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Abstract Abstract 
The ability of middle and high school students to reason quantitatively within the context of 
environmental science was investigated. A quantitative reasoning (QR) learning progression, with 
associated QR assessments in the content areas of biodiversity, water, and carbon, was developed based 
on three QR progress variables: quantification act, quantitative interpretation, and quantitative modeling. 
Diagnostic instruments were developed specifically for the progress variable quantitative interpretation 
(QI), each consisting of 96 Likert-scale items. Each content version of the instrument focused on three 
scale levels (macro scale, micro scale, and landscape scale) and four elements of QI identified in prior 

research (trend, translation, prediction, and revision). The QI assessments were completed by 362, 6th to 

12th grade students in three U.S. states. Rasch (1960/1980) measurement was used to determine item 
and person measures for the QI instruments, both to examine validity and reliability characteristics of the 
instrument administration and inform the evolution of the learning progression. Rasch methods allowed 
identification of several QI instrument revisions, including modification of specific items, reducing number 
of items to avoid cognitive fatigue, reconsidering proposed item difficulty levels, and reducing Likert scale 
to 4 levels. Rasch diagnostics also indicated favorable levels of instrument reliability and appropriate 
targeting of item abilities to student abilities for the majority of participants. A revised QI instrument is 
available for STEM researchers and educators. 
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Introduction 
The Next Generation Science Standards (NGSS 2013) and the Common Core 
State Standards for Mathematics (NGAC 2010) call for improving scientific, 
engineering, and mathematical practices. Among the practices called for are 
model-based reasoning which engages students in developing and using models, 
analyzing and interpreting data, and using mathematics and computational 
thinking. Fundamental to these processes is quantitative reasoning (QR), which 
for this project is defined as: 

Quantitative reasoning is mathematics and statistics applied in real-life, authentic 
situations that impact an individual’s life as a constructive, concerned, and reflective 
citizen (Mayes et al. 2014a). 

In the NSF project, Culturally Relevant Ecology, Learning Progressions, and 
Environmental Literacy 1  (or simply the Pathways project) a QR learning 
progression was developed to explore the trajectory of QR development across 
sixth to twelfth grades. A learning progression is a set of empirically grounded 
and testable hypotheses about how students’ understanding of, and ability to use, 
core scientific concepts, explanations, and related scientific practices grow and 
become more sophisticated over time with appropriate instruction (Corcoran et al. 
2009). Learning progressions provide levels of understanding through which 
students develop mastery of a concept over an extended period of time. The QR 
learning progression is conceptualized as having four levels: the lower anchor, 
upper anchor and two intermediate levels of understanding. The lower anchor is 
grounded in data collected on sixth graders understanding of QR (Mayes et al. 
2014a). The upper anchor is based on expert views of what a scientifically literate 
citizen who is well versed in QR should know and be able to apply by the twelfth 
grade. A learning progression defines progress variables which are essential 
categories for the overall concept across which the levels are established. The QR 
progress variables for the QR learning progression are:  

• Quantification Act (QA): mathematical process of conceptualizing an object and an 
attribute of it so that the attribute has a unit measure. Included in QA is quantitative 
literacy (the use of fundamental mathematical concepts in sophisticated ways) which 
allows one to describe, compare, manipulate, and draw conclusions from the quantified 
variables. 

• Quantitative Interpretation (QI): ability to use models to discover trends and make 
predictions. 

• Quantitative Modeling (QM): ability to create representations to explain phenomenon and 
to revise them based on fit to reality. 

                                                        
1 Award #0832173, Division of Research on Learning, MSP-Targeted Awards.  PI: John Moore, 
Colorado State University 
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Finally, each of the progress variables were elucidated by identifying a collection 
of elements determined through student interviews which indicate essential 
abilities within the categories: 

• Quantification Act Elements: Variation, Quantitative Literacy, Context, Variable. 

• Quantitative Interpretation Elements: Trends, Predictions, Translation, Revision. 

• Quantitative Modeling Elements: Create model, Refine model, Reason with model, 
Statistical analysis. 

For a detailed presentation of the learning progression see Mayes et al. (2014b).  
In the study reported here, Rasch (1960/1980) measurement methods were 

used to support development of three selected response (or rating scale) 
assessment instruments (hereafter referred to as “assessments”) that can be used 
to inform the QR progression and provide an efficient and accurate diagnostic 
assessment of quantitative interpretation (QI). The assessments were designed to 
be easily implemented within classrooms and to complement other means of 
assessing and evaluating QI student outcomes by providing an objectively scored 
alternative that reflects the QR learning progression.  

The QI progress variable was selected as the focus for the first QR assessment 
development. QI was selected due to the central role it plays in developing 
environmentally literate citizens who can interpret quantitative models and make 
informed decisions based on them. The elements identified for QI are defined as 
follows for the upper anchor: 

• Trends: determine multiple types of trends including linear, power, and exponential 
trends; recognize and provide quantitative explanations of trends in model 
representation within context of problem. 

• Translation: translates between models; challenges quantitative variation between 
models as estimates or due to measurement error; identifies best model representing 
a context. 

• Predictions: makes predictions using covariation and provides a quantitative account 
which is applied within context of problem. 

• Revision: revise models theoretically without data, evaluate competing models for 
possible combination. 

Assessment Development and Implementation 
Three parallel assessments were developed to efficiently and accurately assess 
quantitative interpretation (QI) within the three respective environmental contexts 
of biodiversity, carbon cycle, and water cycle. Each assessment can be considered 
a context-specific version of an assessment which enables testing the hypotheses 
described below. Each of these three assessment versions includes the set of items 
within one of the three environmental contexts and the administration process 
used to implement the assessment. The NSF Pathways project identified these 
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three environmental contexts as the essential progress variables for the 
development of an environmentally literate citizen. The central focus of each 
assessment was on the QI elements identified above (Mayes et al. 2014a). Each 
assessment included three scale levels: macro scale (what one can see with their 
eyes), micro scale (hidden mechanisms that underlie what one sees that require a 
microscope to view), and landscape scale (larger than what one can see, requiring 
a telescope or other aid to view). The QR research team viewed scale as a central 
quantitative issue in science, as the NSF Pathways project identified the concept 
of scale as a key potential barrier in students developing a deeper understanding 
of environmental science. The assessments included items developed based on the 
four learning progression levels: Level 1 (lower anchor - novice), Level 2 (lower 
intermediate), Level 3 (upper intermediate), and Level 4 (upper anchor - expert). 
Learning progression theory calls for a limited number of levels, with four to five 
being common (Corcoran et al. 2009). Two items were written for each of the 
elements at each of the learning progression levels for each of the scales, giving 
32 items per scale and 96 items per assessment (Table 1).  
Table 1: Quantitative Interpretation Assessment Structure 

Environ Topic Scale QI Element Level (4 per element) Questions  
 
 
Biodiversity 
 
 
Carbon Cycle 
 
 
Water Cycle 

Macro  Trend novice, lower intermediate, upper intermediate, expert 1,2 
Translation novice, lower intermediate, upper intermediate, expert 1,2 
Prediction novice, lower intermediate, upper intermediate, expert 1,2 
Revision novice, lower intermediate, upper intermediate, expert 1,2 

Micro Trend novice, lower intermediate, upper intermediate, expert 1,2 
Translation novice, lower intermediate, upper intermediate, expert 1,2 
Prediction novice, lower intermediate, upper intermediate, expert 1,2 
Revision novice, lower intermediate, upper intermediate, expert 1,2 

Landscape Trend novice, lower intermediate, upper intermediate, expert 1,2 
Translation novice, lower intermediate, upper intermediate, expert 1,2 
Prediction novice, lower intermediate, upper intermediate, expert 1,2 
Revision novice, lower intermediate, upper intermediate, expert 1,2 

An example of QI assessment items from the Biodiversity version, macro 
scale level, prediction element is provided in Figure 1. Each assessment consists 
of blocks of eight questions per QI element ranging from Level 1 through Level 4 
with two questions per level. The five-category Likert scale provided students an 
opportunity to express their confidence in agreeing with a statement concerning 
QI. 

The assessments were conducted across sixth to twelfth grades, with the levels 
providing an entry point for students from different grades. The students were 
provided only one version of the assessment, with one of the three versions being 
assigned by the teachers to an equal number of students in each participating 
class. The assessments were administered in Qualtrics so students could take them 
online. Students were not offered an enticement by the research team for taking 
the assessment and could choose not to participate.  However, students were 
encouraged by their teachers to take the assessments. 

3

Mayes et al.: QR Rasch Analysis

Published by Scholar Commons, 2015



 
Figure 1. QI assessment example. Questions are from the QI biodiversity assessment 
and are at the macro scale for the prediction element.  Example includes eight items 
using the five rating categories. Red coded category labels indicate best responses. 

The a-priori hypotheses concerning performance on the QI assessments were: 
1. The difficulty level of QI items would vary by item level with the rank from easiest 

to most difficult being: Lower Level 1 (novice lower anchor), Level 2, Level 3, and 
Level 4 (expert upper anchor). 

2. The difficulty level of QI items would vary by scale with the rank from easiest to 
most difficult being: macro scale, landscape scale, and micro scale. 

3. The difficulty level of items would vary by QR elements with the rank from easiest 
to most difficult being: trend, translation, prediction, and revision. 

4. The three assessment versions measure QI, so across the contexts of water cycle, 
carbon cycle and biodiversity the student QI outcomes would be similar. More 
formally each assessment version would reflect a primary QI construct dimension. 
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The first phases of developing, diagnosing, and refining the assessments are 
discussed in this paper to provide examples of the process and a description of the 
application.   

Literature Review 
Taking Science to School (Duschl et al. 2007) calls for science education to 
incorporate modeling practices and model-based reasoning. The call is echoed in 
the Framework for K-12 Science Education (National Research Council 2011), 
the Next Generation Science Standards (NGSS 2013), and the Common Core 
State Standards (NGAC 2010). Science as model-building is a fundamental 
practice of science which includes building models using evidence, checking 
them for internal consistency and coherence, testing them empirically, and the 
metaknowledge that guides and motivates the practice (Duschl et al. 2007; 
Schwarz et al. 2009). Inherent in model building is interpretation of the resulting 
model.  

QI is the ability to analyze a model of a scientific phenomenon (either one 
provided to or created by the student) to determine trends, to translate between 
models to compare and contrast them, to revise models to fit new situations, and 
to make predictions. It is imperative for scientifically literate citizens to be able to 
interpret and use data provided to them to make decisions -- data that are often 
represented in a model (table, graph, equation, or science diagram) (Madison and 
Steen 2003; Steen 2004). “Representations are necessary to students’ 
understanding of mathematical concepts and relationships” (AERO 2011, p. 13). 

Zahner and Corter (2010) propose in their model of probability problem 
solving that students pass through four stages when problem solving: Stage 1, 
Text Comprehension; Stage 2, Mathematical Problem Representation; Stage 3, 
Strategy Formulation and Selection;, and Stage 4, Execution of the Strategy. 
According to their model, to reach stages 3 and 4, students must pass through 
stage 2 first. Therefore, the inability to represent a problem and interpret it could 
be a barrier to student execution of their strategy. QI focuses on interpreting an 
existing model, such as one found in a newspaper article, but students must still 
interpret the representation if they are going to apply it to solve the problem. Thus 
QI could serve as a barrier to problem solving since students would not be able to 
make an informed decision about the environmental problem being modeled.  

A complete review establishing the inclusion of the progress variables in the 
quantitative reasoning learning progression can be found in Mayes et al. (2012). 
Here a brief overview of that review is provided that supports the inclusion of the 
three progress variables in the QR learning progression. First, the inclusion of 
quantitative act is supported by the work of Thompson (2011). His research 
presents the quantitative act as an essential first step in moving from the science 
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context to a mathematical representation. He defines quantification as the process 
of conceptualizing an object and an attribute of it so that the attribute has a unit 
measure, and the attribute’s measure entails a proportional relationship (linear, bi-
linear, or multi-linear) with its unit. In addition, covariational reasoning, defined 
as coordinating two varying quantities while attending to the ways in which they 
change in relation to each other (Carlson et al 2002), is an important aspect of 
quantification.  

Quantitative literacy was included under the quantitative act progress variable 
since it is the ability to use fundamental mathematic concepts to manipulate the 
variables quantified. Quantitative literacy provides the tools to compare, combine, 
and manipulate the quantities. The work of Steen (2004) and Madison and Steen 
(2003) establishes that quantitative literacy is essential for all citizens if they are 
to make data-informed decisions, yet it is often neglected in curriculums due to its 
interdisciplinary nature.  

Second, the inclusion of QI as a progress variable is supported by the work of 
Schwartz and Martin (2004), who found that early understanding of multiple 
representations within a context is important for students to progress 
mathematically. It is essential to their ability to apply models to make informed 
decisions.  

Finally, quantitative modeling was included as a progress variable based on 
the work of Duschl et al. (2007). They propose a move from science as inquiry to 
science as model-building and model-refining. Science as model-building is 
defined as learning science as a process of building theories and models using 
evidence, checking them for internal consistency and coherence, and testing them 
empirically (Duschl et al. 2007). The seminal work done by Schwarz et al. (2009) 
in the Modeling Designs for Learning Science project created a learning 
progression for scientific modeling which has two dimensions: (1) scientific 
models as tools for predicting and explaining and (2) models change as 
understanding improves.  

The iterative research process that underpins the development of learning 
progressions is pivotal to the theoretical framework for our study. Taking Science 
to School (Duschl et al. 2007) recommends that learning and curriculum designs 
be organized around learning progressions as a means of supporting learners’ 
development. The Consortium for Policy Research in Education report Learning 
Progressions in Science: An evidence-based approach to reform (Corcoran et al. 
2009) identified learning progressions as a promising model that can advance 
effective adaptive instruction teaching techniques and thereby change the norms 
of practice in schools. A number of learning progressions in science have 
incorporated components of QR (Louca et al. 2011; Pluta et al. 2011; Schwarz, et 
al., 2009; Stefani and Tsaparlis 2009; Taylor and Jones 2009; Lehrer and 
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Schauble 2002, Smith et al. 2006), but the one proposed here is the first 
progression specifically addressing the development of QR in the sciences. 

Purpose and Rationale 
The purpose of the current study was to: (1) determine and improve the validity 
and reliability of a QI diagnostic assessment process using a Rasch (1960/1980) 
measurement model; and (2) inform the evolution of the current QR learning 
progression (Mayes et. al. 2014a, b). The Rasch approach was utilized in order to 
construct additive measures from the data and examine both item statistics and 
individual student statistics as the QI assessment was revised in support of 
improvements to the existing QR learning progression (Wilson 2009). The 
resulting assessments are intended to be used in conjunction with science 
curricula as a means of efficiently estimating QR development for grades six to 
twelve. 

Methods 
Development of the QR learning progression was guided by the iterative research 
process. First, an intense review of the literature was conducted to establish a 
hypothetical framework for the progression (Mayes et al. 2013). Second, student 
interviews were conducted to inform the development of a hypothetical QR 
learning progression (Mayes et al. 2014a). As stated above, the lower anchor is 
grounded in QR abilities demonstrated by sixth grade students; the intermediate 
levels of understanding are the levels through which the students pass on their 
way to attainment of the upper anchor; and the upper anchor is based on expert 
views of what QR a scientifically literate citizen should know and be able to apply 
by the twelfth grade. Here the findings from the third step of the iterative research 
cycle are reported. QR interviews served as a basis for development of items for a 
diagnostic assessment which could be implemented online to a large sample of 
students from grades six to twelve. The diagnostic assessment focused on one 
component of QR, quantitative interpretation (QI) of scientific models. The 
diagnostic assessment provided quantitative data informing revision of the QR 
learning progression and provided baseline data on the current status of QI among 
middle and high school students. Rasch measurement methods were used to 
model and analyze both the student outcomes and assessment items 
simultaneously (Bond and Fox 2007; de Ayala 2011; Engelhard 2013; Linacre 
2014).  

Rasch Measurement 
A contemporary measurement approach, the Rasch (1960/1980) model, was 
chosen to apply a rigorous scientific framework to the examination and 
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interpretation of the assessment data. The Rasch measurement model was named 
for the Danish mathematician, Georg Rasch, who originally developed a model 
for use with dichotomous item data (e.g., correct or incorrect). A Rasch approach 
assumes a fundamental measurement model, which implies that data should be 
examined to determine the degree to which an ideal measurement model has been 
realized (Bond and Fox 2007; Engelhard 2013). A Rasch measurement model was 
selected for use to study QR because it allows researchers to construct interval 
measures from ordinal assessment data to allow improved accuracy and use of 
crucial diagnostics. In addition, a Rasch model is well suited to the investigation 
because it permits analysis of both the student outcomes and assessment items 
placed on the same measurement scale frame of reference. These Rasch measures 
are based on a probabilistic relation between an item’s endorsement difficulty and 
a person’s ability (or willingness) to endorse item statements correctly with 
respect to the construct of interest. This probabilistic relation stems from the 
common observation that people tend to have a higher probability of correctly 
responding to easier items and incorrectly answering more difficult items. 
Resources such as Bond and Fox (2007), de Ayala (2011), Engelhard (2013), 
Linacre (2014), and Wright and Mok (2004) provide excellent descriptions of the 
historical and technical developments supporting the growing applications of 
Rasch methods, including those used for this investigation. 

The Rasch model is more accurately a family of modern latent trait models, 
including one of the members known as the rating scale model developed by 
Andrich (1978). The rating scale model is a polytomous extension of Georg 
Rasch’s dichotomous model, but modified for data that result from rating scales 
including Likert instruments with specific numbers of rating categories. 
Mathematically, the rating scale model describes that the probability of a person 
correctly responding to an item (𝑃𝑛𝑛𝑛) is a logistic function of the relative distance 
on a linear scale between the respondent measure location  (𝜃𝑛), the item measure 
location (𝑏𝑛), and the 0.5 probability point threshold (𝜏𝑛) for choosing between 
adjacent rating categories of the item 

ln �
𝑃𝑛𝑛𝑛

1 − 𝑃𝑛𝑛𝑛−1
� =  𝜃𝑛 − 𝑏𝑛 −  𝜏𝑛  

where the subscripts refer to the person (n), the item (i), and the category (j).  The 
𝜏𝑛  threshold is the point at which the probability of opting for one Likert category 
is equal to that for the prior adjacent category.  The formula represents the log of 
the odds of the correct responding probability (Wright and Mok, 2004).  

The resulting transformed values of the ordinal raw scores are considered 
log-odds units and are referred to as logits. These logits can be seen as units of a 
Rasch ruler (e.g., Figures 1 through 3 of the Appendix) depicting both item 
measures and person measures. Graphic depictions of Rasch rulers are commonly 
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referred to as item-person maps, or variable maps. The Rasch rating scale 
(Andrich 1978) model was used for this investigation in order to construct such 
linear measures from five ordinal Likert rating categories within the QI 
assessment. Winsteps (Linacre 2012) and SPSS computer programs were used for 
Rasch measurement calibrations and the corresponding diagnostic analyses. The 
following discussions of the use of the Likert scale and an overview of the 
calibration tools will highlight the specific application of the Rasch model within 
this investigation.  

The Likert-scale assessment items allowed students to choose from a five-
category scale.  On approximately 60% of the items, category 1 represented very 
strongly disagree, reflecting the most accurate reasoning, and category 5 
represented very strongly agree. The other 40% of items were reversed, meaning 
category 1 (very strongly disagree) was considered the response reflecting the 
most accurate reasoning. Prior to Rasch calibration of data, the reversed items 
were recoded so that for all items category 5 was registered as the best response, 
with categories 4, 3, 2, and 1 representing respectively lower levels of accurate 
responding. Thus the minimum raw score on the 96 item assessments was 96 and 
the maximum raw score was 96 × 5 = 480. The items were written so that they 
required little to no calculation, with a focus on assessing students’ prior 
knowledge and understanding about using QI in context. 

Rasch calibration analyses were conducted to identify needed measurement 
adjustments. A primary Rasch calibration was run on each of the assessments to 
identify potential problematic items and students with inconsistent patterns. 
Calibrations included the use of selected statistical and graphic diagnostic tools 
discussed by Linacre (2014) and Bond and Fox (2007) to effectively interpret the 
data in support of decisions regarding strengths, weaknesses, and valid, reliable 
measurement. These diagnostic categories included (a) item polarity (positively or 
negatively correlated assessment items) to determine whether all items were 
aligned in the same direction on the latent variable of QI; (b) category function 
(Likert item five-category rating; see item example in Figure 1) to determine 
whether all categorizations functioned as intended such that the average measures 
for the categories advanced; (c) dimensionality to determine whether all items 
within the instrument function in unison to represent the same dominant 
dimension of QI; (d ) item fit (underfit items are unpredictable, overfit items are 
too predictable) to determine whether items functioned together to measure in 
correspondence with the model; (e) person fit to determine whether participants 
responses functioned together to measure in correspondence with the model; (f) 
separation as standard errors of spread existing among persons taking the 
assessments; (g) reliability, which was examined both to determine whether the 
persons consistently discriminated different levels of ratings (Likert categories of 
one to five) and whether items discriminate different levels of endorsement 
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difficulty (four levels of learning progression from novice to expert); and (h) 
sample targeting to determine whether the range of item difficulties match well 
with the participants’ responses.  Fit, separation, and reliability categories are 
described in further detail below. Each diagnostic category will also be discussed 
more directly with respect to the findings. 

Fit analyses were conducted using the information-weighted fit statistic, or 
infit, and the outlier-sensitive fit statistic, or outfit, procedures as part of an 
examination of the measurement model (Bond and Fox 2007). That is, the items 
and participants shown to fit the Rasch model can be considered supportive of 
valid measurement. To diagnose item and person fit the infit and outfit were used 
both as mean square statistics (MnSq) and as a standardized conversion (Zstd) of 
the statistic which provides symmetry and a t-test of significance. We reported 
Zstd statistics for item fit to facilitate comparisons of fit. Criteria of Zstd values 
above 2.0 and below − 2.0 for identifying potentially misfitting items or 
participants are commonly used and provided a standard for this investigation as 
well. 

Test reliability was indicated by a Rasch person reliability index and the 
associated person separation index. These two indices can be used, as opposed to 
only one index, in order to enhance our interpretation of our reliability analyses 
relative to the two respective units represented by these indices. Specifically, 
person separation reflects the number of standard errors of spread that exist 
among the persons; it has the advantage over other indices of not being restricted 
in range between 0 and 1. The higher the person separation, the greater the 
confidence one can have in person measure order. Person separation index levels 
greater than 2 represent a typical desired range indicating two distinct groupings 
of items (e.g., difficult and easy to endorse). Person reliability indices, on the 
other hand, use the familiar range between 0 and 1, similar to the Cronbach alpha 
test reliability index, which is calculated using ordinal data. Rasch person 
reliability is calculated using linear measures and supports the determination of 
whether items are sufficient for classification of people into groups with respect to 
their ratings. Person reliability levels of 0.8 or above represent a typical desired 
level. The two Rasch person indices, separation and reliability, reflect the 
reproducibility (i.e., likelihood that this result would be repeated) of person 
ordering one could expect if these same participants were given another similar 
set of items measuring the diversity attitudes. These indices help us determine 
whether there are enough items along the measurement continuum at different 
levels to classify people.  

Rasch item indices of separation and reliability were also examined, but in 
contrast to person separation and reliability these item indices do not reflect test 
reliability. The item reliability and separation indices reflect the reproducibility of 
item placements along the continuum if these same items were given to another 
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similar group of participants of the same size that had the same attitudes. These 
item indices allow determination of whether there are enough participants along 
the measurement continuum at different levels. Item separation index levels 
greater than 3 represent a typical desired range and correspond with three distinct 
groupings of persons (e.g., low, middle, and high). Similarly, item reliability 
supports determination of whether there is a sufficient sample to classify the items 
into difficulty groups with levels 0.9 or above representing typical desired levels. 

Study Sample and Assessment Administration 
The QI assessments were administered to 342 sixth to twelfth grade students in 
three U.S. states. The sample was 45% male and 55% female; 56% White, 21% 
African American, 13% Asian, and 6% Native American/Pacific Islander (some 
participants chose not to disclose their race). The distribution of gender and race 
across the three assessments and state sites were relatively equivalent. The 
schools constituted a sample made up of districts that had participated in previous 
projects with members of the research team.  

Teachers in these schools volunteered to administer the assessments in 
science classes. While students could opt out of taking the assessment, this was a 
rare occurrence due to the teacher requesting them to complete the assessment. 
Teachers were instructed to have each student take one version of the assessment 
and to randomly assign one third of their class to the three assessments. Rasch 
person fit analysis indicated that 16% of students in the sample had outcomes that 
were either highly predictable or highly unpredictable (e.g., the student provided 
contradictory responses to similar items). In addition, some students did not 
complete the assessments. Removal of these students from the sample can 
improve interpretation, maximizing measurement accuracy, because the meaning 
of their mis-fitting data is uncertain with respect to the model. Subsequent Rasch 
analysis was performed on the remaining student sample of 286 students. The 
students were distributed by grade as follows: 19 sixth graders, 23 seventh 
graders, 44 eighth graders, 40 ninth graders, 48 tenth graders, 85 eleventh graders, 
and 27 twelfth graders.  

Results 

Item Summary 
Reliability Indices for the Assessments. Person reliability levels were 0.86 for 
the biodiversity assessment, 0.76 for the water assessment, and 0.87 for the 
carbon assessment. Person separation indicated 2.52 for the biodiversity 
assessment, 1.77 for the water assessment, and 2.55 for the carbon assessment. 
Person reliability at or above 0.80 and separation at or above 2.00 standard errors 
of spread were reached on the biodiversity and carbon assessments, while the 
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levels for the water assessment were just short of those expectations. In general, 
these reliability and separation levels from the biodiversity and carbon assessment 
provide support for just over two distinct levels of difficulty (e.g., easier and more 
difficult) and indicate that items are sufficient for classification of people into 
groups, which is crucial for estimating QI learning progression levels.  

Item reliability levels were 0.85 for the biodiversity assessment, 0.78 for the 
water assessment, and 0.79 for the carbon assessment. Item separation levels were 
2.40 for the biodiversity assessment, 1.87 for the water assessment, and 1.95 for 
the carbon assessment. With desired levels at 0.90 for item reliability and 3.00 
standard errors of spread for item separation, these levels were all below 
expectations. This finding suggests a need for a larger, more diverse sample of 
participants to improve measurement. 

Fit and Misfit. Fit refers to how well item or person measures correspond to a 
pattern expected by the Rasch model. Item infit and outfit are summarized in 
Table 2 for each of the three QI assessment versions. Infit is an information-
weighted index so it is most sensitive to the middle of a distribution of measures 
while outfit is not weighted, allowing it to be more sensitive to outlier measures. 
Any statistic with an infit or outfit value outside the standardized, or Zstd, interval 
(−2, 2) was flagged as a concern. High values (underfit) indicate a lack of 
predictability, or noise, with respect to the model. Underfit can therefore be used 
as a possible indication of items that are not part of the primary or dominant 
dimension under investigation (Smith 2004). On the other hand, low values 
(overfit) indicate very high predictability, which in this context can result from 
redundancy among items with respect to how students responded. Both maximum 
and minimum infit and outfit values were identified as areas of concern. Misfit 
(either underfit or overfit) findings impact our assessment revision concerning 
how to reduce the number of items without increasing variability in response. 
While Rasch fit analysis indicated that there were concerns with some items, they 
will not be automatically removed from future versions of the assessment. The 
learning progression iterative research process emphasizes improving the items 
rather than simply removing them from assessments as there are construct-
specific reasons for including each item within the assessment. 

Table 2: Item Infit and Outfit Summary 
 

 Biodiversity  
Assessment 

Carbon  
Assessment 

Water  
Assessment 

 Infit Outfit Infit Outfit Infit Outfit 
Mean 0.0 0.0 0.0 0.0 0.0 0.0 
S.D. 1.5 1.4 1.5 1.5 1.4 1.4 
Max 4.5 3.9 5.5 5.6 3.5 3.4 
Min -3.8 -3.9 -2.6 -2.7 -3.7 -3.7 

       
                    Note. Standardized units (Zstd) were reported for infit and outfit. 
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Misfit order for items provides infit and outfit parameters for each individual 
item. For example, on the biodiversity assessment, the item with the highest infit 
(most noise) is MATD2Q2.2  For this item, the total score for all persons was 414 
of a possible maximum of 495, yielding a measurement of −0.98 logits, placing it 
as the lowest item on the Rasch ruler (midpoint 0, range −1 to 1). Since the infit 
Zstd score for this item is 4.5, which is considerably greater than 2, the item does 
not coincide well with the measurement model since it is not following the pattern 
of most other items on the assessment.  

The numbers of infit and outfit items across all three assessments were 
similar, except for the water assessment which had only five overfit (highly 
predictable) item measures compared to ten for the other two assessments. The 
underfit (most unpredictable) item measures were predominantly macro, trend, 
and level 1 across all three assessments. This result is surprising, since the macro, 
trend, and level 1 items were considered by the research team to be the easier 
items, leading to the assumption that responses would be more predictable. Why 
were items that the research team considered to be at the more basic scale, 
element, and question level eliciting the most unpredictable responses? In 
contrast, the overfit item measures were predominantly micro, translation, and 
level 4 on the biodiversity assessment, but were more evenly distributed across 
scale and element for the other two assessments. The carbon assessment had most 
overfit on level 4 items, while on the water assessment the overfit items were 
more evenly distributed across the levels. The most surprising outcome for overfit 
was that the most predictable item responses were most often level 4 items. This 
could be due to redundancy among items that had similar levels of difficulty with 
respect to participants’ willingness to endorse the item statements.  

Item Polarity. Rasch analysis provides a point measure correlation for all 
item measures that reflect item polarity (positively or negatively correlated). 
Items with a negative polarity, or point measure correlations, indicated that 
student responses did not trend similarly to most other items. For instance, if an 
item that required a Likert category 1 rather than a category 5 as the most correct 
response was not reverse-coded prior to analysis, a negative correlation could be 
the result for that item. Item LAPR1Q13 had the lowest point measure correlation 
of −0.19, and a measurement of 0.03, which is very near the average item 
measure. Negative polarity does not always correspond with misfit, and this 
particular item had an infit Zstd value of 2.0 which we consider just within the 
model fit range. All such items were reviewed to determine if they should be re-

                                                        
2 Figure 1: Macro scale, Trend, Level 2, Question 2 - Given the Grey Wolf data in Figure 1, do 
you think the population is increasing?  
3 Landscape scale, Prediction, Level 1, Question 1 - One cannot predict future events from a box 
model of energy flow within a food chain 
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coded, revised, or potentially removed from the assessment as they were not 
functioning in concert with the other items. This can occur when items better 
represent different construct dimensions than the primary dimension under 
consideration, which is discussed in a subsequent section. The biodiversity 
assessment had nine negatively correlated items, the carbon assessment had eight, 
and the water assessment had nine. Thus there were consistent numbers of items 
functioning differently than most other items. These polarity findings were used 
with fit indices toward revisions of both items and instruments, and they will be 
used for reference to subsequent analyses of revised items.  

Item Category Function. Rasch analysis provides item category frequency 
counts, average measures, outfit mean squares, between-category (Andrich) 
thresholds, and probabilities with corresponding graphics curves illustrating the 
structure. These statistics help address the issue of whether the five Likert 
category ratings are functioning as expected.  Figure 2 illustrates the biodiversity 
assessment’s five category probability curves that ideally should each peak above 
the remaining four curves, in sequence. The category probabilities curves for 
biodiversity indicate that Likert categories 1 and 5 are clearly distinguished and 
functioning as intended, with low person measure associated with category1 and 
high person measure associated with category 5. Also there is some overlap 
(confusion) of category 1 with category 2, and category 5 with category 4. 
However, the middle three categories are more clearly confounded, with level 3 
failing to peak above the other categories, suggesting an excess of categories. 
Probability curves for the water and carbon assessments were similar in shape and 
appearance supporting a student usage pattern of the five categories across the 
three assessment versions. Thus for all three assessments reducing Likert 
categories from five to four may improve measurement.  

 

 

Figure 2. Category 
probability curves for 
the biodiversity 
assessment five-
category scale (1 = 
very strongly disagree 
through 5 = very 
strongly agree). Each 
numbered category 
curve should have a 
distinctive peak in 
ordered sequence 
across the scale for 
optimal functioning. 
These curves are 
overlapping 
excessively. 
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The frequency and percent of use for each of the five categories, the outfit 
mean squares values, the average measures, and the Andrich thresholds are 
specified in Table 3 (e.g., for the biodiversity assessment, 644 responses were at 
category 1, 7% of overall responses of all students on all 96 items on the 
assessment). We expect the measures and Andrich thresholds to be ordered in 
correspondence, or in step, with the rating category. The category distribution of 
frequency counts and percentages were similar across the three instruments with 
the lowest use at categories one (7%) and five (13%) and the highest use 
categories at three (28% to 34%) and four (26% to 30%). Average observed 
measures were ordered, except for categories one and two for both the carbon and 
water assessments that were very similar average measures. All three assessments 
had ordered Andrich thresholds (step measurements), supporting expected step 
functioning of the categories. Step measurements should advance by 
approximately 1.0 logit when using five categories to show distinctions but not 
more than approximately 5.0 logits, as this gap would represent an excessive 
range (Bond and Fox, 2007; Linacre, 1999). The differences between pairs of 
Andrich thresholds on Table 3 indicate step advances of 0.97, 0.28, and 0.97 for 
the biodiversity assessment, 0.22, 0.98, and 0.46 for the water assessment, and 
0.33, 0.94, and 0.72 for the carbon assessment. These findings further support a 
potential benefit of utilizing fewer categories on future versions of the assessment. 
 

Table 3: Category Structure for Learning Progressions Instruments with Five Rating Categories 
 
Category 1 2 3 4 5 
Biodiversity      
     Count 644 2028 2628 2851 1339 
     % of Total 7 21 28 30 14 
     Outfit MnSQ. 1.17 1.03 0.64 1.00 0.95 
     Ave. Meas. .11 .09 .10 .28 .49 
     Andrich Threshold  -1.11 -.14 .14 1.11 
Water      
     Count 954 2118 3980 2995 1534 
     % of Total 8 18 34 26 13 
     Outfit MnSQ. 1.09 1.04 0.69 0.98 0.97 
     Ave. Meas. .06 .07 .07 .19 .30 
     Andrich Threshold  -.77 -.55 .43 .89 
Carbon      
     Count 757 1894 3669 3039 1375 
     % of Total 7 18 34 28 13 
     Outfit MnSQ. 1.19 1.00 0.72 0.96 0.97 
    Ave. Meas. .08 .06 .09 .24 .43 
    Andrich Threshold  -.90 -.57 .37 1.09 

 
Dimensionality. We examine the unidimensionality of the measurements to 

determine whether they reflect one dominant construct, or dimension. 
Unidimensionality does not mean that only one psychological process is 
influencing responses, but rather that the multiple psychological processes that 
make up a construct, such as QI, affect the items such that they function similarly 
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(Smith 2004). For each of the three assessments whether calibrated measures 
share a primary QI construct dimension was estimated through examination of the 
variance explained using principal components analyses (PCA) of residuals, or 
what is left over after predicted variability is accounted for (Linacre 2014; Smith 
2004). PCA of residuals differs from typical PCA or other factor analysis studies 
of scores in that one is not looking for a factor structure, but instead determining 
whether there is evidence of one primary dimension through examining variance 
explained by measures and checking for residual contrasts following removal of 
the variance explained. Eigenvalues, which represent approximately the number 
of items in PCA, also reflect the variance explained that can be calculated as a 
percentage. For the biodiversity assessment, PCA of residuals indicated that only 
11.7% of variance was explained (eigenvalue of 12.8) by the Rasch measures. 
Similarly for the carbon assessment only 10.0% of variance was explained 
(eigenvalue of 10.6) by measures, and for the water assessment only 7.5 % of 
variance was explained (eigenvalue of 7.8). Variance that is not dominant is not 
supportive of unidimensionality, so this dimensional variance is low and 
unsupportive of unidimensionality. That is, the Rasch modeled dimension did not 
account for a dominant proportion of variance which may indicate additional 
dimensions. Principal components of residuals decomposed the unexplained 
variance to determine the relative strength of any secondary dimensions. If only 
one dimension is dominant, the contrasts should yield relatively small eigenvalues 
(ideally values less than 2).  However, the first contrast in the residuals explained 
8.1% of the variance (eigenvalue of 8.8) for the biodiversity assessment, 12.3% of 
the variance (eigenvalue of 13.1) for the carbon assessment, and 9.1% of the 
variance (eigenvalue of 9.4) for the water assessment. For the carbon and water 
assessments, these eigenvalues and corresponding percentages were large and 
exceeded that of the variance explained by the measures, further indicating 
multidimensionality within the data. These dimensionality findings will be 
considered with respect to the other diagnostics and measurement results. 

Rasch Ruler. The measures for student and item are jointly considered in 
Rasch measurement. One of the primary ways of viewing the relationship 
between student and items is the Rasch ruler, or variable map (Wilson 2009; 
Wright and Stone 1979), which places the students and item measures on the 
same scale graphically. The Rasch rulers are provided in the Appendix: for the 
biodiversity assessment as Figure A.1; for the carbon assessment analysis as 
Figure A.2; and for the water assessment analysis as Figure A.3.  

On the Rasch rulers, student measures are plotted on the left and item 
measures on the right of the vertical line, where the mean (M), standard deviation 
(S), and two standard deviations (T) are shown. The total measure mean for items 
was calculated using measures by students on each individual item. In Rasch 
measurement, item difficulty measures are based on the probability that a student 
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will respond to an item correctly, or with the most accurate endorsement 
(agreement category) response in the case of the five-category Likert-scale 
assessment. A person has a 50% chance of “correctly” responding (indicating the 
most ideal response) to items that have the same item measure value as their 
student measure value. For example, on the biodiversity assessment, those 
students at the mean score measure of 0.21 (raw score of 309.9) have a 50% 
chance of responding to item MAPR4Q14 with the best answer. The items higher 
on the difficulty scale than the student measure are less likely to elicit agreement 
by that individual. The higher the items are on the scale the more difficult they are 
for the student to answer correctly through their level of agreement. Similarly, the 
lower the item is on the scale the easier it is for the student to agree appropriately. 
When unexpected responses are flagged by Rasch fit statistics these occurrences 
may represent a student correctly responding to questions that are especially 
difficult for them (above their student measure) or incorrectly responding to items 
that are predicted to be especially easy for them (below their student measure).  

Information was added to the Rasch ruler that is not provided by the 
Winsteps program in order to visualize distribution of items. The items were 
shade-coded to provide a visual of distribution of items by proposed difficulty 
level. Questions written to assess at level 1 are light grey text; level-2 questions 
are dark text; level 3 are light shade of grey, and level 4 are dark shade of grey. 
The levels one through four discussed here refer to the hypothesized levels of the 
learning progression to which the questions corresponded. The color coding 
allows for a visual analysis of distribution of proposed level of endorsement 
difficulty versus student measure of ability. Note for example that level 2 items 
are disproportionately represented in the upper fourth of the biodiversity 
assessment Rasch ruler (Figure A.1). 

The Rasch ruler allows for a comparison of the distribution of students to the 
distribution of items. The student distribution and mean is higher than the item 
distribution and mean for all three QI assessment versions, indicating that, overall, 
the assessments’ items were not too difficult for the students. For the biodiversity 
assessment, 14 student measures exceeded all items, indicating they had better 
than a 50% chance to respond correctly to all items. On the water assessment, 
only four student measures exceeded all items, and, on the carbon assessment, six 
student measures exceeded all items. There were no student measures on the 
biodiversity assessment that were more than one standard deviation below the 
student mean. Specifically 33 of the 96 items were below all student measures 
(34%). If we omit the student measures on the carbon and water assessments that 
were more than one standard deviation below the student mean—only four 
students on each assessment—then approximately one third of the items on each 
                                                        
4 Figure 1: Macro scale, Prediction, Level 4, Question 1 - One could extend the nonlinear trend of 
the data off the end of the graph, then estimate the year and number of wolves on the curve 

17

Mayes et al.: QR Rasch Analysis

Published by Scholar Commons, 2015



of the assessments (31% carbon, 36% water) were below remaining student 
measures. This indicates that approximately a third of the items on each 
assessment would have more than a 50% chance of being answered correctly. 

 

 

a. Biodiversity Assessment   b. Carbon Assessment 
 

 
 

c. Water Assessment 
 

Figure 3. Rasch ruler histograms illustrating targeting for each assessment instrument 

 Figure 3 provides histograms of the Rasch Rulers, which are visual 
representations of the correspondence, or overlap, of students with items. The 
histograms indicate a positive overlap of student and item measures. Overlap of 
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item and student measures helps maximize measurement accuracy and identifies 
whether the assessment is well suited, or targeted, to the ability level of the 
participants. It is also evident that the student measures are typically higher than 
the item measures, that there are student measures above all item measures, and a 
number of item measures do not target well with student measures on the lower 
end of the scale. This lack of targeting tends to increase error for those item and 
student measures that do not overlap. A goal for revising the assessments will be 
to better align the targeting between student and items using these findings. 

Empirical Performance Level. To further examine the alignment of 
proposed item level difficulty with the Rasch rating of measure order difficulty, 
the Rasch ruler was divided into four empirical performance levels based on 
student data: 

• Level 1: one standard-deviation bin or more below the mean (easiest 
items). 

• Level 2: between one standard-deviation bin below mean and the mean. 

• Level 3: the mean and up to one standard-deviation bin above the mean. 

• Level 4: one standard-deviation bin above the mean or more (most 
difficult items). 

The assessment items were written to reflect increasing levels of 
complication, with level-1 items representing the lower anchor of a learning 
progression (novice level, e.g., Figure 1 Prediction 1b items), up to level-4 items  
representing the upper anchor of the learning progression (expert level, e.g., 
Figure 1 Prediction 4b items). Table 4 provides a count of items with respect to 
learning progression level (expected item challenge level) by actual performance 
level (empirical performance difficulty level). For example, Table 4 shows that 
the 24 biodiversity assessment level-4 items were distributed across all four 
empirical performance levels (e.g., three level-4 items appeared in the lowest 
empirical performance level).  Level-1 items on the biodiversity assessment were 
found more often on empirical performance levels 1 and 2 as expected. However 
on the carbon and water assessments the level 1 items were more evenly 
distributed across all four empirical performance levels. Level-2 items were 
prevalent in empirical performance level 3, which was higher than expected on all 
three assessments. Level-3 items were found more at empirical performance level 
4 on the biodiversity assessment which was higher than expected, but on 
empirical performance level 3 on the carbon assessment, and empirical 
performance levels 2 and 3 on the water assessment, which meets expectations. 
Unexpectedly, the carbon assessment had a large number of level-3 items at 
empirical performance level 1, which is counter to what was expected. The most 
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unexpected trend was that on all three assessments, level-4 items were found most 
frequently in empirical performance levels 2 and 3, not in empirical performance 
level 4 as predicted. This provides evidence that either the hypothesized 
complexity of the levels of the learning progression are in question or that the 
items did not elicit the desired level of required understanding on the part of the 
persons taking the assessments.  

Table 4: Expected Item Challenge Level by Empirical Performance Difficulty Level 
 

 
Expected Item 

Challenge Level 

 Biodiversity 
Assessment 

 Carbon  
Assessment 

 Water  
Assessment 

 1st 2nd 3rd 4th  1st 2nd 3rd 4th  1st 2nd 3rd 4th 
Level 4  3 7 9 5  3 7 13 1  2 8 10 4 

Level 3  5 3 6 10  8 4 10 2  3 9 9 3 

Level 2  4 5 7 8  4 3 9 8  5 4 9 6 

Level 1  11 6 4 3  6 7 5 6  7 6 6 5 

TOTAL  23 21 26 26  21 21 37 17  17 27 34 18 

Assessment Items by Scale. Within each of the three QI assessment 
versions, items were developed to assess across three scales: macro scale, micro 
scale, and landscape scale (see Figure 1 for example of macro scale items). 
Student’s ability to use quantitative reasoning may vary across these scales. At the 
macro scale, comfort with the context may reduce cognitive load and encourage 
quantitative accounts; at the micro scale, the context becomes inherently more 
quantitative as physical science is often required which may be more difficult for 
students; and at the landscape scale, quantitative accounts are driven by the need 
to generalize from local to regional or global contexts providing a different 
quantitative challenge. The hypothesis was that the scales from easiest to hardest 
would be: macro, landscape, micro. Table 5 presents data on scale by empirical 
performance level, where the number of scale items at each empirical 
performance level is listed in the table (e.g., Table 5 indicates that 13 of the 32 
micro level items were at the first empirical performance level). The hypothesis 
was that macro scale items would be on the lower empirical performance levels, 
but they were more evenly distributed than expected on all three assessments. The 
micro scale items were spread relatively even across empirical performance levels 
2, 3 and 4 for the biodiversity assessment, across the lower three performance 
levels for the carbon assessment, and at the empirical performance levels 2 and 3 
for the water assessment. It was expected that more of the micro scale items 
would occur in empirical performance level 4 due to the quantitative nature of 
science required, but this is not supported by the data. Landscape items were 
clustered more in the upper three performance levels for all three assessments. It 
was expected the landscape scale items would be clustered on empirical 
performance levels 2 and 3, which is supported by the data. Overall there is 
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considerable spread of the scale items across empirical performance levels, which 
supports the development of easier and harder level items within each scale.  

Table 5: Scale by Empirical Performance Difficulty Level 
 

 
Scale 

 Biodiversity 
Assessment 

 Carbon 
Assessment 

 Water 
Assessment 

 1st 2nd 3rd 4th  1st 2nd 3rd 4th  1st 2nd 3rd 4th 
Macro  13 4 7 8  10 7 11 4  9 9 8 6 
Micro  5 8 9 10  9 8 10 5  6 8 14 4 
Landscape  5 9 10 8  2 6 16 8  2 10 12 8 
TOTAL  23 21 26 26  21 21 37 17  17 27 34 18 

 
How can one rank the level of difficulty of scales? One way is to calculate a 

weighted score across all three science strand assessments by multiplying the 
number of items by the performance level and summing. The weighted score for 
scale on the assessment indicates that the easiest scale for students was macro 
(222), followed by micro (243) and landscape (269). This supports the conjecture 
that students would do best on QI at the macro level, but inverts the hypothesized 
difficulty level for landscape and micro scales. However, the length of the 
assessment and fatigue could have influenced this order since this is precisely the 
order of the scales on the assessment.  

Assessment Items by QI Elements. The distribution of items by QI 
elements and performance level was also analyzed (Table 6). The hypothesis was 
that students would find trend the easiest element, followed by translation, 
prediction, and revision. While all three assessments had a number of trend items 
in empirical performance level 1 as predicted, they also had an inordinate number 
of trend items at empirical performance level 3 and 4. The translation element 
items were evenly distributed across empirical performance levels for the 
biodiversity assessment, but were more prevalent in performance level 2 and 3 for 
the other assessments. The latter of these supports the hypothesis. Prediction 
element items were evenly distributed across all empirical performance levels on 
the biodiversity assessment, across the lower three empirical performance levels 
on the carbon assessment, and at empirical performance level 3 on the water 
assessment. This is counter to the expectation that these items would be more 
prevalent in empirical performance level 3 and 4. The revision element was most 
prevalent at empirical performance level 3 for the biodiversity assessment, 
empirical performance level 3 and 4 for the carbon assessment, and empirical 
performance level 2 for the water assessment. Thus the distribution for the 
biodiversity and carbon assessments supported the contention that revision would 
be more difficult for students, but the water assessment did not support this 
expectation. In fact, empirical performance level 4 was relatively evenly 
populated by items from all four elements on the water assessment and was 
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reversed for the biodiversity assessment with the greatest number of items at the 
trend level.  

Table 6: Elements by Empirical Performance Difficulty Level 
 

 
Element 

Biodiversity 
Assessment 

 Carbon 
Assessment 

 Water 
Assessment 

1st 2nd 3rd 4th  1st 2nd 3rd 4th  1st 2nd 3rd 4th 
Trend 8 2 3 11  9 1 11 3  7 5 7 5 
Translation 7 5 6 6  2 6 12 4  5 6 9 4 
Prediction 6 8 6 4  6 9 7 2  2 5 12 5 
Revision 2 6 11 5  4 5 7 8  3 11 6 4 
TOTAL 23 21 26 26  21 21 37 17  17 27 34 18 

 A weighted score was calculated to determine a ranking of difficulty for QI 
elements. There was no discernible difference on the assessments between trend 
(179) and prediction (177). Translation (185) was ranked higher than prediction, 
while revision (193) was ranked the highest. The rankings do not support the 
hypothesis that prediction would be more difficult than trend and translation. 
However, the elements of trend, translation, and revision were in the predicted 
order.  

Discussion  
Examining the QI assessments through simultaneous review of item data and 
student response data allowed for improvement of the current measurement 
accuracy by focusing on the assessment process validity. The intent was to 
influence future measurement accuracy following data-informed revisions of the 
assessment. Use of the Rasch rating scale model approach allowed for the 
development of additive measures from the raw ordinal ratings provided by the 
students.  Rasch procedures include diagnostic statistics that enabled the 
refinement of these measures through identification of data that did not 
correspond with the ideal Rasch measurement model. For example, for the 
biodiversity assessment macro scale prediction items in Figure 1, item 2 
(Prediction 1b) and item 4 (Prediction 2b) were both underfit (unpredictable) and 
item 8 (Prediction 4b) was overfit (too predictable). Such items were considered 
for revision. The items identified as very difficult, negatively correlated, and 
underfitting were all reviewed for possible revision. As part of this diagnostic 
review it was determined that items were represented across a broad range of 
difficulties, which allowed the assessment to better indicate the full range of 
student performance measurements. Specifically, item difficulty distributions 
showed a large proportion of items to be targeted well to student ability 
distributions for each assessment, supporting measurement validity. In addition, 
two of three assessments yielded relatively similar high levels of internal 
consistency and person separation reliability. However, despite favorable student 
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to item targeting, student ability levels for some students generally exceeded the 
difficulty level for all items across assessments, so targeting was not seen as ideal. 
This finding suggests some benefit to revising some items to be more challenging. 

Participants’ use of the five categories of the Likert scale suggested that fewer 
categories, perhaps four versus the current five categories, would have provided 
greater measurement accuracy. Middle levels of the five category scales were 
typically overlapping with respect to measurement. One implication of this 
overlap is to reduce the number of categories in order to eliminate possible 
redundancy in the scale and help encourage a more meaningful distribution of 
responses on the scale. Reducing the categories to four removes the neutral option 
for students, requiring them to commit to either agreeing or disagreeing with each 
item. One potential advantage to eliminating the neutral option is improved 
identification of each participant’s agreement tendency. For participants who 
would use a middle category to opt out of an agreement or disagreement level 
decision, an option outside of the agreement scale choices could also be added to 
help identify students who truly have no basis for responding one way or the 
other. With or without an opt-out choice, elimination of the middle category for 
this particular Likert-scale application would provide clearer information on 
middle-range student tendencies, potentially further improving measurement 
accuracy and item targeting. This reasoning is supported by the work of Wolfe 
and Smith (2007) who favor an even number of rating categories, stating “…the 
middle category is often used as a ‘dumping ground’ for participants that are 
compelled to provide a response but would not do so otherwise (p. 231−232).” 
This possible advantage to a four-category rather than a five-category scale will 
require an empirical test to determine whether such a measurement advantage 
exists on future administrations of the assessments that present four-category 
Likert items. Furthermore, providing the response choice for each item that would 
allow a student to opt out of any item, rather than provide a random response or 
misuse middle responses can be examined. That is, if a middle-range response 
was used by students when their intended response actually lied outside of the 
Likert scale, the result was simply erroneous data. An additional option such as 
“don’t know,” for example, may support increased efficacy of the Likert scale 
with four categories. 

The length of the assessment at 96 items was a concern, and the student 
responses illustrated reasons for continued concern. Response patterns of some 
students, such as repeated use of a single level or apparently random responding, 
suggested student fatigue or low motivation, followed by misuse of the 
assessment due to deliberate careless responding. This finding supports an 
advantage for shorter versions of the assessments as well as consideration of 
means to influence motivation levels for future administration. Considering that 
duplicate items were developed at each scale-element-level, the test could be 
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reduced in half by removing all duplicate items. This would help to address the 
likely fatigue and motivation problem. The items identified as a concern (e.g., 
underfitting or overfitting items) could be the first ones removed for the revised 
assessment. Another option is to reduce the assessment length by having students 
take only one level of the scale, assigning a class randomly to the three scales or 
having students take the assessment in three parts over three weeks. These 
implications depend upon the motivational character of subsequent students who 
are administered the revised QI assessment, but until sources of careless 
responding are minimized, the interpretations of findings must be tempered 
accordingly. 

The research context of this investigation called for a unidimensional focus to 
examine the primary QI dimension. Thus, the assessment characteristics required 
examination with regard to this primary dimension. A majority of the items within 
each assessment fit well together according to weighted and unweighted fit 
analyses, supporting the broad QI dimension. However, PCA dimensionality 
analysis findings lead to the question of whether the improvements to the 
assessments following this investigation will lend greater support for a primary 
dimension (i.e., unidimensionality) or will it instead be necessary to divide up 
each revised assessment relative to dimensions to accurately analyze and interpret 
subsequent assessment findings. By identifying the multidimensionality evidence 
during this initial development stage, baseline statistics were established to allow 
for theoretical considerations of the dimensions that will be examined in future 
analyses of administrations of the revised assessments. For example, empirical 
investigations have shown that positive wording versus negative wording may 
lead to multidimensionality (Marsh 1996; Wang, Chen, and Jin 2015; Wolfe and 
Smith 2007, Yamaguchi 1997). Perhaps the reverse coding of negatively worded 
questions may have resulted in a secondary dimension. This possibility will be 
examined on a revised assessment by separately calibrating and comparing 
positively and negatively worded items to examine unidimensionality with PCA 
in conjunction with fit statistics. Other possible reasons for the lack of a clearly 
dominant dimension exist and include the influences of QI elements and scales, so 
empirical tests of new item sets that examine these additional aspects of the items 
can help to reveal the most advantageous means to examining the QI construct. 
Empirical tests of shorter forms of the assessment are being developed. Findings 
from future administrations of assessments will be compared with those from the 
current investigation regarding element, scale, and assessment versions to 
determine whether the unexpected QR progressions findings in the present study 
resulted from the item, assessment, and administration issues identified. 
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Concluding Remarks 
Model-based reasoning skills are necessary for scientifically literate citizens to 
engage in 21st-century problem solving. This investigation represents a step 
toward improved diagnosis of model-based reasoning skills for educators. The 
analysis conducted provided a demonstration of several current measurement 
tools that can be used to develop and refine learning assessments that support 
model-based reasoning skills development. Measurement tools used in the current 
phase of the research include the construction of linear Rasch rating scale 
measures of item difficulty and student ability, as well as indices and visual 
graphics that allow focus on item polarity, category functioning, dimensionality, 
targeting, reliability, separation, and item/person fit.  Following instrument 
revisions, additional Rasch measurement tools will be beneficial within 
subsequent investigations of the instrument to help refine the assessment process 
for wider use. Additional tools and techniques include examinations of 
differential item function (DIF) that involves comparison of item measures 
between subgroups of students (Linacre, 2014; de Ayala 2009, Bond and Fox, 
2007, Smith and Smith, 2004). With refined items making up shorter instruments, 
both the dimensional character and item functioning can help specify whether the 
instruments measure the learning progressions levels intended in a consistent 
manner. 

Findings from this investigation supported further refinement of these 
assessments for use by teachers, administrators, and researchers as a part of an 
efficient diagnostic process to improve understanding of what QR abilities 
students possess. The student-level and classroom-level data generated from these 
improved assessments, in conjunction with other available performance outcomes 
can also allow K-12 curriculum developers the opportunities to integrate the 
explicit teaching of QR within science contexts and provide data-informed 
support for STEM professional-development opportunities. The revised QI 
assessments and subsequent research that follows from this investigation are 
available to educators and researchers from the first author.   
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Appendix A.  Rasch rulers for the three assessments 
 
 
 
MEASURE 
     PERSON - MAP – ITEM 
         <more>|<rare>          
 1          X  +             
               |           
            .  |             
         .XXX T|             
           XX  |           
           .X S|T MITD3 
          XXX  |  LATD3LATD4MAPR3MATS3MIPR2MIRV1       
         XXXX  |  LARV2LATD2MATD3MIRV2MITS2 
     .XXXXXXX M|S LATD3LATS1LATS3LATS4MARV1MARV3MATD2MATD4MATD4MIPR2MIPR3MITD2MITD4MITS3 
  ------------------------------------------------------------------------ 
   XXXXXXXXXX  |  LAPR1LAPR2LARV1LARV2LARV3LARV4LATS3MAPR4MARV2MARV2MATS2MATS4MATS4MIRV2QMIRV3MITD2MITD4  
  ------------------------------------------------------------------------ 
0XXXXXXXXXXXX  +M LAPR3LAPR3LARV3LARV4LATD2LATS2LATS2LATS4MAPR4MIPR1MIPR4MIRV4MITD3MITS1MITS4 
        .XXXX S|  LAPR1LAPR2 ARV1LATD4MAPR1MAPR1MARV3MARV4MIPR1MIPR4MIRV1MIRV3MIRV4MITS2MITS4 
  ------------------------------------------------------------------------ 
               |S LAPR4LAPR4LATD1LATD1LATS1MARV1MATD3MATS1MIPR3MITD1 
              T|  MAPR2MAPR2MARV4MATS3MITD1MITS1MITS3 
               |  MAPR3MATD1MATS2 
               |T MATD1 
               | 
               | 
               |  MATS1 
               | 
   -1          +  MATD2 
         <less>|<frequent> 
 
EACH "X" IS 2. EACH "." IS 1. 

 
Figure A.1. Variable map, or Rasch ruler, for biodiversity assessment illustrating item types by quartile 
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MEASURE  
PERSON - MAP - ITEM 

            <more>|<rare> 
    2             + 
                  | 
                  | 
                  |          
                  | 
                  | 
                  | 
               X  | 
                  | 
              XX  | 
    1            T+ 
                  |  MATD1 
            XXXX  |T LARV2        
           XXXXX  |  MIPR2 
        XXXXXXXX S|  LATS3MATS3MIPR4 
            XXXX  |  LATD2LATD4LATS1MITD4 
             XXX  |S LARV1LARV3LATD1LATS4MARV2MARV2MATD2MITS4 

--------------------------------------------------------------------------------- 
        XXXXXXXX M|  MARV1MATS1MIPR3MITD2MITD4   
         XXXXXXX  |  LARV3LATD3MARV3MATD4MATS2MATS3MATS4MIPR1MIRV2MIRV2MITD2MITS3 
          XXXXXX  |  LAPR4MAPR3MAPR4MAPR4LAPR1LARV2LARV4LATS2MARV3MARV4MIPR3MIRV1MIRV4MIRV4MITD1MITS3 
    0 XXXXXXXXXX  +M LATS4LATD3MIPR2     

---------------------------------------------------------------------------------       
        XXXXXXXX S|  LARV3LARV4MARV1MATD4MIPR1MIPR4 
              XX  |  LAPR1LAPR2LAPR4LATS3MAPR1MAPR1MARV4MATD1MATS4MIRV3MIRV3MITD1MITS2MITS4 
              XX  |  LAPR2LARV1LATD1LATD4LATS2MAPR2MATD2MATD3MIRV1MITD3MITS1MITS2 

--------------------------------------------------------------------------------- 
                 T|S MATS1MATS2 
                  |  MAPR2MAPR3    
                  | 
                  |  MATD3MITD3 
                  |T 
                  | 
   -1             + 
                  |  LAPR3LATD2 
                  | 
                  |  LATS1 
                  | 
                  | 
                  | 
                  | 
                  | 
                  | 
   -2             + 
            <less>|<frequent> 
 
Figure A.2. Variable map, or Rasch ruler, for carbon assessment illustrating item types by quartile 
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MEASURE     
PERSON - MAP - ITEM 
    <more>|<rare> 
2         + 
          |         
          | 
          | 
          | 
       .  | 
          | 
          | 
1      .  + 
          |  
       X T| 
          | 
    .XXX  |T MATS2        
      XX S|  LAPR1MIPR4 
   .XXXX  |  LATD3LATD4MAPR4MATD4MITS4 
  .XXXXX  |S LAPR2LARV2LATD2LATD4LATS2LATS4MAPR1MARV1MARV2MATS3MATS4MIPR2MIPR3MIRV1MITD4MITS1MITS3MITS4 
  ------------------------------------------------------------------------- 
XXXXXXXX M|  LAPR4LARV4LATS1MARV2MATD2MIPR3MIRV2 
   XXXXX  |  MAPR1MAPR2MIRV2MITD2MITD3LARV1MITD4LARV3LATD1LATD2LATS3MAPR2MATD3MATS2MIPR1MIPR4MIRV3MIRV3 
0 XXXXXX  +M MIRV1LAPR4MIRV4MITD3MITS2MATD4       
  -------------------------------------------------------------------------             
XXXXXXXX S| LAPR2LAPR3LAPR3LARV1LARV2LATS4MAPR3MAPR4MATD3 
       X  | LAPR1LARV3LATS2LATS3MARV1MARV3MATD1MATS1MATS1MIPR1MIPR2MITS2 
  -------------------------------------------------------------------------- 
       .  |S LARV4MAPR3MARV4MARV4MATD1MATD2MATS3MATS4MITD2MITS3  
         T|  MARV3MIRV4 
       .  | 
          |T LATD1LATD3MITD1 
          |  LATS1MITD1 
          | 
          | 
-1        +  MITS1 
    <less>|<frequent> 

 
Figure A.3. Variable map, or Rasch ruler, for water assessment illustrating item types by quartile 
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