to ω0t + θ0 under perfect synchronization, the q-component of the grid

voltage at PCC [i.e., Vsq = Vs sin (ω0t+ θ0 − ρ)] will be zero. The PLL dynamics are

included in the ac-bus voltage dynamics because during a transient, especially in weak-

grid condition, perfect synchronization is not achieved. In dq three-phase PLL, the rate

of change of synchronization angle or estimation frequency ω(t), is developed by the q-

component of the grid voltage at the PCC [i.e., Vpccq(t)] together with a PLL filter with a
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transfer function H(s) as illustrated in (3.11) and (3.12). The PLL filter can either be a PI

or PID controller.

The system dynamics of (3.10) to (3.12) are nonlinear and would have to be linearized

to develop a controller. The nonlinear dynamics is linearized around an equilibrium point

depicted in (3.13). Subscript “0” represents the steady-state operating point, while “∼”

is the small-signal perturbed point around the variable. After mathematical deductions,

the linearized dynamics can be seen in (3.14) to (3.16) [48], which are represented in the

complex frequency domain.



VPCCd
= VPCCd0

+ ṼPCCd

VPCCq = VPCCq0 + ṼPCCq

igridd = Igridd0 + Ĩgridd

igridq = Igridq0 + Ĩgridq

ω0t+ θ0 − ρ = − (ρ0 + ρ̃)

dρ
dt

= ω0 + dρ̃
dt
⇒ ω = ω0 + ω̃

(3.13)

3.0.2 LINEARIZED PHASE-LOCK LOOP DYNAMICS

The state-space model of the nondynamic Vpccd is the input variable. ω(t), and Vpccq

are the disturbance. ρ, iq, and id are state variables.

Ṽpccd(s) = LgridsĨgridd(s)− Lgridω0Ĩgridq(s)− Lgrid(Igridq0s+ ω0Igridd0)ρ̃(s) (3.14)

Ṽpccq(s) = LgridsĨgridq(s) +Lgridω0Ĩgridd(s) + [LgridIgridq0s− (Vpccd0 +Lgridω0Igridq0)]ρ̃(s)

(3.15)

ρ̃(s) =
H(s)

s
Ṽpccq(s) (3.16)
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In order to obtain the dynamics of the synchronization angle, (3.15) and (3.16) are

combined to deduce (3.17) as seen below.

ρ̃(s) =
H(s)

[
LgridsĨgridq(s) + Lgridω0Ĩgridd(s)

]
[
s−H(s)

[
LgridIgridq0s−

(
Vpccd0 + Lgridω0Igridq0

)]] (3.17)

Linearized PCC voltage is obtained by combining (3.17) and (3.14)

ṼPCCd
(s) =

P (s)

s−H(s)R(s)
Ĩd(s)−

P (s)

s−H(s)R(s)
ĨLoadd(s)

+
E(s)

s−H(s)R(s)
Ĩq(s)−

E(s)

s−H(s)R(s)
ĨLoadq(s)

P (s) =Lgrid

{
s2 − [sR(s)− ω0D(s)]H(s)

}
E(s) =Lgrid {−ω0s+ [ω0R(s)− sD(s)]H(s)}

D(s) =Lgrid

(
Igridq0s+ ω0Igridd0

)
R(s) =LgridIgridq0s−

(
VPCCd0

+ Lgridω0Igridq0

)

(3.18)

The ac-bus dynamics under the weak-grid condition can be represented in (3.18). The

third equation represents the plant model. Signal ĨLoadq and ĨLoadd are treated as a distur-

bance to the system. Ĩd and Ĩq are the two control signals controlled by VSC. Ĩd regulates

the dc-link voltage while Ĩq is used to control the reactive power [48].

Ṽpccd(s) =
P (s)

s−H(s)R(s)
Ĩd(s)−

P (s)

s−H(s)R(s)
ĨLoadd(s)

+
E(s)

(τis+ 1) (s−H(s)R(s))
Ĩ∗q (s)

− E(s)

s−H(s)R(s)
ĨLoadq(s)

(3.19)

τi is the time constant of the inner current control loop dynamics modeled by a first-

order low-pass filter [53]. The reference q-component of the converter current is Ĩ∗q (s), as

shown in (3.19). Under weak-grid conditions, Lgrid increases, and there is an increase in

the coupling of PCC voltage dynamics and the PLL.
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Ṽpccd(s)

Ĩ∗q (s)
=
Lgrid[−ω0s+ [ω0(LgridIgridq0s− C)− s(Lgrid(Igridq0s+ ω0Igridd0))]H(s)]

(τis+ 1)(s−H(s)(LgridIgridq0s− C))

C =Vpccd0 + Lgridω0Igridq0
(3.20)

Equation (3.20) is the open-loop transfer function of (3.18). This transfer function

provides the framework for the numerical analysis in Chapter 4. H(s) is based on the

bandwidth criterion for disturbance rejection, and fast-tracking response during voltage

unbalance [48].
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CHAPTER 4

RESULTS

An understanding of the relationship between the PLL and the impedance of the grid

involves linearizing the VSC average model while working on the effects of the nonlinear

properties of the PLL. Other research has been done to analyze the relationship between

the SCR and PLL, as discussed in [54], which performs a similar study by examining the

system’s eigenvalues.

4.1 EFFECT OF PROPORTIONAL GAIN

Parameter Value

SCR 2

Grid Inductance 2.1667 mH

Grid Resistance 0.796 Ω

System Frequency 60 Hz

PLL Gain: Kp 180, 100, 50, 20, 1

PLL Gain: Ki 3200

Table 4.1: Stability Analysis of a Weak Grid (SCR=2)

SCR =
V 2
ac

SZg

Zg = Rs + jXs

Rs =
Zg√

2

Ls =
Rs

ω0

(4.1)

In (4.1), Vac is the base voltage, S is VSC capacity, Rs and Ls are the grid resistance
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and inductance, respectively.

4.1.1 ACTIVE AND REACTIVE POWER STABILITY

Figure 4.1: Real Power SCR=2 Kp=180 Ki=3200.

Figure 4.2: Reactive Power SCR=2 Kp=180 Ki=3200.

Figure 4.3: Real Power SCR=2 Kp=100 Ki=3200.
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Figure 4.4: Reactive Power SCR=2 Kp=100 Ki=3200.

Figure 4.5: Real Power SCR=2 Kp=50 Ki=3200.

Figure 4.6: Reactive Power SCR=2 Kp=50 Ki=3200.
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Figure 4.7: Real Power SCR=2 Kp=20 Ki=3200.

Figure 4.8: Reactive Power SCR=2 Kp=20 Ki=3200.

Figure 4.9: Real Power SCR=2 Kp=1 Ki=3200.
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Figure 4.10: Reactive Power SCR=2 Kp=1 Ki=3200.

4.1.2 POLE-ZERO MAP STABILITY

Figure 4.11: SCR=2 Kp =180 Ki=3200.
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Figure 4.12: SCR=2 Kp=100 Ki=3200.

Figure 4.13: SCR=2 Kp=50 Ki=3200.
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Figure 4.14: SCR=2 Kp=20 Ki=3200.

Figure 4.15: SCR=2 Kp=1 Ki=3200.
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Matlab Simulink was used to perform this analysis by modeling the system to measure the

real and reactive power stability as the Kp values are varied. The small-signal model was

linearized by keeping the PLL dynamics and SCR of the grid into account to develop a

transfer function. This transfer function is used to derive the pole map that displays the

stability of the system.

As Kp gain decreased from 180 to 1, poles began to migrate more to the right-hand

plane (RHP), which depicted the system as unstable. Kp gain being 1 is the lowest gain

showing the worst-case scenario the grid can be, which is classified as unstable. At this

point, the pole has fully migrated to the right-hand plane.
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CHAPTER 5

CONCLUSION

This chapter concludes with a summary of the work done. It provides suggestions to

what could be done to enhance the study discussed in this work. It also provides potential

work that is currently under consideration.

5.1 SUMMARY OF PRESENT WORK

A DG interconnected grid system was discussed in this work by first outlining its

benefits to increasing power generation, reducing carbon emission, and it’s readily available

for consumption. Power electronic technology makes it possible for the efficient use of this

energy from where it is produced to where it is consumed. The technology comes with its

sets of problems as demand increases, and so does the system complexity. One of these

problems is its introduction of instability to the grid.

One of the technologies that has made it possible for the integration of renewable

energy is the VSC. It allows the conversion of power from dc to ac and can also do the

reverse depending on the application. Various factors contributing to grid instability were

enumerated in this work, but the focus was on the effect of the PLL dynamics on the grid.

The PLL allows the VSC converter to sync with the grid frequency and maintain stability.

The effect of the PLL dynamics on the grid impedance was observed, and its negative

effect on the grid was presented. A solution to this problem could be to re-tune the PLL

filter dynamics during weak-grid conditions to improve the ac-bus voltage dynamics, but

this is not pragmatic as it may limit performance. The pole map, together with the real and

reactive power control stability, was simulated to display the state of the stability of the

system. It was demonstrated that once the SCR<2, the system stability is more susceptible

to changes by the Kp gains.

A strong relationship could be seen between the grid impedance and SCR. As the
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inductance of the ac-bus voltage dynamics increases, an inverse effect can be noted on the

grid stiffness. The PLL was seen to have no effect under a very stiff grid, but under the

weak-grid condition, coupling between the converter and grid dynamic increases, so does

the dependence on the ac-bus voltage.

At a very strong grid condition, there was no effect on grid stability at various PLL

gain Kp. The system maintained stability even when reduced to the lowest Kp gain of 1.

At weak-grid conditions, the system is more stable when the PLL gain is set to the optimal

gain value, and this parameter variation depends on the capacitor and inductor VSC output

filter values.

5.2 FUTURE WORK

A robust simulation taking into account other factors that were not considered in the

Thévenin equivalent model would provide a better insight into the threshold of the PLL

gain that would increase efficiency and stability.

Other external factors, such as faults, can be analyzed to demonstrate the PLL’s dy-

namic effect on the grid strength and how it handles system stability during such conditions.

There are some problems that mathematical models and simulations do not take into

account, that are issues in the real world. Further studies can explore the relationship

between the grid strength and the PLL by providing an insight through experiments in the

lab.

As the grid changes from a strong grid (SCR=10) to a weak grid (SCR<3), the system

becomes more unstable. This instability leads to grid frequency instability, inadequate

active power, and reactive power control.
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