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SMART DISTRIBUTED GENERATION SYSTEM EVENT CLASSIFICATION USING

RECURRENT NEURAL NETWORK-BASED LONG SHORT-TERM MEMORY

by

SHUVA DAS

(Under the Direction of Rami J. Haddad)

ABSTRACT

High penetration of distributed generation (DG) sources into a decentralized power system

causes several disturbances, making the monitoring and operation control of the system

complicated. Moreover, because of being passive, modern DG systems are unable to detect

and inform about these disturbances related to power quality in an intelligent approach.

This paper proposed an intelligent and novel technique, capable of making real-time de-

cisions on the occurrence of different DG events such as islanding, capacitor switching,

unsymmetrical faults, load switching, and loss of parallel feeder and distinguishing these

events from the normal mode of operation. This event classification technique was designed

to diagnose the distinctive pattern of the time-domain signal representing a measured elec-

trical parameter, like the voltage, at DG point of common coupling (PCC) during such

events. Then different power system events were classified into their root causes using

long short-term memory (LSTM), which is a deep learning algorithm for time sequence

to label classification. A total of 1100 events showcasing islanding, faults, and other DG

events were generated based on the model of a smart distributed generation system using

a MATLAB/Simulink environment. Classifier performance was calculated using 5-fold

cross-validation. The genetic algorithm (GA) was used to determine the optimum value



of classification hyper-parameters and the best combination of features. The simulation

results indicated that the events were classified with high precision and specificity with ten

cycles of occurrences while achieving a 99.17% validation accuracy. The performance of

the proposed classification technique does not degrade with the presence of noise in test

data, multiple DG sources in the model, and inclusion of motor starting event in training

samples.

INDEX WORDS: Deep learning, Distributed generation system, Genetic algorithm,
Islanding detection, Long short-term memory, Multi-class event classification, Optimal
feature selection, Smart grid
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CHAPTER 1

INTRODUCTION

The traditional electrical power grid poses technological and operational challenges

because it is centralized with bulk generation sites and long-distance power transmission

networks. Moreover, transmission line faults that occur due to events, such as falling trees,

can cause a series of failures that may lead the system to significant blackouts (Guha,

Haddad, and Kalaani 2015c). Also, the ever-increasing demand for customized, green,

and high-quality power supplies has driven the existing generation and transmission sys-

tem to operate close to an exhaustive limit. In this case, the transmission and distribution

losses have also been increased by considerable amounts (Haddad et al. 2018). The rigid

constraints for installation of new transmission lines (Bari and Jawale 2016), the envi-

ronmental impact of conventional power generation using fossil-fuel (Basak et al. 2012),

and the traditional steady deregulation process of the electricity market (Georgilakis and

Hatziargyriou 2013) have played a vital role in increasing the interest in distributed gen-

eration (DG) resources. Moreover, most of these DG resources are photovoltaic (PV) sys-

tems, wind energy conversion systems, and fuel cells (Feng et al. 2018), which are renew-

able and environment-friendly. DGs are generally owned by individuals, industries, or an

independent power producer, since DG sources, in general, are cost-effective, emission-

free, and resilient (Agency 2018). DGs also contribute to grid reinforcement, reduction

in power losses and on-peak operational expenses, and an increase in grid efficiency and

reliability (Basak et al. 2012). A DG system is comprised of small-scale (few kilowatts to

megawatts) decentralized generating units, which are quiet, compact, and independent (Jär-

ventausta et al. 2010). In the US, more than 12 million DG units have been installed under

variable policies and incentives, which constitute one-sixth of the total existing centralized

generation capacity (Agency 2018).

Generally, DGs are built within the infrastructure of a conventional power system
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where centralized control is applied to the transmission system and passive control system

to the distribution system (‘fit and forgot’ approach) (Keane et al. 2013; Boehme, Harrison,

and Wallace 2010). Since this approach limits the DG penetration (EURELECTRIC 2013),

high penetration of DGs along with active components such as storage devices, dynamic

loads, and plug-in hybrid vehicles increase the complexity of grid management. Some

major issues that accompany high penetration of DGs are voltage and frequency destabi-

lization, power quality (PQ) variations (Khamis et al. 2013), and protection failure such as

out-of-phase reclosing due to relay malfunctioning.

1.1 ISLANDING DETECTION

One of the major concerns since the early '80s in DG interconnection is due to in-

creased DG penetration is unintentional islanding (Arritt and Dugan 2015). Islanding oc-

curs when electrical isolation of DGs from the remainder of the power grid occurs. A DG

system in islanded mode has been shown in Fig. 1.1.

Control 

System

PV array 

with MPPT 

controlled 

boost converter

3-phase 

inverter
PCC

LoadCapacitor 

Bank

150KVA

260/25KV

Transformer

3-phase 

breaker

Utility 

Grid

R-L filter

ISLAND

Figure 1.1: Distributed Generation System in islanded mode

A DG system can be designed to offset the demand when the cost of generation is
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high by operating in an intentional islanded mode. This way, not only customers ben-

efit financially, but also suppliers can reduce the generation and distribution upgrading

costs (OpenEi 2018). However, the problem occurs when DG goes into islanded mode

unintentionally due to the malfunctioning of protection equipment, faults, or substation

failure. The situation becomes more severe when an isolated subsystem continues to be

energized by a DG, and islanding remains undetected by the DG protection system. An

islanded DG system can face some significant implications such as reconnection of the is-

landed system to the grid due to out-of-phase reclosing—DG voltage, and when isolated,

it can remain unsynchronized with the grid in islanded mode. So, the reclosing of two sys-

tems without protection system coordination in such a situation can feed high currents and

torque into the rest of the grid. Moreover, the safety of line workers and field engineers is

compromised.

There are several standards (Std.), such as IEEE Std. 1547 (IEEE1547 2003), UL

1741 (UL1741 2001), and IEC 62116 (IEC62116 2008), which mandated detection and

control requirements to design Islanding Detection (ID) techniques. IEEE Std. 1547 pro-

vided requirement for interconnecting DG resources and grid utility, while UL 1741 set

standards for safety measurements of the charge controller and power converter in PV stor-

age systems. IEC 62116 has given test benchmarks for utility connected PV inverters.

The maximum islanding detection time set by these standards is 2 seconds. Since the per-

formance of islanding detection techniques can be affected by any change in load quality

factor Q f (ratio of reactive and real power provided by DG source), the standards men-

tioned above set a constant value (1 or 2.5) for Q f to be maintained in the system for better

detection accuracy. The performance of ID techniques is evaluated using detection time,

detection accuracy, and non-detection zone (NDZ) (Li et al. 2019). NDZ is defined as the

region of active and reactive power mismatch where islanding remains undetected by an ID

technique.
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A significant amount of research has been carried over the years to develop ID tech-

niques and their modification. ID techniques based on monitoring and scrutinizing the local

parameters, i.e., voltage, frequency, rate of change of frequency (ROCOF), and current at

the point of common coupling (PCC) have been categorized into four different classes by

the taxonomy (Guha, Haddad, and Kalaani 2015c): active, passive, remote, and machine

learning-based techniques as presented in Fig. 1.2.

Anti-islanding Techniques

Passive 

Techniques

Active 

Techniques

Remote 

Techniques

Techniques based 

on Machine 

Learning

Time 

Domain

Frequency 

Domain

Wavelet 

Transform

VU and THD

Inverter 

switching 

frequency

Grid voltage 

sensorless

controller

OUV/OUF

Phase jump 

Detection

Decomposition

Voltage 

ripple

Impedance 

measurement

DQ frame 

current injection

Active 

Frequency Drift

Sandia Voltage 

and frequency 

shift

Slip mode 

frequency shift

Output power 

perturbation

Power line carrier 

communication

SCADA

Autoground

Synchrophasor

Figure 1.2: Taxonomy of Islanding detection techniques

Active ID techniques analyze the deviation of the local parameters because of inten-

tional disturbances injection after the occurrence of islanding in the DG system. These
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techniques are commonly based on impedance measurement (Asiminoaei et al. 2005; Gao,

Wang, and Yun 2019; Wen et al. 2016), DQ frame current injection (Gupta, Bhatia, and

Jain 2015; Voglitsis, Papanikolaou, and Kyritsis 2019; Murugesan and Murali 2019a), ac-

tive frequency drift (Kim and Kim 2019; Ropp, Begovic, and Rohatgi 1999; Yafaoui, Wu,

and Kouro 2012), Sandia voltage and frequency shift (Vahedi and Karrari 2013; Khoda-

parastan et al. 2017), slip mode frequency shift (Akhlaghi, Ghadimi, and Akhlaghi 2014)

and output power perturbation (Chen et al. 2019; Chen and Li 2016; Park, Kwon, and Choi

2019; Sun et al. 2017). Though active ID techniques offer small NDZ and faster operation

than passive ID techniques, they lead to PQ deterioration due to the disturbance fed into the

system's control module. On the contrary, passive techniques track and compare the devia-

tion trend of the local parameters monitored at PCC from their predefined threshold value

after islanding occurs. These techniques can be divided into two categories based on the

approach: time-domain (Raza et al. 2017; Saleh et al. 2016; Guha, Haddad, and Kalaani

2015a; Y. M. Makwana and Bhalja 2017; Guha, Haddad, and Kalaani 2016; Rostami et

al. 2019; Ganivada and Jena 2019; Jinsong et al. 2018; Makwana, Bhalja, and Gokaraju

2019; Mlakic, Baghaee, and Nikolovski 2019a; Ruchita et al. 2018; Mohanty et al. 2019;

Niaki and Afsharnia 2014) and frequency domain (Das and Chattopadhyay 2018; Muda

and Jena 2018; Y. M. Makwana and Bhalja 2019; Dubey, Popov, and Samantaray 2019;

Reigosa et al. 2017; Guha, Haddad, and Kalaani 2015b; Samui and Samantaray 2013; San-

toso et al. 2000; Hsieh, Lin, and Huang 2008). Time-domain approaches are based on

over/under voltage (OUV), over/under frequency (OUF), phase jump detection, decompo-

sition techniques, and voltage ripple detection. On the other hand, the frequency domain

approaches are based on wavelet transformation, voltage unbalance (VU), time-harmonic

distortion (THD), inverter switching frequency, and grid voltage sensorless controller. Pas-

sive ID techniques are cost-effective and technology-neutral, but they often suffer from

a larger NDZ margin than active ID techniques and inconvenient tripping. Remote ID



13

techniques are based on the continuous monitoring system by communication between

utility and DG sources using power-line carrier communication (Ropp et al. 2000; Xu et

al. 2007; Wang et al. 2007), SCADA (Ward and Michael 2002), autoground (Chad, Bris-

sette, and Philippe 2014), and synchrophasor, i.e., phase measurement (Pena et al. 2013;

Sykes et al. 2007). Of some other most recently developed techniques, signal-processing

based ID techniques offer a solution to the problem of both NDZ and PQ disturbances.

Some advanced signal processing tools for islanding detection are mathematical morphol-

ogy (Farhan and K 2017), duffing oscillator (Vahedi, Gharehpetian, and Karrari 2012), and

S-transform (Ray, Kishor, and Mohanty 2010). These techniques also have shortcomings

associated with the level of signal to be decomposed, noise sensitivity, and high compu-

tational complexity. Hybrid techniques (Siddiqui, Fozdar, and K. 2017; Murugesan and

Murali 2019b; Mlakic, Baghaee, and Nikolovski 2019b; Murugesan, Murali, and Daniel

2018; Kermany et al. 2017; Khodaparastan et al. 2017; Azim et al. 2017) are some of the

most recent developments in the field of ID techniques, which are the integration of active

and passive ID techniques. However, these techniques incorporate more parameters than

other ID schemes to address PQ problems such as frequency deflection, voltage sag, swell,

harmonics, and power factor fluctuation.

1.2 INTELLIGENT APPROACH FOR ISLANDING DETECTION

In the DG system, different non-islanding events are capacitor switching, short-circuit

faults, load switching, loss of parallel feeder (LOPF), and a motor starting that can be de-

tected as islanding erroneously. Moreover, the growing system complexity of DGs due

to ongoing trends, like smart grids, are urging the development of ID techniques that can

process large datasets more efficiently and accurately. The exploitation of smart event clas-

sification techniques based on artificial intelligence and machine learning can help DGs

to incorporate islanding and different non-islanding scenarios more accurately while as-
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suring smart maintenance of overall system stability. The first step of an event classifier’s

implementation is to design a monitoring and data acquisition system for recording the dis-

turbances in the DG system. Then, these data need to be processed so that features from

the selected parameters can be extracted. Finally, extracted features are used to differenti-

ate and classify different DG events. A typical structure of such classification techniques

followed in the literature is illustrated below in Fig. 1.3:

Feature 

Selection

Feature 

Extraction
OutputClassification

Event 

Segmentation

Figure 1.3: A typical structure followed in existing event classification techniques

1.3 SUMMARY OF CONTRIBUTIONS

In this work, the proposed classification technique does not require any complex

calculation for feature extraction and is capable of adding intelligence into a DG system in

a decentralized fashion. By monitoring some parameter values having certain combinations

for different DG events such as islanding, non-islanding, and normal operation mode, this

technique logs those parameters. Then, it uses them to classify these events with high

accuracy, efficiency, and reliability. Five-fold cross-validation has been used to evaluate

the performance validity of the proposed technique. A genetic optimization algorithm (GA)

has been integrated with the proposed model to optimize the classifier performance. The

optimum numbers of training parameters and the best combination of features selected by

GA are applied to the model to analyze for overall classification performance. Finally, the

robustness of this technique is validated by testing the trained network’s performance for

a single DG system under the bulk amount of unseen dataset, noisy dataset, starting of an

induction motor in both single DG, and multiple DG system.
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The remainder of this thesis is organized as follows. Chapter 2 discusses the different

techniques used for the event classification of DG systems. Chapter 3 explains the hypoth-

esis behind choosing the parameters for the detection of different events, the theory behind

the proposed technique used for classifying those events based on the time sequence trend

of the parameters selected. Chapter 4 presents the simulation of the DG system by integrat-

ing photovoltaic sources with the utility grid. Chapter 5 presents the detail about the dataset

preparation along with a brief outline of designing the LSTM model used to classify the

data and its optimization. Chapter 6 presents the experimental results and findings of this

study. Finally, Chapter 7 concludes the thesis with a summary of the proposed DG event

classification method and findings.
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CHAPTER 2

LITERATURE REVIEW

Mostly, time-domain signal waveforms of voltage and current are used in classification

methods presented in the literature. Features that represent unique characteristics of differ-

ent DG events are extracted using different techniques as per requirements for classification

layer input. Table 2.1 summarizes the most recent literature that developed different classi-

fication techniques for the DG system, including the feature extraction method and overall

classification accuracy. Some commonly used feature extraction techniques in different

literature are: Hilbert transform (Chakravorti, Patnaik, and Dash 2018), Slantlet trans-

form (Ahmadipour et al. 2019; Ahmadipour, Borbad M., and Hizam 2019), wavelet trans-

form (Ahmadipour et al. 2019; Khokhar et al. 2017; Eristi et al. 2013; Wang, Ravishankar,

and Phung 2019; Kong et al. 2018; Manikonda and Gaonkar 2019), S-transform (Menezes

et al. 2019; Ray, Mohanty, and Kishor 2013), Hilbert-Huang transform (Mishra and Rout

2018), morphological filtering (Chakravorti, Patnaik, and Dash 2018; Mishra, Panigrahi,

and Rout 2019), etc. The feature extraction technique can be a key factor in the overall

performance of the classifier. Different types of DG event cases were classified as: low

and high impedance faults, load switching, capacitor switching, DG outage in two different

modes: grid-connected and islanded (Mishra, Panigrahi, and Rout 2019). They have used

a very new classification technique called extreme learning machine (ELM) with mathe-

matical morphological filtering as the feature extraction method, which achieved an overall

classification accuracy of 97.45% and 98.67% for grid-connected and islanded mode re-

spectively. With the same system and classifier, but the Hilbert-Huang transform method

as feature extraction (Mishra and Rout 2018), their overall classification accuracy decreased

down to 96.99% and 96.75% for grid-connected and islanded mode respectively.

Features extracted using different techniques were used as input of the classifier based
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Table 2.1: Comparison of existing DG event classification techniques

References Feature Extraction Classifier Accuracy

(Chakravorti, Patnaik,

and Dash 2018)

Hilbert Transform

Morphological Filtering

DT

DT

99.05%

99.70 %

(Ahmadipour

et al. 2019)

Slantlet Transform

Wavelet Transform

RPNN 100%

93.33%

(Ahmadipour, Borbad

M., and Hizam 2019)

Slantlet Transform PNN 97.39%

(Khokhar et al. 2017) Wavelet Transform PNN 99.875%

(Eristi et al. 2013) Wavelet Transform LS-SVM 98.84%

(Wang, Ravishankar,

and Phung 2019)

Wavelet Transform SVM

KNN

99.5%

100%

(Kong et al. 2018) Wavelet Transform Deep

Learning

98.3%

(Manikonda and

Gaonkar 2019)

Wavelet Transform CNN 98.73%

(Menezes et al. 2019) S-Transform ANN 99.86%

(Mishra, Panigrahi,

and Rout 2019)

Morphological Filtering ELM 98.67%

(Chandak et al. 2018) Differential Evolution K-ELM 99.73%

(Haddad et al. 2018) PCC Signals ANN 96.21%

(Baghaee et al. 2019a,

2019b)

PCC Signals SVM 100%

(Haoran et al. 2019) PCC Signals Logistic

Regression

100%
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on: decision tree (DT) (Chakravorti, Patnaik, and Dash 2018), kernel-based extreme learn-

ing machine (K-ELM) (Chandak et al. 2018), artificial Neural Network (ANN) (Menezes

et al. 2019; Kumar and Bhowmik 2018; Haddad et al. 2018), relevance vector machine

(RVM) (Y. Makwana and Bhalja 2016), support-vector machine (SVM) (Wang, Ravis-

hankar, and Phung 2019; Ray, Mohanty, and Kishor 2013; Baghaee et al. 2019a, 2019b),

least-squared support vector machine (LS-SVM) (Eristi et al. 2013; Ray, Mohanty, and

Kishor 2013), k-nearest neighbor (KNN) (Wang, Ravishankar, and Phung 2019), and prob-

abilistic neural network (PNN) (Ahmadipour, Borbad M., and Hizam 2019; Khokhar et

al. 2017), modular probabilistic neural network (MPNN) (Ray, Mohanty, and Kishor 2013),

logistic regression (Haoran et al. 2019), Naive-Bayes classifier (NBC) (Mishra and Rout

2018), etc. A review of the classifiers and a detailed comparison of ID techniques based on

these classifiers are presented in this chapter.

2.1 DECISION TREE

Decision tree (DT) algorithms use a flowchart to break down a sophisticated model

of sequences into some simple sequences by evaluating the possible consequences of the

input variable. After comparing the input variable to a specific threshold at each node of

decision, the model predicts an event’s chance of occurrence. In general, in the beginning,

the root node is split into two child nodes based on the defined threshold. Child nodes

are then split into different branches until the final ‘nodes’ called ‘leaf’ have been found,

which represent distinct classes. For islanding detection, DT algorithms search for innate

relationships in data sequence and find the distinct characteristics of islanding event cases

from other non-islanding event cases.

A decision tree algorithm (Madani et al. 2012) was proposed for islanding detection

based on a binary classification method. This study has used an adaptive boosting tech-

nique to reduce the rate of classification error. The algorithm was designed with three child
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nodes and five leaf nodes. This method gave 100% accurate results in classifying island-

ing cases with negligible NDZ. Another DT algorithm (Sun, Wu, and Centeno 2011) has

been proposed for islanding detection based on data-mining software called ‘CART.’ Their

test on a large-scale power system model had 98% average prediction accuracy. Another

decision tree method has been proposed based on the ‘Iterative Dichotomiser 3 (ID3)’ algo-

rithm (Chandak et al. 2018). In this method, changes in some parameters during islanding

and different non-islanding events were plotted graphically. Then, classification is done

based on the sensitivity of the parameters for all events considered.

In another literature (Chakravorti, Patnaik, and Dash 2018), another decision tree algo-

rithm was proposed based on fuzzy logic called ‘fuzzy judgment tree’ to design a multiclass

classifier. Two different feature extraction methods were used based on signal processing:

multi-scale morphological gradient (MSMG) filter and short-time modified Hilbert trans-

form (STMHT). The proposed classifier was able to classify islanding and different other

PQ disturbances with 93.1% and 93.7% accuracy using MSMG and STMHT as feature

extraction methods, respectively.

2.2 ARTIFICIAL NEURAL NETWORK

Artificial Neural Networks (ANN) replicate the human brain’s biological nervous sys-

tem to process input information for applications such as pattern recognition, forecasting,

and curve fitting. ANN is designed with hidden layers called ‘neurons’ consisting of nodes

through which input data is processed with learned weights and bias values and finally

sent to the output layer. Activation functions are used to relate between all layer outputs

and inputs. Training algorithms control the learning process by which weights are updated

through the layers. The number of hidden layers is chosen independently. But ANN mod-

els can become complicated with a higher number of hidden layers even though it ensures

better performance overall. Feed-forward ANN is mostly used to address power system
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problems such as voltage fluctuations, system stability analysis, and fault detection.

Some researches used ANN for addressing islanding detection issues in recent years.

A feed-forward ANN model with four passive inputs (Laghari et al. 2014) was proposed

for classifying islanding events and non-islanding events. ‘Levenberg Marquardt Back

Propagation’ algorithm has been used for the training process to achieve less training time

and reduce the epoch number. The zero NDZ has been achieved with 100% classifica-

tion accuracy. A similar algorithm was also used for islanding detection (Menezes, Coury,

and Fernandes 2019), where the ‘Minimal redundancy maximal relevance’ method for fea-

ture extraction was used to exclude the input parameters with low redundancy. Different

types of faults, load switching events, and islanding events were classified with 99.998%

accuracy. Another model with ANN was proposed to classify scenarios such as power

mismatch, over-voltage, and under-voltage in various power factor conditions (Mehang,

Riawan, and B. Putri 2018). In this study, the PCC’s voltage has been taken as an input

parameter for the ANN training model. Classification Accuracy of 94% has been achieved

with a detection time ranging from 0.14s to 0.24s by the model.

A novel classification technique based on ANN was proposed. It incorporated sep-

arate ANNs for each parameter (that are readily available at PCC) and used the majority

vote fusion algorithm to combine classification outputs of all ANN and generate final clas-

sification output (Haddad et al. 2018).

2.3 SUPPORT VECTOR MACHINE

Support vector machine (SVM) is a popular classification algorithm based on struc-

tural risk minimization that can be trained with a smaller dataset with fewer variables.

Instead of reducing the dimension, a hyperplane in an ample or infinite-dimensional space

is constructed with SVM non-linear mapping. SVM can be handy for classification, re-

gression, or other tasks like outline detection because of these characteristics. In practice,
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the SVM algorithm is implemented using a kernel that connects the input vectors named as

support vectors to the test vectors. By transforming the problem using some linear algebra,

the learning of the hyperplane in linear SVM is done. Moreover, the process of solving

the SVM model is by using an optimization procedure. The search for coefficients of the

hyperplane is done by using a numerical optimization procedure.

A multi-feature based technique with SVM classifier was proposed to detect island-

ing (Alam, Muttaqi, and Bouzerdoum 2014). Features were extracted for various power im-

balance cases, along with islanding, and then the SVM classifier was trained with both lin-

ear and polynomial kernel. With the linear kernel, the islanding detection rate was 99.53%,

with a 0% false alarm rate. But with the polynomial kernel, though the detection rate in-

creased to 99.62%, the false alarm rate was increased to 4.13%. A radial bias function was

used as the kernel to design the SVM classifier for ID (Matic-Cuka and Kezunovic 2014).

Five fold-cross validation method with the bootstrapping method was used for performance

evaluation. The classification accuracy achieved for ID was 98.94%, while the overall ac-

curacy was 99.49%, with 0.6277% of uncertainty. SVM was proposed for islanding and

grid fault detection and for protection of PV-based microgrids with PHEV (Baghaee et

al. 2019a), which will be discussed later in another section in this chapter.

2.4 PROBABILISTIC NEURAL NETWORK

Probabilistic Neural Network (PNN) has been modeled using a Bayesian technique

to use for applications such as pattern recognition. Designing PNN requires four-layers: an

input layer, pattern layer, summation layer, and an output layer. Not only the fact that PNN

guarantees convergence if given enough data, but also the high speed of the convergence

process makes it very much useful as a real-time fault detection technique and signal classi-

fier. A PNN model was proposed to detect islanding (Ahmadipour, Borbad M., and Hizam

2019). The model used a unique feature input vector for training that was decomposed
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by ‘Slantlet Transform’ from the PCC signal waveform. The performance of the proposed

model was evaluated under different load conditions, and finally, 97.39% of accuracy was

achieved. Khokhar et al. proposed a new feature selection algorithm that integrates ‘dis-

crete wavelet transform’ as a feature extraction method and PNN as a classifier for detecting

different PQ disturbances in the DG system. A technique called ‘Artificial Bee Colony’ has

been used to determine the optimum number of features. 99.875% of accuracy has been

achieved after using optimum features for training, which is best reported using PNN.

An improved version of PNN called Ridgelet PNN (RPNN) has been used for island-

ing detection (Ahmadipour et al. 2019). Both ‘Slantlet transform’ and ‘discrete wavelet

transform’ techniques have been used as feature extraction methods with RPNN to clas-

sify islanding and other DG events. With ‘Slantlet transform’, 100% accuracy has been

achieved, while 93.33% accuracy has been achieved with dataset extracted using ‘discrete

wavelet transform’. Another modified version of PNN called modular PNN (MPNN) (Ray,

Mohanty, and Kishor 2013) was used to classify different PQ events. S-transform has been

used for feature extraction, and SVM and LS-SVM were also used to compare the results.

Though MPNN performed better than the other two in the simulated environment, with

the experimental setup, LS-SVM outperformed both MPNN and SVM. However, PNN and

its modified versions are slower than multi-layer perceptron networks at classifying new

cases.

2.5 LOGISTIC REGRESSION

Logistic regression is a supervised machine learning algorithm for binary classifica-

tion. It uses the logistic function, also called the sigmoid function σ(x) = 1
1+e−x that can

take any real-valued number and map it into a value between 0 and 1. A classification

technique based on logistic regression (Haoran et al. 2019) was proposed to classify island-

ing and non-islanding events. Features with a high correlation have been selected, which
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then was followed by the training process under the TensorFlow environment. The trained

network performed well on predicting 16 test cases with 100% accuracy.

2.6 COMPARATIVE ANALYSIS

Though some of the literature (Khokhar et al. 2017; Eristi et al. 2013; Wang, Rav-

ishankar, and Phung 2019; Ray, Mohanty, and Kishor 2013) classified the system’s PQ

disturbances with higher accuracy, these techniques were unable to find the root cause of

these disturbances. Classification techniques (Chakravorti, Patnaik, and Dash 2018; Ah-

madipour et al. 2019; Ahmadipour, Borbad M., and Hizam 2019; Chandak et al. 2018;

Kumar and Bhowmik 2018; Y. Makwana and Bhalja 2016; Baghaee et al. 2019a, 2019b;

Haoran et al. 2019) classified a wide range of DG events, including islanding with high

accuracy and faster detection time. Islanding detection technique, proposed in some lit-

erature (Haddad et al. 2018; Baghaee et al. 2019a, 2019b; Haoran et al. 2019), used the

available parameter signals at PCC and detected islanding with a high accuracy rate. How-

ever, techniques used in some literature (Baghaee et al. 2019a, 2019b) still suffered from

9.52% NDZ. Moreover, few islanding cases were compared to the non-islanding cases for

classification used in these studies (Haoran et al. 2019). Moreover, none of these tech-

niques considered the ‘normal operation’ as an output class, which might otherwise affect

the classifier’s performance. Since DGs pose the probability of misidentifying an islanding

event as a grid-connected mode or vice-versa, exclusion of feature data characterizing the

ideal mode of operation as input can improve the overall classification accuracy artificially.

Since most of the classification techniques were designed to classify all the DG events

in two classes: islanding and non-islanding, they were unable to classify the considered

events into root causes. Also, most of these classification techniques were performed over

data extracted from the system with conventional sources of generation. The performance

of some classifiers (Wang, Ravishankar, and Phung 2019; Chandak et al. 2018), also sig-
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nificantly degraded after adding noise to the feature data. However, one study (Haddad

et al. 2018) was able to classify different DG events, including the ideal mode of operation,

with 96.21% average accuracy. Their proposed classifier was less sensitive and sometimes

not accurate while predicting real mismatch scenarios. Moreover, this study investigated

the performance of the proposed classifier on the individual occurrence of the events be-

cause the probability was getting lower while coinciding with two or more events.

Classification of different DG disturbances to their root cause events can be achieved

with accuracy, reliability, and precision in two ways: 1) improving the prediction ability

and reducing the dependency on the threshold by optimal selection of more features, 2)

using deep learning into the classification model of non-linear data to improve the learning

capability of complex data characteristics. There are little research efforts toward incor-

porating deep learning into a binary classification of islanding, non-islanding events, and

normal operation cases. Deep learning uses the multi-layer perceptron network to learn

the characterizing pattern of data with multi-level generalization and complex computa-

tion, which can improve the accuracy of event classification even if data from two or more

events concur. A deep learning framework was proposed (Kong et al. 2018) that used

wavelet transform to extract eigenvector representing different DG events (islanding, volt-

age sag, and swell). Then the eigenvector was passed through stacked auto-encoders for a

layer-wise pre-training under three hidden layers. Finally, a supervised fine-tuning process

was used to minimize the loss function, and a SoftMax regression layer was used to pro-

duce a prediction on a given test set. Though they achieved a higher accuracy of 98.3%,

this study did not consider any non-islanding cases in their classification.

Another study proposed a classification technique (Manikonda and Gaonkar 2019)

based on a convolutional neural network (CNN), which converted the time-series data

of different DG events (islanding, non-islanding, and normal operation mode) into scalo-

gram images using continuous wavelet transform. The scalogram image data set was input
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through three convolution layers, each having a filter size of 3× 3× 3, a different num-

ber of filters, one rectified linear unit (ReLU) operation, and one max-pooling operation.

Finally, one fully connected layer and SoftMax layer has been used to finalize the output.

This classifier was designed to classify the input dataset into two output classes: islanding

and non-islanding. This classifier was also unable to classify the input data into their root

causes. Moreover, transforming the data into an image using a continuous wavelet trans-

form adds excess redundancy and requires intensive computational effort. So, we need

to design classifier models that can classify a broad range of islanding and non-islanding

events to their root causes not only accurately but also efficiently and reliably. Moreover,

such techniques must be able to differentiate between the normal operation mode and dif-

ferent fault events with a low misclassification rate.
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CHAPTER 3

PROPOSED METHODOLOGY: TECHNICAL DETAILS

The proposed technique to classify different power system events conforming to their

root cause is developed using time sequence to label classification techniques based on

LSTM. In this technique, a model with LSTM cells detects the behavior pattern of some

predefined parameters over a time period regarding an event. In a distributed genera-

tion system, inverter-based DGs produce harmonics due to DC link voltage-ripple, high-

frequency switching, and dead time when connected to the grid. These harmonics are

controlled using filters and inverter-embedded control techniques to keep them below 5%,

according to IEEE std. 1547 (IEEE1547 2003). Events, for example, islanding, unsymmet-

rical faults, capacitor switching, load switching, and loss of parallel feeder, can contribute

to an increase in the magnitude of harmonics in the system. The distinctive pattern of the

time-domain signal representing an electrical parameter like voltage at DG point of com-

mon coupling (PCC) during such events can be used as a valid index for the detection of

islanding and other grid transients. In this section, the hypothesis behind choosing the

parameters for the detection of different events, and the theory behind the proposed tech-

nique used for classifying those events based on the time sequence trend of the parameters

selected are presented.

3.1 HYPOTHESIS

In this study, the parameters taken into account for the proposed classification tech-

nique are: voltage in per unit (Vpu), rate of change of voltage (dV
dt ), rate of change of real

power (dP
dt ), power factor (PF), rate of change of power factor (dPF

dt ), frequency ( f ), rate of

change of frequency (d f
dt ), voltage total harmonic distortion (VT HD), and current total har-

monic distortion (IT HD). These parameters are widely used in different existing islanding



27

detection techniques (0). Signals depicting these parameters also show different behavior

during other fault events such as line-to-line (LL), single-line-to-ground (SLG), and three-

phase fault (3-φ fault). Frequency domain analysis of RMS voltage (VRMS) was done to

understand this behavior. From Fig. 3.1, it can be seen that these three events have distinct

sub-transient behavior, which leads to a distinct temporal characteristic. Similar behav-

ior was also observed in the case of other parameters mentioned above. So the proposed

classification technique was initialized using these parameters as described in chapter 5.

Figure 3.1: Comparison of VRMS for LL, SLG, and 3-φ faults in the frequency domain

3.2 DEEP LEARNING FOR MODELING TIME SEQUENCE

Artificial Neural Network (ANN), first introduced in 1943 by McCulloch and Pitts (Mc-

Culloch and Walter 1943), has emerged as the most important architecture of deep learning

in the last ten years because of the development of a high-speed processing unit. Though

ANN works well in learning patterns from large dimensional data by employing multilayer
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perceptron, it is not the perfect model to learn the dataset organized in a sequential manner

such as time sequence data. Recurrent neural network (RNN) was proposed to solve this

problem, which allows connections among hidden units associating a time delay with the

same multilayer perceptron architecture. The model can retain past information and estab-

lish a temporal correlation between recent input events and present input events. Though

Hopfield proposed the early concept of time sequence retention as an associative mem-

ory (Hopfield 1982), RRN is developed based on David Rumelhart’s work in 1986 (3). The

basic RNN operation can be formulated as:

ht = σsigmoid([Py ∗ xt +Qy ∗ht−1]+R) (3.1)

yt = ht (3.2)

Where Py and Qy are input weight and recurrent weight, respectively, and R is the

bias value. σ denotes to gate activation function, xt denotes the inputs at time t, and ht−1

denotes the output of the previous hidden state. yt is the output of the RNN.

Early attempts on RNN, such as ‘Back-Propagation through Time’ (Williams and

Zipser 1995; Werbos 1988), or ‘Real Recurrent Learning’ (Robinson and Fallside 1987)

often failed due to the ‘exploding gradient’ and ‘vanishing gradient’ problems (Hochreiter

1991; Bengio, Boulanger-Lewandowski, and Pascanu 2013). Due to these problems, the

scope of RRN to have access to the previous state information becomes limited, which

leads to a declination of influence that an input hidden layer has on network output. There-

fore, Hochreiter and Schmidhuber proposed a novel and improved version of RNN, Long

Short-term Memory (LSTM) (Sepp and Jürgen 1997).

LSTM uses an efficient gradient-based algorithm to learn to connect the time intervals

greater than 1000 steps without losing the capability of short-time lag even if the input

time sequence is noisy and incompressible. This is done by enforcing the inner states of
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hidden units called ‘memory cell unit’ to flow a constant error through them by truncating

the gradient computation at a certain point. Each sophisticated LSTM cell unit has the

same input and output as normal RRN, while LSTM has three gates in the memory cell

to control the flow of information. These gates are called: ’input gate’, ’forget gate’, and

’output gate’, where the ’input gate’ and ’output gate’ are multiplicative. These gates pass

the corresponding information through some neural layers of sigmoid function (output is

a vector of real numbers from 0 to 1) and point by point multiplication operations (Olah

2015).

sigmoid

tanh

sigmoid sigmoidtanh

SoftMax

ℎ𝑡−1

𝐶𝑡−1

𝑥𝑡

𝑦𝑡

𝐶𝑡

ℎ𝑡𝑓𝑔𝑡
𝑜𝑔𝑡Ŝ𝑡𝑖𝑔𝑡

Figure 3.2: Block diagram of LSTM memory cell

The key of LSTM is the cell state of each memory cell unit, as shown in Fig. 3.2, de-

noted as Ct . At first, LSTM inputs undergo screening to discard some information through
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the ’forget gate’. The inputs of the ‘forget gate’ are previous hidden state, ht−1, and current

cell input, xt . The output of the ‘forget gate’ is computed with parameters called weight,

P f and Q f and bias, R f using equation 3.3 (output is a vector with values between 0 to 1

and the same size as previous cell state Ct−1):

f gt = σsigmoid([P f ∗ xt +Q f ∗ht−1]+R f ) (3.3)

Then, the next step is to add selective information to the cell state, which is done

using two operations: firstly, the information of previous hidden state, ht−1 and current cell

input, xt using weight, Pi and Qi and bias, Ri are passed through sigmoid operation to get

igt . Secondly, an output denotes as S̃t is computed by using a tanh layer and weight, Pc

and Qc and bias, Rc. Both igt and S̃t are then combined to create an update on cell’s state.

These operations are formulated in equation 3.4 and 3.5.

igt = σsigmoid([Pi ∗ xt +Qi ∗ht−1]+Ri) (3.4)

S̃t = tanh([Pc ∗ xt +Qc ∗ht−1]+Rc) (3.5)

Next, the cell state can be updated from Ct−1 to Ct−1 by the operation, formulated as

equation 3.6.

Ct = f gt ∗Ct−1 + S̃t ∗ igt (3.6)

Finally, the ’output gate’ computes the updated hidden state output to be sent to the

next LSTM cell based on the cell state, but not before some filtering (Olah 2015). At

first, the previous hidden state, ht−1, and the current cell input, xt , are undergone sigmoid

operation with parameters, Po, Qo, and Ro to output, ogt . Then ogt is multiplied by the

manipulated cell state, tanh(Ct) (to get value between -1 to 1). These operations are for-

mulated as:
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ogt = σsigmoid([Po ∗ xt +Qo ∗ht−1]+Ro) (3.7)

ht = ogt ∗ tanh(Ct) (3.8)

Prediction yt at each time step in LSTM operation is extracted by a SoftMax operation

of ogt .
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CHAPTER 4

MODELING OF DISTRIBUTED GENERATION SYSTEM
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Figure 4.1: Simulation model of PV system connected with grid

A grid-connected photovoltaic (PV) array with a generation capacity of 100.7 kW at

standard operating conditions (1000 W/m2 irradiance and 25◦ temperature) was designed

using the MATLAB Simulink model (Giroux et al., n.d.) as shown in Fig. 4.1:

The PV array was connected to the grid via a 5 kHz DC-DC boost converter operating

with a switching duty cycle optimized by a Maximum Power Point Tracker (MPPT) and a

three-phase inverter. The MPPT controller was designed based on the ‘Incremental Con-

ductance + Integral Regulator’ technique (Hasan 2019). This MPPT system automatically

varied and optimized the duty cycle to generate the required voltage (500V DC) by increas-

ing the PV natural voltage (273V DC) at maximum power. A three-level, three phases VSC

was used to covert the 500V DC link voltage to 260V AC, which had two control loops.

The first loop was an external control loop with a DC voltage regulator, which regulated

the DC link voltage to +/- 250V to generate Id reference voltage using a sample time of 100
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microseconds. Iq reference was set to zero so that a unity power factor can be maintained.

The second loop was an internal loop with a phase-lock loop (PLL) measurement block and

a current regulator. PLL measurement block normalized the voltage and current signals at

the primary side of the transformer by converting them into park transformed (dq) values

and using 100 µsec sample time. The current regulator generated the required Vd and Vq

values based on reference Idq values and normalized Vdq values. Vd and Vq voltage outputs

of the current regulator were normalized into three modulating signals Uabc references used

by the PWM Generator using 1 microsecond sample time so that an appropriate resolution

of PWM waveforms can be achieved. The three-phase inverter was then connected to a

utility grid (120kV transmission system and 25kV distribution feeder) having an X/R ratio

of 7 and 2500 MVA short-circuit capacity via 100 KVA three-phase coupling transformer

(260V/25KV). The 100.7 kW PV array used 330 SunPower modules (SPR-305E-WHT-D),

one of the various types of NREL system advisor model. A 10 kVAR capacitor bank was

connected to the PCC measurement side to provide reactive support to the load. The model

was then modified to simulate different DG events, as listed in Table 4.1.
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Table 4.1: Simulated DG event cases for proposed classification technique

Events Parameter Range

Capacitor Closing Events 250-3000 kVAR capacitor

Capacitor Opening Events 250-3000 kVAR capacitor

Line-to-Line Faults 1-60 Ω fault resistance

Load Closing Events 1-100 MVA load

Load Opening Events 1-100 MVA load

Loss of Parallel Feeder 1500-3500 MVAsc infinite bus

Reactive Power Mismatch (islanding) -10% to +10% mismatch

Real Power Mismatch (islanding) -50% to +50% mismatch

Single Phase Faults 1-60 Ω fault resistance

Three Phase Faults 1-60 Ω fault resistance

Normal Operation 50% to 150 % DG capacity
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CHAPTER 5

PROPOSED DEEP LEARNING MODEL IMPLEMENTATION

Four steps were followed for implementing our proposed DG events classification

method: 1) parameter sweeping and feature extraction, 2) data pre-processing, 3) LSTM

model construction, and 4) Model Optimization.

5.1 PARAMETER SWEEPING AND FEATURE EXTRACTION

As mentioned earlier, initially, we started with recording nine parameters in total,

which follow a distinct pattern trend during ten different DG events along with normal

operation mode. Signals depicting these parameter values at PCC for different events were

acquired as time-series cells for a simulation run time of 4 seconds and a sampling rate of

0.00001 seconds using MATLAB/Simulink. All of the different DG events were simulated

so that they occur at a specific interval (2.5 seconds.) A particular distribution of specific

parameters related to those events was followed, as provided in Table 4.1. The specific

portion of each parameter value containing the event characteristics in all the cases was

extracted as MATLAB data separately from the time series cells.

5.2 DATA PRE-PROCESSING

In the data pre-processing step, one cell array containing input matrices as time se-

quences belong to different events, and a categorical array containing output classes was

generated. Each input sample in a time sequence denotes the mean over one cycle for a

signal representing a specific parameter. For each parameter, ten consecutive cycle means

combined, represented a moving window of an input feature to the LSTM. The size of the

moving window was selected to feature the most significant effect of a DG event on a spe-
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Table 5.1: Organization of time sequence data matrix in the input cell array

Mean11 Mean12 Mean13 ... Mean1M

Mean21 Mean22 Mean23 ... Mean2M

Mean31 Mean32 Mean33 ... Mean3M

... ... ... ... ...

... ... ... ... ...

... ... ... ... ...

Meank1 Meank2 Meank3 ... MeankM

cific parameter. Moreover, it ensured that the classification process was fast enough. In

this study, the best performance was achieved by selecting the moving window size as ten

by a thorough investigation with a time delay of 166ms. The time delay was reasonable

since the IEEE std 1547 (IEEE1547 2003) mandated islanding detection delay limit is 0.2s.

Each time sequence has all the parameter values of fixed length as input feature samples

for a specific DG event. In the data matrix of a time sequence, as depicted in Table 5.1,

any given row represents the moving window of a feature over a ten cycle period. The time

series trend of various features is represented in each column. Here, k denotes the total

number of features considered to train the classifier, and M represents the size of the mov-

ing window. A total of N time sequence matrices, each representing different DG events

were combined into cell array as input to the classifier based on LSTM. A categorical array

of the same length, as the input cell array, was generated to represent the class number of

the sequences.
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5.3 MODEL CONSTRUCTION

In the model construction stage, a classifier was designed for the sequence to label

classification based on LSTM concatenating five layers, as shown in Fig. 5.1. The sequence

input layer was used to take the sequence data as input to the LSTM network, which is the

second layer of the classifier. The sequence input layer sets the size of the input, specified

as a vector of positive integers. In this model, the input size was a scaler corresponding to

the number of features in the vector sequence input. While passing sequence input to the

LSTM network, the input sequence can be padded, truncated, or split to ensure a specified

sequence length in each mini-batch. Since the LSTM network can work with inputs having

variable sequence lengths, to decrease the amount of padding, input data sequences should

be sorted by the sequence length. Since our model has input sequences of a fixed length,

there was no need for sorting the input data sequences.

LSTM

Fully 

Connected 

Layer

SoftMax Classification
Sequence 

Input

Figure 5.1: Design process of proposed DG event classification

Fig. 5.2 illustrates the flow of time sequence data, x with k features (parameters) of

length M through an LSTM layer. Here, ht and ct denote the output (also known as a

hidden state) and cell state at a time step t, respectively. The first LSTM block produced

both the hidden state and the updated cell state using the initial state of the network and the

first step of the input sequences. The updated cell state, along with the inputs belonging to

the next time step from the input sequence, was used by the next LSTM layer to calculate

the hidden state and another updated cell state. For example, at time-step t, LSTM block

uses the current cell state (ct−1) and hidden state (ht−1) of the network along with input x1t ,

x2t ,. . . ., xkt and produced the hidden state output h1t , h2t ,. . . ., hNt containing the output of
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Figure 5.2: Flow of time sequence data through LSTM cells

the LSTM layer for that time step and new cell state ct containing learned information from

the time step t. Here, N is the number of hidden units selected for DG event classification.

At each time step, LSTM layers added information to the updated cell state, or removed

information from the current cell state using the input gate, forget gate, and output gate,

described in section 2.

A fully connected layer then followed the LSTM layer, where all neurons in a fully

connected layer were connected to all the neurons in the previous layer. A fully connected

layer is basically a multi-layer perceptron that can learn non-linear combinations of the

features (the final output of the LSTM layer) in a discriminate manner to identify the object

class. This is the reason that the size of a fully connected layer is set as the same as the

number of output classes. A SoftMax layer was used to calculate the output of the fully

connected layer from its net input. It used the SoftMax function also known as multi-class

generalization of logistic sigmoid function (Bishop 2006) to model the class-conditional

probability p(x|Cp) and class prior probability, p(Cp) and used them to calculate the poste-
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Table 5.2: Training options for classifier

Training Options values

Solver adam

Execution environment cpu

Gradient Threshold 1

Sequence length longest

Shuffle every-epoch

rior probability p(Cp|x) with Bayes’ theorem:

p(Cp|x) =
p(x|Cp)∗ p(Cp)

∑
p
i=1 p(x|Ci)∗ p(Ci)

=
exp(ap(x))

∑
k
i=1 exp(ai(x))

(5.1)

where, ap=ln(p(x|Cp)∗ p(Cp)). The normalized exponential is the SoftMax function

which indicates that if ap > ai for all i 6= p, then p(Cp|x)' 1 and p(Ci) ' 1.

Finally, a classification layer was used, which took the values from the SoftMax func-

tion and assigned each input sequence to one of the K distinct classes. This layer used the

cross-entropy function to calculate the cross-entropy loss (as given in equation 10) (Bishop

2006).

Loss =
1
X
∗

X

∑
1

Y

∑
1

txy ∗ ln(Lxy) (5.2)

Where, X is the sample number, Y is the total class number, txy indicates the xth input

from yth class. Lxy denotes the output label for the xth sequence from the yth class, which

is, in another way, the output value from the SoftMax function. So, loss associates the

probability of the xth input belonging to the class y.

After the selection of the layers, the training options for the classifier were specified,

as listed in Table 5.2. Then the classifier was trained and validated using k-fold cross-

validation (Stone 1974). Fig. 5.3 illustrates the concept of 5-fold cross-validation as we
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set k=5. Here, the whole dataset was divided into five subsets randomly where each subset

contained equal numbers of data from different events. The classifier was trained using

four of these subsets, and the performance of the trained classifier was validated using the

rest of the subset. After five rounds of cross-validation, the whole process was repeated ten

times to validate the classifier’s robustness. And then, the average classification accuracy

in whole was calculated as a performance index.

Validation Set

Training Set

Round 5Round 4Round 3Round 2Round 1

Final Accuracy= Mean (Repeat(Round 1, Round 2, Round 3, Round 4, Round 5)10 𝑡𝑖𝑚𝑒𝑠)

Figure 5.3: Illustration of 5-fold cross-validation concept

5.4 MODEL OPTIMIZATION

Though accuracy is a significant function to evaluate the performance of a classifier,

reliability and efficiency can be improved with proper selection of training parameters by

maximization of objective functions. Four objective functions were considered: accuracy,

sensitivity, specificity, and precision. Accuracy goes proportionally with the total num-

ber of actual positive (P) and negative (N) cases that are correctly predicted as true by the

trained network. Sensitivity measures the proportion of the actual positives (a true positive

(TP) and the false-negative (FN)) that are correctly predicted as true by the trained network.

In contrast, specificity measures the proportion of actual negatives (true negative (TN) and

false positive (FP)) that are predicted as true accurately. Precision measures the proportion
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of positive results that are true positive. For instance, high sensitivity on islanding case

prediction means few numbers of islanding cases were rejected incorrectly. Similarly, high

specificity on islanding case prediction means few numbers of other DG events were mis-

predicted as islanding. On the other hand, precision indicates how accurate the classifier

was when it predicted an event as islanding. These objective functions were calculated

from the confusion matrix for the prediction on unseen test cases using the trained model

and formulated (Tom 2006) as equation 5.3-5.6:

Accuracy(A) =
T P+T N

P+N
(5.3)

Sensitivity(Se) =
T P

T P+FN
(5.4)

Speci f icity(Sp) =
T N

T N +FP
(5.5)

Precision(P) =
T P

T P+FP
(5.6)

CostFunction(CF) =
∑

N
i=1(A)+∑

N
i=1(Se)+∑

N
i=1(Sp)+∑

N
i=1(P)

N
(5.7)

Gap = 100−CF (5.8)

The overall performance of the proposed model has been calculated using equation 5.7,

where N is the number of events classified. The gap in the overall performance from the

desired value, as stated in equation 5.8, can be minimized by integrating a genetic al-

gorithm (GA) into the LSTM network. GA can be used to make a proper selection of

hyper-parameters in training options integrating MATLAB optimization toolbox and Deep

Learning Toolbox. Moreover, the computational burden can be overcome during feature

extraction if the optimum combination of input features can be determined using an opti-

mization algorithm like GA. The flowchart is shown in Fig. 5.4, illustrating the proposed

optimized model using GA, is given below:

The process of model optimization consisted of two stages: 1) selection of the opti-

mum number of hidden units, maximum epoch, and mini-batch size, 2) finding the optimal
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Figure 5.4: Flowchart of GA integrated model for optimum hyper-parameters and the best

combination of feature selection

combination of features using the hyperparameters determined from the first stage in the

LSTM training. In the first stages, the initial population composed of possible solutions

were generated randomly, and chromosomes were encoded in double vector. Then GA

started exploring the search space for the superior solution by selection and reproduction

operator. The fitness function has been chosen carefully to determine the value of the over-

all performance value using equation 5.7. The fitness of each chromosome was calculated

using equation 5.8. The chromosome returning the smallest fitness value was selected as

an optimum solution. When termination criteria were satisfied, GA returns the optimum

value of the hidden unit number, maximum epoch number, and mini-batch size, which were

used in the second stage, i.e., optimum feature selection. A population size of 50, scattered

crossover, and 0.1 mutation rate was selected in this stage. In the second stage, a similar

process was repeated, except the chromosomes used in this stage were encoded in binary

bits. Where bit 1 represented the selected features for fitness evaluation. A population size

of 9, scattered crossover, and 0.1 mutation rate was used in this stage. 30 generations were
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used as termination criteria.
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CHAPTER 6

SIMULATION RESULTS

A total of 1100 events on the DG model with a single DG source were generated for

evaluating the performance of the proposed classifier. As described earlier, GA was applied

to investigate optimal hyper-parameter values and the best combination of features for the

proposed LSTM model with defined layers and specified training options. The optimal

value of hidden units, maximum epochs, and mini-batch size were determined by GA as

108, 70, and 34, respectively. The best combination of features, selected by GA, are listed

in Table 6.1.

6.1 CLASSIFICATION RESULTS FOR SINGLE-SOURCE DG MODEL

Five-fold cross-validation was conducted ten times to evaluate the robustness of the

model with these optimal input features. Very high classification accuracy of 99.17% on

average was observed with high overall sensitivity, specificity, and precision. Accuracy,

sensitivity, specificity, and precision of each event on average are listed in Table 6.2.

Based on Table 6.2, the classification accuracy of each event was above 99.5%. From

the sensitivity analysis, it is clear that the proposed technique can identify non-islanding

events correctly in more than 98% of cases and islanding events in more than 97% of cases.

From the thorough investigation of the confusion matrix of all cross-validation cases, it

was seen that this technique was misclassifying the real power mismatch events as reac-

tive power mismatch events or vice-versa. The lower average precision value of reactive

power mismatch (98.5%) and real power mismatch (97.55%) than other events is also an

indication that the proposed technique may have been confusing these two events. But in

overall, the technique was able to differentiate an islanding case from other non-islanding

cases with very high overall precision. To justify this issue, all the non-islanding cases,
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Table 6.1: Optimal combination of features selected by GA

Name of the Parameters Symbol

voltage in per unit Vpu

rate of change of voltage dV
dt

rate of change of real power dP
dt

frequency f

rate of change of frequency d f
dt

voltage total harmonic distortion VT HD

current total harmonic distortion IT HD

Table 6.2: Value of objective functions for single-source DG model

Events A Se Sp P

Capacitor Closing 99.96% 100% 99.96% 99.62%

Capacitor Opening 99.88% 100% 99.87% 99.77%

Line to Line Fault 100% 100% 100% 100%

Load Closing 99.90% 99% 99.99% 99.9%

Load Opening 99.88% 99.5% 99.92% 99.26%

Loss of Parallel Feeder 99.93% 100% 99.92% 99.26%

Reactive Mismatch (islanding) 99.62% 97.5% 99.84% 98.5%

Real Mismatch (islanding) 99.53% 97.4% 99.73% 99.55%

SLG Fault 99.98% 100% 99.98% 99.80%

Three Phase Fault 99.85% 98.4% 100% 100%

Normal Operation 99.80% 99.1% 99.87% 98.76%

Overall 99.85% 99.17% 99.92% 99.22%
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islanding cases, and normal operation mode were considered in three classes, and values of

the objective function from the confusion matrix were determined as recorded in Table 6.3.

The high sensitivity of 99.4% indicates that the model did get confused between some real

and reactive power mismatch cases. Furthermore, a high precision of 99.85% is proof that

the proposed model can perform reliably in identifying the true negatives while predicting

an islanding case. Overall high specificity values, as recorded in Table 6.3, also validate

the robustness of this proposed classification technique.

Table 6.3: Value of objective functions for single-source DG model considering three

classes

Events A Se Sp P

Non-islanding Cases 99.66% 99.8% 99.30% 99.74%

Islanding Cases 99.86% 99.40% 99.97% 99.85%

Normal operation 99.80% 99.1% 99.87% 98.76%

Overall 99.73% 99.43% 99.71% 99.45%

6.2 VALIDATION OF PROPOSED CLASSIFICATION TECHNIQUE

To validate the performance of the proposed classification technique, three cases were

considered: 1) effect of noise in the dataset, 2) effect of multiple DG resources in the model,

and 3) effect motor starting at both low voltage (LV) and high voltage (HV) side of the DG

model.

6.2.1 EFFECT OF NOISE

As a validation of the efficiency of the proposed technique, the trained networks of

all cross-validation cases were saved and tested with a 1050 new dataset with added white
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Gaussian noise (AWGN) at 0, 10, 20, and 30 dB. The average classification accuracy of

these datasets was listed in Table 6.4. The results indicate that the presence of noise in the

signal data did not affect the performance of this proposed classification model.

Table 6.4: Prediction accuracy on normal and noisy unseen test data

AWGN Level 0 10 dB 20 dB 30 dB

Average Prediction Accuracy 99.35% 99.34% 99.34% 99.35%

LoadCapacitor 

Bank

150KVA

260/25KV

Transformer

3-phase 

breaker

for 

simulating 

islanding

600V 

Utility 

Grid

DG1

DG2

Figure 6.1: The Simulation model of a grid-connected PV system with two DG sources

6.2.2 EFFECT OF MULTIPLE DGS

The effects of the presence of multiple DG sources on the classification accuracy

have also been investigated. A DG model with two 100 kW DG sources connected with the

grid was considered, as shown in Fig. 6.1, and a total of 550 DG events mentioned earlier

were simulated. Since the distribution transformer KVA rating had to be increased due to a

change in maximum load from 100 kW to 200 kW, the trained classifier with the dataset of

a single DG source model could not be used to make a prediction on the new data. This is

because of the variations in the voltage signal during islanding as transformer impedance

got changed (Guha, Haddad, and Kalaani 2016). So before training the classifier with a new
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Table 6.5: Value of objective functions for multiple source DG model

Events A Se Sp P

Capacitor Closing 99.94% 99.4% 100% 100%

Capacitor Opening 99.96% 100% 99.96% 99.67%

Line to Line Fault 99.76% 98% 99.93% 99.45%

Load Closing 99.96% 99.6% 100% 100%

Load Opening 99.98% 100% 99.98% 99.81%

Loss of Parallel Feeder 99.89% 100% 99.88% 98.99%

Reactive Mismatch (islaning) 99.19% 95% 99.62% 96.52%

Real Mismatch (islaning) 99.19% 96.2% 99.49% 95.52%

SLG Fault 99.92% 100% 99.92% 99.43%

Three Phase Fault 99.80% 98.8% 99.90% 99.15%

Normal Operation 99.67% 98.2% 99.82% 98.5%

Overall 99.75% 98.65% 99.86% 99%
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dataset, the optimum number of hidden units, maximum epoch, and mini-batch size were

determined using GA as 86, 88, and 22, respectively. A similar process of 5-fold cross-

validation was repeated for evaluating the classifier’s performance with new input data.

The classifier was able to classify the new data with an average classification accuracy of

98.65%. The average objective function values on each event are listed in Table 6.5

From the thorough investigation of the confusion matrix on each cross-validation case,

it has been seen that none of the non-islanding cases were misclassified as an islanding case

or vice-versa. The overall accuracy and specificity were almost the same as before. How-

ever, real power mismatch events, in some cases, were predicted as a reactive mismatch,

which led to a reduction in the sensitivity and precision value of these two events. But

still, all of the events were classified with a high overall sensitivity of 98.65% and overall

precision of 98.82%. To justify this statement, the average value of the objective functions

were determined considering all non-islanding events as one class, islanding cases as one

class, and normal operation mode as a separate class, as stated in Table 6.6. The 100%

overall accuracy, 100% sensitivity, 100% specificity, and 100% precision, indicate that the

proposed classification technique is reliable for islanding detection even if there are more

than one DG sources in the system.

Table 6.6: Value of objective functions for multiple source DG model considering three

classes

Events A Se Sp P

Non-islanding Cases 99.67% 99.77% 99.40% 99.78%

Islanding Cases 100% 100% 100% 100%

Normal operation 99.67% 98.20% 99.82% 99.50%

Overall 99.78% 99.32% 99.74% 99.76%
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6.2.3 EFFECT OF MOTOR STARTING EVENT

Finally, the effect of starting a large motor on both high voltage (HV) side and low

voltage (LV) side on the classification accuracy was also investigated. The voltage of the

system can fluctuate due to sudden motor starting events, which can be misclassified as

islanding sometimes. Two cases were considered: the system model with a single DG

source and multiple DG sources. Since, in both cases, the total number of events to be

classified was changed into 13, the number fully connected layer was 13. So, new feature

data of a motor starting in both cases were generated for a range of 10kVA- 300KVA

nominal power rating on the HV side and 1 KVA- 30KVA nominal power rating on the

LV side. These data were merged with the previous dataset, and the performance of the

classification model was cross-validated. The average classification accuracy of the model

with the motor starting event with a single DG source was 98.51%, while the average

classification accuracy of the model with the motor starting event with multiple DG sources

model was 98.42%. The accuracy, sensitivity, specificity, and precision of each event for

both cases are listed in Table 6.7 and 6.8, which indicate that the proposed classification

technique can make the DG model immune enough to avoid any false tripping due to the

event like motor-starting.
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Table 6.7: Effect of motor starting on the value of objective functions for single-source DG

model

Events A Se Sp P

Capacitor Closing 99.91% 100% 99.92% 99.09%

Capacitor Opening 99.88% 99.8% 99.88% 99.75%

Line to Line Fault 99.78% 97.8% 99.95% 99.48%

Load Closing 99.91% 99.6% 99.93% 99.23%

Load Opening 99.76% 98.2% 99.89% 99.90%

Loss of Parallel Feeder 99.89% 100% 99.88% 98.76%

Reactive Mismatch (islanding) 99.53% 97.6% 99.70% 96.80%

Real Mismatch (islanding) 99.44% 95.2% 99.80% 99.84%

SLG Fault 100% 100% 100% 100%

Three Phase Fault 99.77% 98.4% 99.81% 98.73%

Normal Operation 99.46% 97.6% 99.61% 95.79%

Motor Starting at HV side 99.78% 98% 99.93% 99.30%

Motor Starting at LV side 99.85% 98.4% 99.98% 98.82%

Overall 99.76% 98.56% 99.86% 98.73%
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Table 6.8: Effect of motor starting on the value of objective functions for multiple source

DG model

Events A Se Sp P

Capacitor Closing 99.94% 99.8% 99.95% 99.48%

Capacitor Opening 99.98% 99.8% 100% 98.57%

Line to Line Fault 99.68% 97.6% 99.86% 98.58%

Load Closing 99.98% 100% 99.98% 99.82%

Load Opening 99.92% 99.6% 99.95% 99.48%

Loss of Parallel Feeder 99.81% 99.6% 99.83% 98.18%

Reactive Mismatch (islanding) 99.31% 95% 99.68% 96.53%

Real Mismatch (islanding) 99.32% 96.2% 99.58% 95.79%

SLG Fault 99.95% 100% 99.95% 99.46%

Three Phase Fault 99.81% 98.4% 99.93% 98.3%

Normal Operation 99.58% 96.6% 99.83% 98.12%

Motor Starting at HV side 99.75% 97.8% 99.92% 99.09%

Motor Starting at LV side 99.73% 99% 99.80% 97.8%

Overall 99.76% 98.42% 99.87% 98.61%
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CHAPTER 7

CONCLUSION

A proper classification technique in a distributed generation system can improve the

fault identification system and prevent false triggers of a non-islanding event as an islanding

event or vice-versa. Many studies have investigated different classification techniques to

classify islanding and non-islanding cases. However, most of them were unable to classify

these events to their root cause. Moreover, the normal operation mode was not included

in those classification techniques, which can be an essential factor since many of the non-

islanding or islanding cases can be misjudged by normal operation mode by the existing

protective system.

The proposed event classification technique based on RNN using LSTM has per-

formed adequately in all cases mentioned above with high overall accuracy, sensitivity,

specificity, and precision. Since traditional LSTM suffers from poorly chosen values of

training parameters for the dataset with temporal patterns, GA has been integrated into the

LSTM model to search for optimized model parameters and input features. Classification

accuracy, as well as overall performance, has been improved significantly with the optimal

combination of features selected by GA. Non-islanding cases and islanding cases, includ-

ing normal operation mode, have been classified with an average classification accuracy of

99.17% for the DG model having a single DG source.

As a verification of the effectiveness and robustness of the technique, the model’s

performance has been evaluated for large datasets in a standard and noisy environment,

presence of multiple DG sources, and the inclusion of motor starting event in the dataset.

The trained model’s prediction accuracy was as high as 99.34%, 99.34%, 99.35%, with

noisy test data at 10dB, 20 dB, and 30 dB. The ability of the proposed model to predict

noisy time-series patterns can be useful in many domains. The overall performance of this

technique remained unaffected after the inclusion of multiple DGs or motor starting events.
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The average classification accuracy of the model with multiple DG sources was 98.65%.

Finally, we suggest a classification technique that does not require any pre-processing of

extracted time-series signals and have less restriction. The GA optimized technique based

on RNN using LSTM can be applied in domains like biomedical, health science, stock-

exchange, and weather forecasting effectively.
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