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APPLYING ARTIFICIAL INTELLIGENCE TO MEDICAL DATA 

by 

SHAIKH SHIAM RAHMAN 

(Under the Direction of Hayden Wimmer) 

ABSTRACT 

Machine learning, data mining, and deep learning has become the methodology of choice for 

analyzing medical data and images. In this study, we implemented three different machine learning 

techniques to medical data and image analysis. Our first study was to implement different log base 

entropy for a decision tree algorithm. Our results suggested that using a higher log base for the 

dataset, with mostly categorical attributes, with three or more categories for each attribute, can 

obtain a higher accuracy. For the second study, we analyzed mental health data and tuning the 

parameters of the decision tree (splitting method, depth, and entropy). Our results identified the 

most crucial attributes for the dataset. The final study is on the Kimia Path24 image dataset. We 

built and trained a deep convolutional neural network and tested different hypotheses of batch size, 

number of epochs, and learning rate. For the final study, all the hypotheses were supported by our 

experimental results. 
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CHAPTER 1 

INTRODUCTION 

The classification approach of a decision tree is to measure the impurity of an attribute and 

split the data based on the categories of that attribute. The standard statistical method for measuring 

impurity is the logarithmic entropy calculation. This paper compares the accuracy for different 

logarithmic entropy functions on categorical datasets via the C4.5 decision tree algorithm. We 

implemented ln, 𝑙𝑜𝑔10 and  𝑙𝑜𝑔2 logarithmic entropy equation and tested the differences of various 

categorical datasets. We found that if the dataset has mostly categorical attributes and most of 

those attributes have three or more class categories, then 𝑙𝑜𝑔10 and ln outperform 𝑙𝑜𝑔2. This work 

demonstrates that one should use 𝑙𝑜𝑔10 or ln if the dataset has mostly categorical attributes and 

most attributes have three or more classification elements. When the dataset has mostly categorical 

attributes and most of the attributes have two classification elements, then the default  𝑙𝑜𝑔2 entropy 

equation performs best. 

Data mining lies at the interface of statistics, pattern recognition, and machine learning. An 

organized collection of data and proper data visualization are the main prerequisites of data mining. 

Proper use of data mining techniques will help identify important patterns and relationships in a 

dataset. In this work, we implemented a data mining algorithm on mental health data and found 

the most important attributes that trigger issues with mental health treatment. For this study, we 

used Microsoft Excel for data preparation and filtering, Microsoft SQL server as the data storage, 

and Microsoft SQL Server Analysis Service (SSAS) for building the data mining model. This is 

an important process which can help organizations provide a comfortable environment for 

employees that are facing issues with mental health treatment. 
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Deep learning methods recently made notable advances in the tasks of classification and 

representation learning. We built a deep convolutional neural network architecture and trained it 

with a Kimia Path24 dataset. This dataset has around 22.5K images for training and 1.3K images 

for testing with 24 different categories. In this study, we developed three different hypotheses and 

trained the network multiple times, changing the parameters of the learning network. We observed 

the effect of three parameters on our network architecture: 1) learning rate, 2) batch size, and 3) 

number of epochs. The results established the credibility of the hypotheses and showed that we 

can build networks with high accuracy by tuning the deep learning parameters based on the dataset. 

Our study suggests that deep convolutional neural networks can be useful to improve the accuracy 

of pathological images. 

The rest of the thesis is organized into six chapters. The second chapter contains the 

literature review for three studies. In chapter three, we present our first study, "Improving the 

Predictive Performance of the C4.5 Decision Tree Algorithm for Categorical Medical Data." Here, 

we present the background of our study, the methods, and the comparison of our improvement 

with regular methods. In chapter four, we present our second study, "An Application of Data 

Mining of Mental Health Data." This study explains why mental health is important and how 

mental health disorders can be detected using a decision tree by tuning parameters. Our study of 

deep learning with Kimia Path24 dataset is embedded in chapter five. Here, we present the 

background of deep learning, why deep learning is useful for image processing, the architecture of 

our deep learning algorithms, our hypotheses regarding this dataset, and the support for those 

hypotheses. In chapter six, we summarize the whole thesis and the findings of all our studies 

regarding the medical data.  
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CHAPTER 2 

LITERATURE REVIEW 

Study 1 – Improving the Predictive Performance of the C4.5 Decision Tree Algorithm for 

Categorical Medical Data 

Qin, Xia, Prabhakar, and Tu (2009) propose a new rule-based classification and prediction 

algorithm called uRule for classifying uncertain data. The authors also extend the rule for pruning, 

generating, and optimizing tree. The authors proposed a new measure called probabilistic 

information gain for generating rules and set a new probability distribution function, which will 

create a set of rules for calculation. This algorithm determined which rule is the best fit for a certain 

value(s). 

Ludwig, Jakobovic, and Picek (2015) investigated a fuzzy decision tree (FDT) algorithm 

applied to the classification of gene expression data. The authors experimented with a fuzzy 

decision tree algorithm with a goal of analyzing gene expression cancer data. Besides the 

comparison with a decision tree algorithm, they also compared the proposed algorithm with several 

other well-known algorithms for classification. Both full and reduced feature sets were run with 

common data mining algorithms. The support vector machine algorithm outperformed all other 

data mining algorithms achieving 100% accuracy on some data sets. 

W. Liu, Chawla, Cieslak, and Chawla (2010) introduced a new measure, Class Confidence 

Proportion (CCP). In decision trees, results in rules are biased towards the majority class. The 

authors designed CCP to overcome this bias. The authors introduced the CCP in information gain 

and used the improvised measure to construct the decision tree. The results compared the CCP-

CART and CCP-C4.5 with base C4.5 and CART. CCP-CART and CCP-C4.5 outperformed the 

base C4.5 and CART. 
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Yana, Maa, Zhaob, and Kokogiannakis (2016) presented a decision tree-based data-driven 

diagnostic strategy for an air handling unit (AHU). Decision tree, a well-known classifier, has been 

applied in the prediction of building energy usage with satisfying accuracy. The interpretability of 

the proposed strategy can be helpful in understanding the diagnostic strategy. Data-driven methods 

are superior in extracting useful information from large data sets and modeling. Combining data-

driven methods with expert knowledge might be a possible solution for developing effective data-

driven based fault diagnostic strategies (Yana et al., 2016). 

Rutkowski, Jaworski, Pietruczuk, and Duda (2014) proposed a new algorithm for mining 

streamed data.  The new algorithm is based on CART, the modification is called dsCART. To 

solve the attribute splitting problem, the authors applied the Gaussian distribution algorithm. For 

testing the accuracy, the algorithm had been tested with Syntactic and real data. The accuracy and 

other parameters had been compared with McDiarmid and Gaussian decision tree algorithm. 

Results showed that this is a proper tool for solving streamed data classification. 

Study 2 – An Application of Data Mining of Mental Health Data 

Gnanlet and Gilland (2009) conducted a full-factorial numerical experiment and found the 

benefit of using staffing decision under flexibility. This study discussed about 4 configurations 

under flexibilities: (1) no flexibility, (2) demand upgrades, (3) staffing flexibility, and (4) demand 

upgrades and staffing flexibility. This study helped hospital managers determine optimal staffing 

and capacity decision making. This experiment concluded that centralized decision making can 

yield a greater benefit than decentralized decision making.  

Obenshain (2004) mentioned three different health care situations where data mining 

algorithms have been implemented successfully with satisfying outcomes: (1) association rules 

helped to enhance control over infection, (2) clustering and association rules were used to rank the 
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hospitals, and (3) American Healthways used predictive modeling technology to predict the 

likelihood of short-term health problems. This study compared statistics and data mining 

techniques and discussed their combination to develop the best practice. 

Meyer et al. (2014) used a decision tree to improve the performance of a dynamic decision-

making system. This study applied data mining classification techniques to the collected data for 

discovering the conditions which were different for dynamic decision-making strategies. This 

information was used to improve the decision-making strategies. This study used a predictive data 

mining technique (decision tree) to identify the failed conditions. The results suggested different 

data mining techniques (e.g., decision tree, neural network) are useful for the performance 

improvement of complex and ill-structured dynamic environments. 

A. Gupta, Wilkerson, Sharda, and Colston (2018) developed a prediction model for the 

identification of college football player’s injury risk. This study developed an injury risk 

assessment model that is based on external factors (e.g., exposure to the task, performance role) 

and intrinsic factors (e.g., injury history, movement efficiency). This study used logistic regression 

and Cox regression for assessing the injury of football players. 

Study 3 – Deep Learning: An Imperial Study on Kimia Path24 Dataset 

Deep Learning 

Deep learning-based image super-resolution (SR) models have been actively explored and 

often achieve the state-of-the-art performance on various benchmarks of SR. A variety of deep 

learning methods have been applied to tackle SR tasks ranging from the early Convolutional 

Neural Networks based method to recent promising SR approaches using Generative Adversarial 

Nets (Wang, Chen, Hoi, & Intelligence, 2020). Dong, Loy, He, and Tang (2014) proposed a deep 

learning method for a single SR. In this study, the authors contributed three aspects: 1) presented 
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a convolutional neural network for image super-resolution, 2) established a relationship between 

the deep learning-based SR method and the traditional sparse coding-based SR methods, and 3) 

demonstrated the usefulness of deep learning in the classical computer vision problem with super-

resolution. The method of this study directly established an end-to-end mapping between the 

low/high-resolution images. The mapping is represented as a deep convolutional neural network 

(CNN) that takes the low-resolution image as the input and outputs the high-resolution. With a 

lightweight structure, the Super-Resolution Convolutional Neural Network (SRCNN) has 

achieved a superior performance above other state-of-the-art methods. The authors conjectured 

that an additional performance could be further gained by exploring more hidden layers/filters in 

the network using different training strategies (Dong et al., 2014). 

Y. Chen, Lin, Zhao, Wang, and Gu (2014) introduced the concept of deep learning into 

hyperspectral data classification. They introduced the deep learning-based feature extraction for 

hyperspectral data classification. Their method focused on applying an autoencoder (AE). At first, 

the authors verified the eligibility of stacked autoencoders by following classical spectral 

information-based classification. After that, a new way of classifying with spatial-dominated 

information was presented. Finally, they proposed a deep learning framework by merging the two 

features. Y. Chen et al. (2014) exploited a single layer autoencoder (AE) and a multi-layer stacked 

AE (SAE) to learn shallow and deep features of hyperspectral data. AE-extracted features are 

useful for classification. AE and SAE deep feature extraction models increased the accuracy of 

SVM and logistic regression while obtaining the highest accuracy when compared with other 

feature extraction methods (Y. Chen et al., 2014). 

Chetlur et al. (2014) created a library with optimized routines for deep learning workloads 

with a similar intent to Basic Linear Algebra Subroutines (BLAS) (BLAS, 2014). They presented 
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a novel implementation of convolutions that provided a reliable performance across a wide range 

of input sizes, and they took advantage of the highly-optimized matrix multiplication routines to 

provide a high performance without requiring any auxiliary memory. Integrating Nvidia CUDA 

Deep Neural Network’s (cuDNN) library into Caffe improved the performance by 36% on a 

standard model with a reduced memory consumption. NVIDIA cuDNN’s performance is 86% of 

the maximum performance, with a small mini-batch size of 16. This implementation performed 

well across the convolution parameter space. NVIDIA cuDNN’s library ranged from 23-35% of 

peak performance on the Tesla K40 and from 30-51% of peak performance on the GTX 980. 

NVIDIA cuDNN’s library provided a performance portability across GPU architectures with no 

need for users to retune their code as GPU architectures evolve (Chetlur et al., 2014). 

A large body of the work in deep learning can be classified into: (1) generative, (2) 

discriminative, and (3) hybrid categories (Deng, 2014). A deep autoencoder is used for learning 

efficient encoding or dimensionality reduction for a set of data. It is a non-linear feature extraction 

method classified as generative. Deep architecture, consisting of both pretraining and fine-tuning 

stages in its parameter learning, is classified as a hybrid. The concept of stacking, where simple 

modules of functions are composed first and then they are “stacked” on top of each other in order 

to learn complex functions, is classified as discriminative (Deng, 2014).  

Algorithm-level noise tolerance can be leveraged to simplify underlying hardware 

requirements. Noise tolerance can lead to a co-optimized system that achieves significant 

improvements in computational performance and energy efficiency. Deep networks can be trained 

using only 16-bit wide fixed-point number representation using stochastic rounding with little 

degradation in classification accuracy (S. Gupta, Agrawal, Gopalakrishnan, & Narayanan, 2015). 
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Deep learning methods have dramatically improved the state-of-the-art speech recognition, 

visual object recognition, object detection, and many other domains, such as drug discovery and 

genomics (LeCun, Bengio, & Hinton, 2015). Deep convolutional nets have brought about 

breakthroughs in processing images, video, speech, and audio; whereas, recurrent nets have shined 

the light on sequential data, such as text and speech. Deep learning has beaten other machine-

learning techniques by predicting the activity of potential drug molecules, analyzing particle 

accelerator data reconstructing brain circuits, and determining the effects of mutations in non-

coding DNA on gene expression and disease. The 2012 ImageNet competition success has brought 

about a revolution in computer vision. ConvNets are now the dominant approach for almost all 

recognition and detection tasks. ConvNets also enhanced human performance on some tasks. The 

combination of ConvNets and the recurrent net modules generate stunning demonstrative image 

captions (LeCun et al., 2015). 

Cross modality feature learning can achieve a better feature for one modality (e.g., video) 

if multiple modalities (e.g., audio and video) are present at the feature learning time (Ngiam et al., 

2011). Ngiam et al. (2011) presented a series of tasks for multimodal learning showing how to 

train deep networks to learn features that address these tasks. These models were validated on the 

CUAVE and AVLetters datasets on audio-visual speech classification, demonstrating the best 

published visual speech classification on AVLetters and effective shared representation learning. 

Learning a canonical correlation analysis (CCA) with a shared representation of raw data results 

in a good performance. Learning the CCA representation on the first layer feature results in a 

significantly better performance compared to the original modalities for supervised classification 

(Ngiam et al., 2011). 
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Papernot et al. (2016) formalized the space of adversaries against deep neural networks 

(DNNs) and introduced a novel class of algorithms to craft adversarial samples based on a precise 

understanding of the mapping between inputs and outputs of DNNs. This experiment formally 

described a class of algorithms for crafting adversarial samples misclassified by DNNs using three 

tools: the forward derivative, adversarial saliency maps, and the crafting algorithm. These tools 

were applied to a DNN and used for a computer vision classification task: handwritten digit 

recognition. The crafting algorithm can reliably produce samples correctly classified by human 

subjects but misclassified in specific targets by a DNN with a 97% adversarial success rate while 

only modifying on average 4.02% of the input features per sample (Papernot et al., 2016). 

Deep Learning in Medical Images 

Brosch and Tam (2013) described a novel method called multi-scale structured 

convolutional neural networks (MS-CNN) for learning the manifold of 3D brain images. The 

method does not require the manifold space to be locally linear, and it does not require a predefined 

similarity measure or a prebuilt proximity graph. This manifold learning method was based on 

deep learning, a machine learning approach that uses layered networks (called deep belief 

networks, or DBNs). The authors proposed a computationally efficient training method for DBN. 

The proposed method performed manifold learning by reducing the dimensionality of the input 

images using a DBN. This method used deep learning to discover patterns of similarity and 

variability within a group of images. The learned manifold coordinates captured shape variations 

of the brain that correlated with demographic and disease parameters. The MS-CNN algorithm 

was much more efficient than traditional, convolution-based methods (Brosch & Tam, 2013).  

Plis et al. (2014) used deep learning to analyze the effect of parameter choices on data 

transformations. The authors demonstrated their results in the application of deep learning methods 



19 

 

 

 

to structural and functional brain imaging data. They also described a novel constraint-based 

approach to visualize high dimensional data. These methods included deep belief networks and 

the building block of the restricted Boltzmann machine. This study presented recent advances in 

the application of deep learning methods to functional and structural magnetic resonance imaging. 

The main goal was to validate the feasibility of this application by: (1) investigating if a building 

block of deep generative models a restricted boltzmann machine, (2) examining the effect of the 

depth in deep learning analysis of structural magnetic resonance imaging (MRI) data, and (3) 

determining the value of the methods for discovering the latent structure of a large-scale. Deep 

learning has a high potential in neuroimaging applications. The depth of the DBN helped 

classification and increased group separation. DBNs have a high potential for exploratory analysis 

(Plis et al., 2014). 

A. Payan and G. J. a. p. a. Montana (2015) used deep learning methods, spars autoencoders, 

and 3D convolutional neural networks to build an algorithm that can predict the disease status of 

a patient based on an MRI scan of the brain. This study demonstrated that the 3D convolutional 

neural networks outperformed several other classifiers. The authors compared the performance of 

2D and 3D convolutional networks. This study took a two-stage approach. The authors used a 

sparse autoencoder to learn filters for convolution operations, and then built a convolutional neural 

network in which the first layer uses the filters with the autoencoder. The 3D approach had a 

superior performance for the 3-way comparison. The 3D approach had the potential to capture 

local 3D patterns, which may boost the classification performance, albeit only by a small margin 

(A. Payan & G. J. a. p. a. Montana, 2015). 

Recently, deep learning methods introduced a medical image analysis with promising 

results in multiple applications, including computerized prognosis for Alzheimer’s disease (S. Liu 
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et al., 2014), tumor segmentation (Havaei et al., 2017), and histopathological diagnosis (Cireşan, 

Giusti, Gambardella, & Schmidhuber, 2013; Litjens et al., 2016). Neuroimaging analysis is 

frequently utilized for increasing diagnostic ability; however, some studies are using deep learning 

models to discover the diverse patterns in patient data characteristics of a disease (Brosch, Yoo, 

Li, Traboulsee, & Tam, 2014; Kim, Calhoun, Shim, & Lee, 2016; Suk, Lee, Shen, & Initiative, 

2014; Suk, Wee, Lee, & Shen, 2016). The implementation was done for this classifier using a deep 

neural network initialized by a DBN (DBN-DNN). 

Pinaya et al. (2016) trained a deep learning model, known as DBN, to extract features from 

brain morphometry data. The deep learning models excel at neuroimaging-based prediction 

methods and can be useful for demonstrating complex and subtle associations, as well as enabling 

more accurate individual-level clinical assessments. The strength of deep architecture came from 

multiple levels of non-linear processing that are well-suited to capture highly varying functions 

with a compact set of parameters. The deep architecture provided superior performance in 

classification tasks. The DBN highlighted differences between classes, especially in the frontal, 

temporal, parietal, and insular cortices and in some subcortical regions, including the corpus 

callosum, putamen, and cerebellum (Pinaya et al., 2016). 

Bao and Chung (2018) stated that specific architecture is designed to capture discriminative 

features for each sub-cortical structure. To improve the performance of CNN, two intuitive ways 

are generally utilized. Apart from the straightforward enlargement of network architecture, some 

elegant micro-structures have also been designed to enhance the capability recently. To evaluate 

the performance of the proposed method, the comparison with other methods has been carried out. 

As several different voxel resolutions exist in each dataset, affine transformations between atlases 

and the target image were first conducted as pre-processing. The initial structural surface used in 
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label consistency (Blue Curve at Iteration 0) was generated by fusing the warped label maps with 

majority voting (MV). The results of MV was also employed at a baseline for comparison. The 

results indicated that, with a multi-scale strategy, more discriminative features can be captured, 

and the labeling result can be improved. Due to the lack of constraints among testing patches, 

embracing learning method alone often led to a rough boundary and desultory segmentation result. 

Experimental results demonstrated that the proposed method can obtain a better performance as 

compared to other state-of-the-art methods (Bao & Chung, 2018). 

 

de Brebisson and Montana (2015) proposed a methodology based on a deep artificial neural 

network that assigned each voxel in an MR image of the brain to its corresponding anatomical 

region. The inputs of the network captured information at different scales around the voxel of 

interest: 3D and orthogonal 2D intensity patches captured a local spatial context while downscaling 

large 2D orthogonal patches and distances to the regional centroids enforce global spatial 

consistency. The combined use of three 2D orthogonal patches dramatically improved the 

segmentation performance compared to 2D or 3D patches. The distances to centroids, in addition 

to their invariance qualities, significantly outperformed the coordinates. For already manually 

segmented brains, using estimated centroids yield equivalent results as using the true centroids. It 

has a mean dice coefficient of 0.725 and an error rate of 0.163 when evaluated on the 20 testing 

MRIs of the MICCAI challenge. Good validation results were obtained by training huge networks, 

sometimes composed of tens of millions of parameters, with a relatively small amount of data. The 

trained networks overfit the training data; however, they still generalize fairly well to unseen MRIs 

(de Brebisson & Montana, 2015). 
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H. Chen, Dou, Yu, and Heng (2016) explored the deep residual learning on the task of 

volumetric brain segmentation. First, they proposed a deep voxelwise residual network, referred 

to as VoxResNet. Second, an auto-context version of VoxResNet is proposed by seamlessly 

integrating the low-level image appearance features, implicit shape information, and high-level 

context together for improving the volumetric segmentation performance. The results of 

combining multi-modality and auto-context information give more accurate results visually than 

only multi-modality information. The proposed algorithm has an application beyond brain 

segmentation, and it can be applied in other volumetric image segmentation problems (H. Chen et 

al., 2016). 

 

Choi and Jin (2016) developed a fast and accurate method for the striatum segmentation 

using deep convolutional neural networks (CNN). The delicate segmentation process performed 

by Local CNN used small portions of the image rather than the whole image. This method 

suggested that FreeSurfer segmentation included slightly more true-positive voxels and much more 

false-positive voxels than the CNN-based approach, which resulted in lower Dice Similarity 

Coefficient (DSC). This approach depended on training using manual segmentation, another 

recently developed automatic segmentation tool based on multimodal images (MIST), did not 

require a manually labeled training set, which could be flexible for various types of data (Choi & 

Jin, 2016). 
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CHAPTER 3 

IMPROVING THE PREDICTIVE PERFORMANCE OF THE C4.5 DECISION TREE 

ALGORITHM FOR CATEGORICAL MEDICAL DATA 

Introduction 

Decision tree is most popular rule-based classification algorithm. Decision tree is a 

decision support tool that uses a tree-like model of decision and their possible consequences and 

future event outcomes. Entropy is the most critical section of the decision tree, which is used for 

calculating the impurity of an attribute. The success of a decision tree depends on the assumption 

that every attribute in the training data set has an equal number of class instances evenly distributed 

among them. If the attributes have binary classification and there is similar number of instances 

for each class, then C4.5 performs well. When the training dataset contains mostly categorical 

attributes and the classification of those attributes is not binary or contains three or more 

classification elements, using a higher log base for calculating impurity can outperform the C4.5 

algorithm. 

The objective of this method is to discover the effect of higher log base over the attributes 

with three or more classification elements. For this purpose, several features have to be kept in 

mind. The dataset has to contain mostly categorical attributes. The more categorical attributes with 

three or more classification elements, the higher the chance is, that the higher log base will 

outperform the basic C4.5. 

Methods 

C4.5 was introduced by Ross Quinlan in 1993. Algorithm 3.1 shows the pseudocode of 

C4.5 algorithm (Quinlan, 1993). Algorithms for constructing decision trees are among the most 

well-known and widely used of all machine learning methods. Among decision tree algorithms, J. 
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Ross Quinlan's ID3 and its successor, C4.5, are probably the most popular in the machine learning 

community (Salzberg, 1994). C4.5 has its origins in Hunt's concept learning systems by way of 

ID3 (Quinlan, 1993). C4.5 and its predecessor, ID3, use formulas based on information theory to 

evaluate the "goodness" of a test; in particular, they choose the test that extracts the maximum 

amount of information from a set of cases, given the constraint that only one attribute will be tested 

(Salzberg, 1994). 

C5.0 is an improvement on C4.5 which is commercially sold. C5.0 is a more advanced 

version of Quinlan’s C4.5 classification model that has additional features, such as boosting and 

unequal costs for different types of errors. Like C4.5, it has tree-based and rule-based versions and 

shares much of its core algorithms with its predecessor (Kuhn & Johnson, 2013).  

This algorithm constructs the decision tree with a divide and conquer strategy. For 

constructing an effective decision tree, dataset must fulfill the following key requirements: 1) 

attribute value description, 2) predefined classes, 3) discrete classes, 4) sufficient data, and 5) 

logical classification model. In the beginning only the root is present with the whole training set. 

Then for each excluded attributes and instances, the C4.5 calculates the gain ratio for each 

attribute.  
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Algorithm 3.1: Quinlan’s C4.5 Decision Tree Algorithm 

Here, in this work, we propose a variation of the logarithmic calculation Algorithm 3.2 to 

calculate the entropy equation (3.1) and measure the accuracy and performance of different 

categorical datasets. A small modification in logarithmic calculation can make an impact on 

accuracy and performance. As most of the categorical datasets are not split on binary 

characteristics. A small modification based on the classification of attributes can make an impact. 

 Global variable log Base Number as short integer 

Log Base Number = e, 2, 10 

 

 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) =  − ∑
𝑓𝑟𝑒𝑞(𝐶𝑗 , 𝑆)

|𝑆|

𝑘

𝑗=1

∗  𝑙𝑜𝑔𝑏𝑎𝑠𝑒(
𝑓𝑟𝑒𝑞(𝐶𝑗 , 𝑆)

|𝑆|
) (3.1) 

In our algorithm, we propose to use the variable log base for calculating the entropy.   
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Algorithm 3.2: log4.5 Entropy Calculation. 

 

Results 

 

Figure 3.1: The Comparison Between All Datasets. 

We test the model with University of California Irvine (UCI) machine learning dataset. We 

used 4 different datasets to measure the performance of our algorithm. From Figure 3.1 we can see 

that the  𝑙𝑜𝑔10 outperforms  𝑙𝑜𝑔2 with accuracy 0.677 for the breast cancer dataset because this 

dataset contains 10 attributes and all of them are categorical. Among them 5 attributes have 3 or 
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more classification elements. For rest of the datasets, changing of the log base has no effect on the 

accuracy. 

When a mixture of continuous and categorical attributes change the log base of the C4.5 

decision tree algorithm has no impact on performance. Conversely, when all attributes are 

categorical, changing the log base of C4.5 can have an impact on performance as defined by 

classification accuracy. From the above discussion, we can say that the  𝑙𝑜𝑔10 will outperform 

 𝑙𝑜𝑔2if most of the attributes are categorical and the categorical attributes have 3 or more 

classification elements. 

 

Conclusion 

This work investigated log-based entropy calculations for decision tree implementation. 

The decision tree was tested on 4 different UCI machine learning datasets. Four datasets were 

analyzed and compared with  𝑙𝑜𝑔2 base entropy calculated decision tree algorithm. Higher values 

of accuracy were achieved on 𝑙𝑜𝑔10, when the dataset contains mostly categorical attributes and 

those attributes have 3 or more classification elements (breast cancer). This reveals that higher 

accuracy is achieved for  𝑙𝑜𝑔10 when most of the attributes are categorical with 3 or more 

classification elements. 
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CHAPTER 4 

AN APPLICATION OF DATA MINING OF MENTAL HEALTH DATA 

Introduction 

The purpose of this project is to apply data mining techniques to predict whether an 

employee in a tech company has asked for mental health treatment or not. We aimed to identify 

and disclose very important and useful information that will be beneficial and effective for the tech 

organizations.   

To identify opportunities for mental health improvement, we planned to identify the best 

attributes that are responsible for mental health issues. We used data mining algorithms to find the 

attributes that are responsible for mental health issues. 

Methods 

For building the decision tree with this dataset, we have used SQL Server Analysis Services 

(SSAS). Data partitioning is an important part of preparing the mining model and testing the 

mining model. We partitioned our data into two subsets: (1) training data and (2) testing data. 

Training data is used to build the tree, while testing data is used to test the validity of the model. 

The recommended ratio of training and test instances for a given dataset was 20:1 (Larose & 

Larose, 2015). After partitioning, we have a total of 1,172 instances for building the tree and 61 

instances to test the model. 

SSAS comes with various built-in features, like using different data sources for input and 

output, building the mining model based on different parameters related to that mining model. 

SSAS also suggests the attributes which are the best fit to predict the outcome. SSAS provides an 

option for choosing the ratio of training and test data as well as tools to validate the model such, 

as classification matrices and lift charts.  
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Our plan was to build different models based on three SSAS decision tree building 

parameters: complexity penalty, score method, split method. In the beginning, all the models were 

built with the parameters’ default value. Then we have changed the parameters’ value to different 

ranges and built different models based on those changes. 

Complexity Penalty: Inhibits the growth of the decision tree. Decreasing the value 

increases the likelihood of a split, while increasing the value decreases the likelihood. The default 

value is based on the number of attributes for a given model: the default is 0.5 if there are 1 to 9 

attributes: the default is 0.9 if there are 10 to 99 attributes; and the default is 0.99 if there are 100 

or more attributes (Services, 2018). 

Score Method: Specifies the method used to calculate the split score. The available 

methods are: Entropy (1), Bayesian with K2 Prior (3), or Bayesian Dirichlet Equivalent with 

Uniform prior (4) (Services, 2018). 

Split Method: Specifies the method used to split the node. The available methods are: 

Binary (1), Complete (2), or Both (3) (Services, 2018). 

Results 

The change of accuracy with respect to parameter values is displayed in Table 4.1. The list 

of attributes that are useful for building the tree has been chosen in three steps for each parameter. 

First step, we used those attributes that were suggested by the Microsoft SQL Server Analysis 

Services. Then, those attributes that have relevance more than 0.1 and finally all the attributes. 

Few parameter values didn’t build a decision tree. Those accuracies are left blank. Work 

interference and the family history were identified as the most important attributes for predicting 

the mental health treatment, from Figure 4.1.  
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# 
Parameter value Dataset Attributes Accuracy 

1.     

Complexity penalty is 

set to default choice 

Suggested 80.32 

2.     Relevant  75.41 

3.     All 77.04 

4.     

Complexity penalty = 

0.5 

Suggested 81.96 

5.     Relevant  78.69 

6.     All -- 

7.     

Complexity penalty = 

0.9 

Suggested 88.52 

8.     Relevant  -- 

9.     All 80.32 

10. 

Complexity penalty = 

0.99 

Suggested 83.6 

11. Relevant  85.24 

12. All 75.41 

13.    

Score Method = 1 

Suggested 75.4 

14.    Relevant  86.6 

15.    All 67.21 

16.    

Score Method = 3 

Suggested -- 

17.    Relevant  80.32 

18.    All 81.96 

19.    
Split Method = 1 

Suggested 68.85 

20.    Relevant  77.04 
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21.    All 83.6 

22.    

Split Method = 1 

Suggested -- 

23.    Relevant  86.88 

24.    All -- 

Table 4.1: Decision Tree Accuracy with Different Parameter Values. 

Among 61 test cases, a total of 53 cases were identified correctly with 8 incorrect 

predictions. The model has 88.5% accuracy.  

 

Figure 4.1: SSAS Decision Tree with Highest Accuracy. 

Conclusion 

The objective of this project was to develop a detective system that can assist tech 

companies to help them identify their employees’ mental health issues. This will help the tech 
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companies to identify whether their employees will ask for the mental health support. 24 different 

decision trees were used with different parameter values. The work interference and the family 

history were counted as the most important attributes for predicting the mental health issue. 

From the model, Figure 4.1, it is clear that the employees with most work interference has 

the highest probability to ask for mental health treatment. The family history also plays an 

important role to provoke the mental health issue and ask for treatment. 
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CHAPTER 5 

DEEP LEARNING: AN IMPERIAL STUDY ON KIMIA PATH24 DATASET 

Introduction 

For several decades, pathology has been described as the archiving of microscopic 

information of specimens. This microscopic information is organized by storing specimens on 

glass slides. The problem with glass slides is that they are fragile and require a very large specially 

prepared storage room to store the specimens in. This kind of storage requires a lot of logistical 

infrastructures. 

In 1999, whole slide imaging (WSI) was introduced by Wetzel and Gilbertson (Ho et al., 

2006). WSI can provide high image quality that doesn’t decay over time, along with a range of 

other benefits. WSI can be used by multiple researchers to investigate multiple slides at the same 

time, and this kind of data is more useful in order to retrieve information and maintain quality 

control.  

Pathology bounded by the WSI system is emerging into an era of digital specialty. WSI is 

providing solutions for centralizing diagnostic by improving the quality of diagnosis, patient 

safety, and economic concerns. (Ghaznavi, Evans, Madabhushi, & Feldman, 2013). 

The diagnosis of WSI is still difficult.  The gigapixel nature of WSI scans makes it difficult 

to store, transfer, and process samples in real-time. One also needs tremendous digital storage to 

archive them (Babaie et al., 2017). A diagnostic system aided by digital pathology scanned data 

would allow for a more objective approach, and increase our ability to predict an individual’s 

pathological diagnosis and treatment response.  

The most common form of machine learning is supervised learning. In computer vision, 

deep convolutional networks have now become the technique of choice (Litjens et al., 2017).  Deep 
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learning is making major advances in solving problems in the artificial intelligence community. 

Deep learning deals with the problem of data representation by introducing simpler intermediate 

representations that allow them to combine in order to build complex concepts (Affonso, Rossi, 

Vieira, & de Leon Ferreira, 2017). Deep learning methods are multiple levels of representation. 

These representations are obtained by composing simple but non-linear modules that transform 

the representation at one level into a representation at a higher abstract level. Recent studies have 

shown that machine learning algorithms were able to predict disease more accurately than 

experienced clinicians (A. Payan & G. Montana, 2015). Deep learning has a large interest in 

medical image analysis. It is expected that deep learning will hold $300 million for the medical 

imaging market by 2021 (Razzak, Naz, & Zaib, 2018). It is of great interest to develop and improve 

such prediction methods. 

Background 

Single Neural Network  

The basic unit of every single network is the neuron. This basic unit is also known as a 

node. The main computational principle of a neural network is that it receives inputs from any 

external sources and generates an output. 
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Figure 5.1: Single Neuron. 

Each input has an associated weight which is assigned based on its source, as shown in 

Figure 5.1. The node applies a function to the weighted sum of the input. The function that is used 

for calculating output is called the activation function. The above network, shown in Figure 5.1, 

contains 2 input nodes X1 and X2. The associated weights are W1 and W2. There is another input 

with weight 1 and value b, which is known as bias.  

The output of this neuron is calculated as shown in Figure 5.1. The function we use to 

calculate the value of the neural network is known as the activation function. This function is a 

non-linear function, which is used for introducing the non-linearity to the output of the neural 

network. According to most of the real-world dataset, the inputs are discrete and non-linear, and 

our main target is to train our network with this non-linear representation.  

Every activation function takes a single number and performs a specific fixed mathematical 

operation (Karpathy, 2019). There are several activation functions that can be used based on the 

input of the neural network. 
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Feed forward neural network 

The feed forward neural network was the first and simplest type of artificial neural network 

devised (Schmidhuber, 2015). This network model contains multiple basic units referred to as 

nodes arranged in layers, followed by the same type of adjacent layer. Nodes from adjacent layers 

have a connection between them, but nodes from the same layer have no connection among them. 

These connections are called edges. Each adjacent edge has an associated weight with it.   

 

Figure 5.2: Feed Forward Neural Network. 
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There are three types of node layers in a feed forward neural network. These are: 1) input 

nodes, 2) hidden layers, and 3) output node. Three types of nodes in a network are shown in Figure 

5.2.  

1) Input layer: The input nodes gather the information from the outer world. The 

combination of input nodes is known as the input layer. These nodes are primarily 

responsible for receiving inputs from the dataset. No computations are performed in this 

layer.  

2) Hidden Layer: Hidden layers are those that take inputs from the previous input layer. For 

each input layer, first, the input and weight of the connections are multiplied, and then all 

the input weight multiplication products are summed up. After that, the result of the 

summation is put through an activation function and the output is forwarded to the next 

layer. Equation (5.1) shows the output calculation for each node (Litjens et al., 2017). Here, 

the function in equation (5.1) is called an activation function. 

 f(summation) = 𝑓(𝑤0 ∗ 1 +  𝑊1 ∗  𝑋1 + 𝑊2 ∗ 𝑋2) (5.1) 

3) Output Layer: The output nodes also works the same way as the hidden nodes. These 

nodes take inputs from the previous hidden layer. For each output node, they first take the 

multiplication of the output of the previous node and the weight of the connection. Then, 

they sum up the multiplication results of all connections and put the summation on an 

activation function. The final step is to publish the outcome of the activation function as 

the output of the network. 

Activation Function 

Sigmoid: Equation (5.2) shows the sigmoid activation function.  This takes a real value 

input and returns a value between 0 and 1.  
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𝜎(𝑥) =

1

1 +  𝑒−𝑥
 (5.2) 

 

Tanh: Equation (5.3) shows the Tanh activation function. It takes a real value input and 

returns a value between -1 and 1 

 𝑡𝑎𝑛ℎ (𝑥) =  2𝜎(2𝑥) − 1 (5.3) 

 

ReLU: ReLU stands for Rectified Linear Unit. It takes a real value input and thresholds it 

between the max and cuts the negative values to 0. Equation (5.4) shows the ReLU activation 

function. 

 𝑓(𝑥) = max(0, 𝑥) (5.4) 

 

Softmax: The softmax activation function turns the numbers into possibilities that sum to 

one. Softmax activation function changes the outcomes to a vector, which represents the 

probability distribution of a list of potential outcomes. Equation (5.5) shows the sigmoid activation 

function (Litjens et al., 2017). 

 
𝑆(𝑥𝑖) =  

𝑒𝑥𝑖

∑ 𝑒𝑥𝑗𝑘
𝑗=1

 (5.5) 

 

Back Propagation 

Calculating the Total Error  

Once we have the result for each output node, our next goal is to calculate the error for 

each node. We can calculate the error for each output node using the squared error function and 
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sum them to get the total error. Equation (5.6) shows how we calculate the error for back 

propagation. Here, target is the expected value from the output node, and actual is the calculated 

result after forward propagation using the activation function.  

Our goal with back propagation is to update each weight of the network connections, so 

they cause the actual output to be closer to the target output. This helps minimize the error of each 

node and the network as a whole.  

 
𝐸𝑟𝑟𝑜𝑟𝑡𝑜𝑡𝑎𝑙 = ∑

1

2
(𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑎𝑐𝑡𝑢𝑎𝑙)2 (5.6) 

 

The Backwards Pass 

To accomplish that goal, we have to calculate the derivative of the Errortotal with respect to 

the weights of the output layers. Let’s consider wi is the weight between the first hidden layer and 

the first output layer. If we want to know how much change in wi will affect the total error, then 

our derivative will be 
𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑤𝑖
. The derivative of Errortotal with respect to the weight of the connection 

is called “the gradient with respect to wi.” From the Errortotal to wi, there is no direct connection. 

We have to apply the chain rule to establish the relation among them. Equation (5.7)  shows the 

chain rule of the partial derivative of Errortotal with respect to wi.  

 𝜕𝐸𝑟𝑟𝑜𝑟𝑡𝑜𝑡𝑎𝑙

𝜕𝑤𝑖
=  

𝜕𝐸𝑟𝑟𝑜𝑟𝑡𝑜𝑡𝑎𝑙

𝜕𝑂𝑢𝑡𝑝𝑢𝑡1
∗

𝜕𝑂𝑢𝑡𝑝𝑢𝑡1

𝜕 𝑓(𝑠𝑢𝑚𝑚𝑎𝑡𝑖𝑜𝑛)
∗

𝜕𝑓(𝑠𝑢𝑚𝑚𝑎𝑡𝑖𝑜𝑛)

𝜕𝑤𝑖
 (5.7) 

Figure 5.3 shows how the weights are updated based on the total error. When all the new 

weight calculations are complete, then we update the weights as shown in equation (5.8). Here, η 

is known as the learning rate. This learning rate decides what portion of weight needs to be 
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updated. If the learning rate is high, then the weight changes very frequently and updates the 

decision. If too low, then the change requires a large number of training data.  

 
𝑤𝑛𝑒𝑤 = 𝑤𝑜𝑙𝑑 −  𝜂 ∗ 

𝜕𝐸𝑟𝑟𝑜𝑟𝑡𝑜𝑡𝑎𝑙

𝜕𝑤𝑖
 (5.8) 

 

 

Figure 5.3: Back Propagation on Multiple Perception Neural Network. 
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Reducing Loss 

Gradient Descent: Calculating the loss function for every single input is not a very 

efficient approach to find the convergence point.  The convex problems have only one minimum 

data place where the slope is exactly 0. That is the minimum function where the loss function 

converges. The best approach to obtain the convergence point is called the gradient descent. The 

first step is to pick a random number between 0 and 1. The gradient descent algorithm then 

calculates the gradient of the loss curve at the starting point. Something that should be noted is that 

our gradient needs to have the property of moving both forward and backward. So, we pick our 

gradient as a vector, which has both direction and magnitude. The gradient always points towards 

the increase of the loss function. The gradient descent algorithm takes a step in the direction of the 

negative gradient in order to reduce loss as quickly as possible. 

Stochastic Gradient Descent: In gradient descent, we don’t use the whole dataset on a 

single iteration. We only use a certain amount of data at a single time, making it flow through the 

network and calculating the gradient. We call this a single iteration. When the dataset is large, then 

a single portion of data may take a long time to complete computation.  A large dataset with 

randomly sampled examples probably contains redundant data. In this case, a large amount of data 

is certainly not carrying much productive value. The stochastic gradient descent uses only a single 

example per iteration from the dataset to calculate the gradient descent. The term stochastic 

indicates that one data example data is picked randomly per iteration.  

An artificial neural network is a machine learning computational model. This model is 

inspired by the biological neural network in the human brain. This model processes the information 

the same way the human brain processes the information. Artificial neural networks brought some 



42 

 

 

 

breakthrough in machine learning research. Some of them are image recognition, computer vision 

and text processing. 

Methodology 

The deep learning network depends on multiple parameters that is useful for tuning our 

network. These parameters help to increase the performance of the model, reduce the memory 

allocation and training time. These parameters are: 1) batch size, 2) number of epochs, and 3) 

learning rate. 

What is the batch size? 

The batch size determines the number of inputs that we feed to the deep learning network 

for one iteration. The batch size depends on the memory of the machine. When the batch size is 

too high, it consumes a lot of memory.  

H1: The batch size is inversely proportional to the network accuracy. If we increase the 

batch size, then accuracy is decreased.  

What is an epoch? 

The number of epochs determines how many times the whole input set is fed to the neural 

network. If we increase the number of epochs, then the accuracy of the network will increase.  

H2: The accuracy of a deep learning network is directly proportional to the number of 

epochs it passes through.  

What is a learning rate? 

The learning rate determines how frequently the deep learning network changes decision. 

If the learning rate is too high, then the deep learning network changes decisions very frequently. 

In most cases, a high learning rate doesn’t bring any drastic changes to the accuracy. Also, a low 

learning rate may take too long to make a change in decision.  
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H3: Lower and higher learning rate do not bring any change to the network. The network 

performs best within a preferred learning rate. 

Dataset Description 

Here we used the dataset from Kimia Path24 (Babaie et al., 2017). This dataset has a total 

of 22,591 training images from 24 different categories. This dataset has a total of 1,325 testing 

images that include all categories. The image size is 1000 x 1000 for all the images.  

Model Description 

Data preparation 

We used the Keras library from python to build our neural network. First, we loaded the 

image using the OpenCV library and then resized the image to 28 x 28. Then, we divided the 

dataset into two parts: 1) training and 2) testing. The training set contained 75% of the data, and 

the testing set contained 25% of the data. The testing set is used for validating the network. Then, 

we converted the labels from integer to vectors. After that, we performed the data augmentation. 

We set the rotation range to 30, width shift range to 0.1, height shift range to 0.1, shear range to 

0.2, zoom range to 0.2, horizontal flip to true, and fill mode to nearest. 

Building Network 

After completing the data augmentation, we built our neural network. Figure 5.4 contains 

the code snippet of the neural network. Our deep learning model contains 3 convolution networks. 

A small portion of the convolution layer is used as the input of each node, and the size of the small 

portion is often 3 x 3 or 5 x 5 (J. Liu et al., 2018). The activation function is the rectified linear 

unit followed by a flat layer, and finally, two dense layers. The first layer has the activation 

function rectified linear unit (ReLU) and the output layer has the softmax. The softmax helps to 

keep the output between zero and one. Then we set the optimizer for this model. We set the adam 
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optimizer with a learning rate of 10-3. After that, we compiled the model with a batch size of 32 

and the number of epochs as 25. We set the loss to binary_crossentropy and metrics to accuracy.  

class LeNet: 

  @staticmethod 

  def build(width, height, depth, classes): 

    # initialize the model 

    model = Sequential() 

    inputShape = (height, width, depth) 

 

    # if we are using "channels first", update the input shape 

    if K.image_data_format() == "channels_first": 

      inputShape = (depth, height, width) 

 

    # first set of CONV => RELU => POOL layers 

    model.add(Conv2D(20, (5, 5), padding="same", 

      input_shape=inputShape)) 

    model.add(Activation("relu")) 

    model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) 

 

    # second set of CONV => RELU => POOL layers 

    model.add(Conv2D(50, (5, 5), padding="same")) 

    model.add(Activation("relu")) 

    model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) 

     

    # Third set of CONV => RELU => POOL layers 

    model.add(Conv2D(64, (5, 5), padding="same")) 

    model.add(Activation("relu")) 

    model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) 

 

    # first (and only) set of FC => RELU layers 

    model.add(Flatten()) 

    model.add(Dense(64)) 

    model.add(Activation("relu")) 

 

    # softmax classifier 

    model.add(Dense(classes)) 

    model.add(Activation("softmax")) 

 

    # return the constructed network architecture 

    return model   
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Figure 5.4: Building Deep Learning Neural Network with Keras. 

Train the model 

After setting all the parameters, we ran the model with the fit_generator. Then, we saved 

the model and the learning curve plot with loss, accuracy, validation loss, and validation accuracy.  

Test the model 

After we finished training our model, we used a different script to test the model. We loaded 

the saved model and ran the prediction methods with the test data and generated the confusion 

matrix to find the accuracy, recall, precision, and f1-score. 

Results 

The change of accuracy with respect to the batch size is displayed in Table 5.1. From the 

table, we can see that the accuracy decreases when we increase the batch size, which is satisfying 

our first hypothesis. Figure 5.5 shows that the decrease in accuracy is linear with respect to the 

batch size.  

Batch Size 

Epoch Batch size Learning rate Accuracy 

50 16 0.001 0.6491 

50 32 0.001 0.6204 

50 64 0.001 0.5585 

50 128 0.001 0.4989 

50 256 0.001 0.4777 

50 512 0.001 0.4438 

50 1024 0.001 0.4513 

Table 5.1: Change of Accuracy with Batch Size. 
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Figure 5.5: Change of Accuracy with Batch Size. 

The change of accuracy with the change of epoch is displayed in Table 5.2. From the table, 

we can see that the accuracy increases with the number of epochs, which satisfies our second 

hypothesis. Figure 5.6 shows that the accuracy is not linearly correlated with the number of epochs 

when the value is small. With a larger epoch size, the accuracy increases linearly with respect to 

the number of epochs.  

EPOCH 

Epoch Batch size Learning rate Accuracy 

10 32 0.001 0.5668 

15 32 0.001 0.5970 

25 32 0.001 0.5298 

35 32 0.001 0.6128 

50 32 0.001 0.6204 

70 32 0.001 0.6491 

100 32 0.001 0.6732 

Table 5.2: Change of Accuracy with Number of Epochs. 
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Figure 5.6: Change of accuracy with number of epochs. 

From Table 5.3, we can see that the accuracy increases when we increase the learning rate 

from 0.1 to 0.001. Then after 0.005, the accuracy starts decreasing. At the learning rate of 0.0001, 

the accuracy is 45.6%, which is less than the accuracy of the learning rate of 0.001 (61.9%). So 

the accuracy starts decreasing after the learning rate of 0.0001. This experiment validates our third 

hypothesis that the higher learning rate and lower learning rate do not always bring better changes 

to the accuracy. 

Learning Rate 

Epoch  Batch size Learning rate Accuracy 

50 32 0.1 0.0528 

50 32 0.05 0.0302 

50 32 0.01 0.0566 

50 32 0.005 0.5925 

50 32 0.001 0.6189 

50 32 0.0005 0.6272 

50 32 0.0001 0.4558 

Table 5.3: Change of Accuracy with Respect to Learning Rate. 
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Figure 5.7: Change of Accuracy with Respect to Learning Rate. 

Figure 5.7 shows the change in accuracy, with respect to learning rate. The relation between 

learning rate and accuracy is not linear. The accuracy does not increase or decrease linearly with 

the change in learning rate.  

Discussion 

In this experiment, we have done an imperial study of image processing with deep learning. 

We have conducted the experiments on the KIMIA path24 dataset.  We have simply designed the 

architecture and used the feature selection. The image processing mechanism was used for 

manipulating the dataset. We have used rotation, width shifting, height shifting shear range, 

horizontal flip, and fill mode. The network was trained and validated by a total of 22,591 images 

from the KIMIA path24 dataset. The running time of the network was 6-7 hours depending on the 

parameters. We used a Google collaboratory training environment equipped with two core Intel’s 

@2.3 GHz Xeon processor with a NVIDIA Tesla K80 (GK210 chipset) (Carneiro et al., 2018).  
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In this experiment, we used two serial 2-dimensional CNN architectures for segmentation. 

We used ReLU for the convolution layer and softmax for the fully connected layer. During the 

compilation, we used the adam optimizer and set loss to binary_crossentropy. The learning rate, 

the batch size, and the number of epochs was set according to hypotheses testing.  

As a limitation of our experiment, various types of network architecture for the 

segmentation are possible. As proof of the concept to test those hypotheses of our deep learning 

network parameter, the structure of the architecture was empirically designed after studying the 

image prototype. An adjustment of our proposed network, including the number of convolution 

layers, the number of nodes, the activation function, and other parameter upgrades, are possible. 

As a future work, an optimization of the network architecture and the parameter upgrades could 

increase the runtime and improve the performance. As our architecture and other parameters were 

set to test those hypotheses against the KIMIA path24 dataset, this design can be optimized and 

retrained for other image datasets.  

One of the issues of the deep convolutional neural network is sample images. The number 

of images required to test and validate the network is not always available. The scale of the medical 

data available for studies is insufficient for machine learning and computer vision. This can affect 

the performance of deep learning for medical data (Robertson, Azizpour, Smith, & Hartman, 

2018). In general, the convolutional neural network requires a large number of training data for 

each specific category. In our current dataset, we have a total of 24 categories. Some categories 

have more than 1,000 images for training, whereas few categories have less than 100 images for 

training and validation. These categories decline in accuracy and affect the overall performance. 

Using a proper dataset for all categories can improve the performance and provide more degree of 

freedoms. 
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Conclusion 

In this experiment, we built a simple deep convolutional neural network and Conducted 

hypothesis testing on three hypotheses on the Kimia Path24 dataset. 2D convolutional neural 

networks were used for image classification. Our three hypotheses were proved correct. We used 

an image feature selection and image processing mechanisms for moderating the dataset. The 

parameter tuning and network structure designs provide essential outcomes, which ensures the 

credibility of our model. 
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CHAPTER 6 

CONCLUSION 

In this work, we have concluded three different studies. The first study is finding an 

efficient log base entropy for a decision tree dataset with categorical attributes. The second study 

is finding the most important attributes among all the attributes from a mental health dataset. In 

the final study, we develop a deep learning model on the Kimia path24 dataset and observe the 

effect of changing learning parameters, preparing support for all our hypotheses through 

experimental results. We used 4 different UCI machine learning datasets for our first study. Four 

datasets were analyzed and compared with different log bases: 𝑙𝑜𝑔2 , 𝑙𝑜𝑔𝑒 , and  𝑙𝑜𝑔10. Changing 

the log base has no effect when the dataset has a mixture of continuous and categorical attributes. 

Our first study suggested that higher values of accuracy were achieved on 𝑙𝑜𝑔10 when the dataset 

contains mostly categorical attributes and those attributes have 3 or more classification elements. 

In our second study, we developed a detective system that can assist tech companies to help them 

identify their employees’ mental health conditions. Twenty-four different decision trees were used 

with different parameter values. Among the 24 different decision trees, the model we prefer has 

an accuracy of 88.5%. The work interference and the family history were counted as the most 

important attributes for predicting mental health issues. In our final study, we built a simple deep 

2D convolutional neural network for image classification. We developed three different 

hypotheses and tested those hypotheses on the Kimia path24 dataset. All hypotheses made on our 

final study were supported successfully. The credibility of our model was tested by varying 

parameter tuning and design structure. The discrepancy of the dataset (not having the same number 

of images for all the categories) affects the overall performance of our model and reduces the 
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inclination of accuracy. This can be avoided by using the same amount of data for all the 

categories. 
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