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EVOLUTION OF STELLAR BARS IN LIVE AXISYMMETRIC HALOS:
RECURRENT BUCKLING AND SECULAR GROWTH

Inma MARTINEZ-VALPUESTA,1’2 Isaac SHLOSMAN,2 AND CLAYTON HELLER®
Received 2005 July 4; accepted 2005 September 27

ABSTRACT

Evolution of stellar bars in disk galaxies is accompanied by dynamical instabilities and secular changes. Fol-
lowing the vertical buckling instability, the bars are known to weaken dramatically and develop a pronounced boxy/
peanut shape when observed edge-on. Using high-resolution N-body simulations of stellar disks embedded in live
axisymmetric dark matter halos, we have investigated the long-term changes in the bar morphology, specifically the
evolution of the bar size, its vertical structure, and the exchange of angular momentum. We find that following the
initial buckling, the bar resumes its growth from deep inside the corotation radius and follows the ultraharmonic
resonance thereafter. We also find that this secular bar growth triggers a spectacular secondary vertical buckling
instability that leads to the appearance of characteristic boxy/peanut/X-shaped bulges. The secular bar growth is
crucial for the recurrent buckling to develop. Furthermore, the secondary buckling is milder, persists over a
substantial period of time, ~3 Gyr, and can have observational counterparts. Overall, the stellar bars show recurrent
behavior in their properties and evolve by increasing their linear and vertical extents, both dynamically and
secularly. We also demonstrate explicitly that the prolonged growth of the bar is mediated by continuous angular
momentum transfer from the disk to the surrounding halo and that this angular momentum redistribution is resonant
in nature: a large number of lower resonances trap disk and halo particles, and this trapping is robust, in broad

agreement with the earlier results in the literature.

Subject headings: galaxies: bulges — galaxies: evolution — galaxies: formation — galaxies: halos —
galaxies: kinematics and dynamics — galaxies: spiral — stellar dynamics

Online material: color figures, mpeg animation

1. INTRODUCTION

Observations and numerical modeling of galactic stellar bars
have been frequently accompanied with basic controversies
about their origin and evolution. While modern understanding of
bar growth in a live and responsive environment is rooted in the
angular momentum redistribution between the inner and outer
disks, bulges, and dark matter halos (Athanassoula 2003), the
efficiency of this process is hardly known and its details are still
to be investigated. Recent efforts include but are not limited to
the issues related to the bar lifetime cycles, gas-star interactions,
bar amplitudes and sizes, and bar slowdown (e.g., Bournaud &
Combes 2002; Valenzuela & Klypin 2003; Shen & Sellwood
2004; Weinberg 1985; Hernquist & Weinberg 1992; Debattista
& Sellwood 1998, 2000). The bigger issue, of course, is how
the observational and theoretical aspects of bar evolution fit
within the emerging understanding of cosmological galaxy evo-
lution (e.g., Jogee et al. 2004; Elmegreen et al. 2004), specifi-
cally, the bar evolution in triaxial halos (El-Zant & Shlosman
2002; Berentzen et al. 20006).

On the one hand, early self-consistent models of numerical
stellar bars have relied heavily on the Ostriker & Peebles (1973)
result, which emphasized the Maclaurin sequence parameter
T/|W|, the ratio of bulk kinetic to gravitational energy, as the
threshold of bar instability. On the other hand, they revealed ro-
bustness of the bars: once formed, the bars persisted (Athanassoula
1984 and references therein). The subsequent increase in the
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particle number above N ~ 10°, switching from two-dimensional
to three-dimensional models with responsive spheroidal compo-
nents, and the introduction of nonlinear physics tools in the or-
bital analysis have shown a much more complex bar evolution
and morphology than was anticipated originally (e.g., review by
Athanassoula 2002b). This refers especially to the numerical con-
firmation that live halos can indeed drive the bar instability rather
than damp it (Athanassoula & Misiriotis 2002; Athanassoula
2003). Finally, it is still unclear to what extent and how closely
the numerical bars correspond to their observed counterparts. This
issue exacerbates galaxy studies because overall, both theoreti-
cally and observationally, the bars appear to be among the most
important drivers of galactic evolution across a wide range of spa-
tial scales.

In this paper we have revisited some aspects of a self-
consistent evolution of stellar bars originating in /ive stellar disks
embedded in /ive dark matter halos by focusing on dynamical and
secular changes” in these systems. The evolution of numerical
collisionless bars has been characterized so far in the literature by
three distinct phases: the initial growth, the rapid vertical buck-
ling, and the prolonged quasi-steady regime, i.e., when the bars
preserve their basic parameters (e.g., Sellwood & Wilkinson
1993). However, some indication that bars can grow even in the
last phase has been noticed already in low-resolution three-
dimensional models with live halos (e.g., Sellwood 1980). This
ability of the bars to grow over an extended period of time due
to the momentum exchange with the outer disk and especially
with the halo has been confirmed recently and analyzed in self-
consistent three-dimensional simulations (Athanassoula 2003).

4 We refer to a dynamical evolution when changes develop on the timescale
of about one disk rotation and to a secular evolution when they develop on a
much longer timescale of ~10—100 rotations.
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Here we attempt to quantify this secular growth in terms of the
bar size and its ellipticity, of the angular momentum exchange,
and of the ratio of vertical to radial dispersion velocities. More-
over, we look into the corollaries of such recurrent growth and
find that it leads to additional and substantial two-dimensional
and three-dimensional structural changes in the bar. We therefore
discuss the observational consequences of this evolution.

Early in their growth stage, numerical stellar bars experience
a dynamical instability: the vertical buckling. The bars thicken
profoundly, become more centrally concentrated, and acquire
a characteristic peanut/boxy shape when seen edge-on (Combes
etal. 1990; Pfenniger & Friedli 1991; Raha et al. 1991; Berentzen
et al. 1998; Patsis et al. 2002b), while nearly dissolving the outer
half of the bar, beyond the vertical inner Lindblad resonance
(ILR; Martinez-Valpuesta & Shlosman 2004). This happens in
live models with both axisymmetric and mildly triaxial halos
(Berentzen et al. 2006). These peanut/boxy shapes are similar to
bulge shapes observed in edge-on galaxies (e.g., Jarvis 1986;
Shaw 1987; Bureau & Freeman 1999; Merrifield & Kuijken 1999),
which can be found in nearly half of all edge-on disk galaxies
(Liitticke et al. 2000). Although they were observed in numerical
simulations a long time ago (Combes & Sanders 1981), the origin
of boxy/peanut bulge shapes still has two alternative explanations,
the well-known fire-hose instability (e.g., Toomre 1966; Raha
etal. 1991; Merritt & Sellwood 1994) and resonance heating (e.g.,
Combes et al. 1990; Pfenniger & Friedli 1991; Patsis et al. 2002a).
These two views can be reconciled if buckling is responsible for
shortening the secular timescale of particle diffusion out of the
disk plane and for accelerating the buildup of boxy/peanut-shaped
bulges, which proceeds on a much shorter dynamical timescale
instead (Martinez-Valpuesta & Shlosman 2004).

However, is the buckling really necessary for a buildup of these
boxy/peanut-shaped bulges? After all, even imposing vertical
symmetry did not eliminate this effect, albeit the buildup pro-
ceeded on a much longer timescale (Friedli & Pfenniger 1990).
Where are the observational counterparts of these asymmetric
buckled bars? Due to a particular importance of the buckling in-
stability for the evolution of numerical bars and its plausible
connection to the buildup of the pronounced three-dimensional
structure there, we have analyzed the bar behavior during and
following this instability. Specifically, we find that the bars in a live
environment are capable of recurrent growth, that the buckling
instability is a recurrent event, and that the buildup of the three-
dimensional shape is not necessarily a dynamic phenomenon.

Much of the analysis of bar evolution and the accompanying
instabilities is implemented here by means of nonlinear orbit
analysis, because for such strong departures from axial sym-
metry the epicyclic approximation cannot be relied upon: being
wrong quantitatively, it frequently leads to qualitative errors.
We try to avoid the specific jargon associated with this tech-
nique where possible. The angular momentum redistribution in
the model is quantified using orbital spectral analysis.

In § 2 we provide the details of numerical modeling and
analysis. Section 3 describes the overall results of secular bar
evolution. The three-dimensional bar orbital structure and the
inferred vertical structure in the bar are analyzed in § 4, and the
resonant interaction between the disk and the halo is analyzed in
§ 5. Discussion and conclusions are given in §§ 6 and 7.

2. NUMERICAL TOOLS AND MODELING
2.1. N-Body Simulations

To simulate the stellar disk embedded in a live dark matter
halo, we have used version FTM-4.4 of the N-body code
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Fic. 1.—Initial circular rotation velocities for the disk (dashed line) and
halo (dotted line) components. The total is given by the solid line.

(Heller & Shlosman 1994; Heller 1995) with N = 10°—1.1 x
10°. The gravitational forces are computed using Denhen’s
(2002) falcON force solver, a tree code with mutual cell-cell
interactions and complexity O(N ). It conserves momentum ex-
actly and is about 10 times faster than an optimally coded Barnes
& Hut (1986) tree code.

The initial density distribution is derived from the Fall &
Efstathiou (1980) disk-halo analytical model. The system is not
in exact virial equilibrium and therefore must be relaxed iter-
atively. The halo-to-disk mass ratio within 10 kpc is fixed to
unity. The halo has a flat density core of 2 kpc to avoid ex-
cessive stochastic behavior associated with the central cusps
(El-Zant & Shlosman 2002). The disk is exponential, and its
radial and vertical scale lengths are taken as 2.85 and 0.5 kpc,
respectively. The disk and halo cutoff radii are 25 and 30 kpc,
and the initial circular velocity curves for disk and halo com-
ponents and their sum are given in Figure 1. The gravitational
softening used is 160 pc, and Toomre’s parameter Q = 1.5. The
adopted units are those of G =1, mass M = 10! M., and
distance » = 10 kpc. This leads to the time unit of 74y, =
4.7x 107 yr and a velocity unit of 208 km s~!. The energy and
angular momentum in the system are conserved to within ap-
proximately 1% and 0.05% accuracy, respectively. Above
N ~ 10, our results appear to be reasonably independent of N.
The model evolution presented here has N = 1.1 x 10%, with
8 x 10° particles in the disk.

2.2. Orbital and Spectral Analysis

The self-consistent evolution of stellar bars can be only un-
derstood by studying their three-dimensional structure (e.g.,
Pfenniger & Friedli 1991; Skokos et al. 2002a, 2002b). For such
in-depth investigation we use the updated algorithm described in
Heller & Shlosman (1996), which is based on a comprehensive
search for periodic orbits in arbitrary gravitational potentials,
and display them in characteristic diagrams (§ 4). These orbits
close in the bar frame and provide the backbone for any mean-
ingful analysis of the bar properties. Periodic orbits characterize
the overall orbital structure of the bar phase space, because each
of them traps a region of phase space around it. These trapped
orbits have shapes similar to the shapes of the parent periodic
orbit. The algorithm is run using the package Parallel Virtual
Machine (PVM), which distributes the search for orbits among
different processors and computes the orbits using adaptive step
size, with a relative accuracy of 10~7. We also calculate the
stability of these periodic orbits to estimate which orbits can be
populated. We track both the two-dimensional orbital families
and the three-dimensional families bifurcating from planar (i.e.,
equatorial) orbits at the (vertically) unstable gaps. The shapes of
these three-dimensional orbital families will contribute to the shape
of'the simulated bar, when populated, including the evolving shape
of the growing boxy/peanut-shaped bulge.
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To quantify the disk-halo interaction and the angular mo-
mentum redistribution in the system, we have developed a
package that is based on the orbital analysis algorithm and that
uses the fast Fourier transform (FFT) to find the main orbital
frequencies: the angular frequency, €2, and the radial and vertical
epicyclic frequencies, « and v, in the disk and the halo. The
particle distribution with the frequency ratio is then determined
to find the population of resonant orbits. Finally, the change in
the angular momentum is computed for each of these particles
(see § 5).

3. RESULTS

We first describe the overall bar evolution during the
simulation period of 7 ~ 14 Gyr and analyze some of its more
important behaviors. The bar develops in an otherwise axi-
symmetric model during the first two to three disk rotations.
Initially it has an axial ratio (flatness) of ¢/a ~ 0.1, the same
thickness as the disk, but this ratio increases with time by a
factor of ~2. The bar starts to brake against the outer disk and
the halo as seen in Figure 2b, reaching maximum strength at
T ~ 1.4 Gyr. At around 7 ~ 1.8 Gyr the bar experiences a
vertical buckling instability that affects its two-dimensional and
three-dimensional appearance. The outer part of the bar nearly
dissolves, while overall the bar is weakened dramatically, as
shown by the m = 2 amplitudes, 4,, in Figure 2a. Immediately
following this buckling, the bar resumes its growth, which
saturates again at 7 ~ 6 Gyr. At this time A4, in the outer part
weakens again. The growth is resumed after 7 ~ 7.5-8 Gyr. A
close inspection of the edge-on bar frames during time intervals
of 1.8-2.8 and 6—7.5 Gyr and the analysis described in the
next sections reveals sufficient similarities between these two
events; both represent the vertical buckling instability in the
bar, i.e., the breaking of symmetry of the bar (Fig. 3). Such
a recurrent buckling of bars has never been reported in the
literature.

3.1. Secular Growth of Stellar Bars

The stellar bar evolution presented here is characterized by
substantial changes in the bar size and strength and by changes in
its three-dimensional shape (see Fig. 3 and accompanying ani-
mation). Determination of the live bar size in numerical simu-
lations is not trivial. For example, Athanassoula & Misiriotis
(2002) and O’Neill & Dubinski (2003) used a variety of methods
and found that some of them give erroneous and unreliable re-
sults. The position of the 4,(¥) maximum does not provide any
meaningful estimate for the bar size because the contribution of
higher harmonics, such as m = 4 and 8, is neglected. To quantify
the bar size changes, we have used two alternative methods, an
ellipse fitting to the isodensity curves and the characteristic or-
bital diagrams. The former method has been previously used to
detect and to characterize “observational” bars (e.g., Knapen
et al. 2000; Laine et al. 2002; Hunt & Malkan 2004). Its main
deficiency when applied to numerical bars is an excessive noise
for low to moderate values of N and the resulting distribution
of the bar ellipticities, €(r), being flat for young unbuckled bars
(Martinez-Valpuesta & Shlosman 2004). However, at later times,
with the growth of the central mass concentration, this method
becomes more reliable. We find that a consistently reliable esti-
mate of the bar size, r,;, is the radius at which e(r) declines ~15%
from its maximal value. The alternative, and a new method used
by us here, relates the bar extent to the size of the maximal stable
orbit of the main orbital family supporting the bar (more in § 4).
Both methods produce consistent results with each other.

Vol. 637

0.8

5 Lo I . I . I . I . I . I

2 4 6 8 10 12 14

Time (Gyr)

FiG. 2.—(a) Evolution of the bar m = 2 amplitude, 4,, for the inner and
outer bar parts, r = 0—11 kpc (thick solid line) and r = 7—11 kpc (thin solid
line). (b) Bar pattern speed €2, [See the electronic edition of the Journal for a
color version of this figure.]

The bar size evolution is shown in Figure 4a for both
methods. It grows initially to 11 kpc, then buckles and shortens
to 6 kpc. It then grows again to 13 kpc, where the growth
stagnates due to the secondary buckling, for about 3 Gyr. After
this the bar resumes its growth to about 16 kpc. The size evo-
lution in the xy-plane is accompanied by the vertical thickening
of the bar. It does not stop after the first buckling instability, but
continues gradually due to the vertical resonance scattering,
amplified by the recurrent buckling instability of the bar. The
accompanied boxy/peanut-shaped bulge also grows with time
(Fig. 3).

With the bar length, r,,, and its corotation radius, 7cr, we can
quantify some of the dynamical characteristics of an evolving
bar. The ratio rcr/rpar is shown in Figure 4b. This ratio de-
termines the shape of the offset dust lanes in barred galaxies that
delineate shocks in the gas flow (Athanassoula 1992). The ob-
served shapes constrain the ratio rcr/rpar to 1.2 +0.2. The
modeled ratio typically falls within the required limits except
during the first buckling, when it is higher, ~1.5, as noted al-
ready by Martinez-Valpuesta & Shlosman (2004). We discuss
this issue in more detail in § 6.

3.2. Recurrent Buckling of Stellar Bars

The buckling is a three-dimensional phenomenon and is most
visible in the vertical xz-plane (Fig. 3). To quantify the bar
asymmetry, we have calculated the vertical m = 1 mode am-
plitude 4, in the xz-plane and follow the maximal distortion of
the bar during its buckling periods. Two maxima are apparent at
~2.4 and ~7 Gyr in Figure 5. Note that the vertical asymmetry
given by this figure builds up slower and is weaker for the second
buckling; i.e., from 7 ~ 5 Gyrto 7 ~ 7 Gyr, the amplitude grows
to A;; ~ 0.03, compared to 41, ~ 0.08 at 7 ~ 2.4 Gyr. Figure 3
shows this evolution in a more graphical way: while the first
buckling affects mostly the central few kiloparsecs, especially
the bar’s midplane, the second buckling is most prominent in the
outer bar range of 5—10 kpc and affects the midplane much less
visibly.
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Fic. 3.—Evolution of the vertical structure in the bar: edge-on view along the bar’s minor axis. The length is given in kpc and the values of the projected isodensity
contours are kept unchanged in all frames. The time in Gyr is given in the upper right corners. The maximal vertical asymmetries correspond to two recurrent bucklings
at 7 ~ 2.4 Gyr and at ~7 Gyr. Note the bar flip-flop between 7 = 2.3 and 2.4 Gyr, the persistent vertical asymmetry in the bar at 7 = 5.2—7.5 Gyr, and the development
of narrow features in the bar midplane outside its core of ~8 kpc after 7 ~ 9.4 Gyr. Those correspond to ansae (““handles”) in the face-on bar (see Fig. 10) and are
observed in early-type disk galaxies. [See the electronic edition of the Journal for a color version of this figure. This figure is also available as an mpeg animation in the

electronic edition of the Journal.]

The recurrent buckling can be detected in a number of ways,
e.g., from A, in the xy-plane (Fig. 2a), as mentioned in § 3.1 and
above, and from A, in the xz-plane, which quantifies the
breaking of vertical symmetry in the bar (Fig. 5). Each of the
coefficients emphasizes a different property of this instability.
We are basically looking at the same phenomena at different
times: the first buckling extends over ~1 Gyr and the second one
over ~3 Gyr. The changes in the orbital structure of the bar
during the bucklings will be analyzed in § 4.

We have commented in § 1 that the buckling instability is a
collective breaking of a vertical symmetry in the bar. Toomre
(1966) has shown that the coupling between the vertical and
radial degrees of motion is the prime driver of this instability and
that the main outcome of it is the equalizing of the velocity
dispersion in the xy-plane with the vertical velocity dispersion.’

5 Normally, the kinetic energy of oscillations about the equatorial plane, i.c.,
along the z-axis, is an adiabatic invariant.

This evolution is characterized by changes in the vertical-to-
radial velocity dispersion ratio o2/c%. Toomre estimated the
critical value for this ratio to lie at ~0.1 for a nonrotating plane-
parallel slab, Raha et al. (1991) put it at 0.06—0.3 for a three-
dimensional stellar disk, and Sotnikova & Rodionov (2005)
estimated it at ~0.6 for the central regions embedded in the hot
halos. Sellwood (1996) have shown that Toomre’s limit is vio-
lated for many of his stellar models, some remaining unstable at
ratios up to 0.4. We plot this ratio for two areas of the bar at two
different times. For the first buckling (Fig. 6), the velocity dis-
persions are calculated in the central kiloparsec, where the
maximum effect is expected (e.g., Fig. 3). During this buckling,
we observe first an increase in o, (the initial growth of the bar)
and after ~1 Gyr a decrease in o, with a corresponding increase
in 0,. When o?/0? drops below ~0.4, the bar buckles and
weakens. The buckling ends when o2/02 increases to unity. The
bar thickens and grows and the vertical ILR moves gradually
out. We expect and observe the maximal vertical asymmetry in
the outer part of the bar during the second buckling and therefore
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Fic. 4.—(a) Evolution of the bar size (semimajor axis). The solid line
represents the bar size obtained from the ellipse fitting to the isodensities. The
filled circles correspond to the bar sizes obtained from the semimajor axis of
the last stable x; periodic orbit that supports the bar obtained from Fig. 7,
which is a new method introduced here (see § 4 for details). (b) Evolution of
the bar corotation-to-size ratio. (c¢) Evolution of the maximal ellipticity of the
bar, € = 1 — b/a, from the ellipse fitting. [See the electronic edition of the
Journal for a color version of this figure.]
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Fic. 5.—Evolution of the vertical buckling amplitude in the bar, 4., i.e.,
the vertical m = 1 mode in the xz-plane, integrated over the intervals » ~ 0—
12.5 kpe, —2 kpe <y < 2 kpe, and —oo < z < o0.

Vol. 637
T T T T T
(a) Inner region Outer region
1
o~
RS
o
N
N
o
S
05
—~ + t + t t t t t
150 | (b) ]
% N~ e —
€00 -~~~ : ]
X
N
O P 1
&
0 . . , , . , , .
0 1 2 3 4 5 6 8 10 12 14
Time (Gyr) Time (Gyr)

Fic. 6.—Evolution of (a) the vertical-to-radial dispersion velocity ratio in
the disk, o2/02, within the central kiloparsec (leff) and within a cylindrical
shell of radius 7 = 1 kpc (right), and (b) separately, the radial, o, (dashed
line), and the vertical, o, (dotted line), dispersion velocities within the same
regions as in (a). [See the electronic edition of the Journal for a color version
of this figure.]

calculate 02/0? at around 7 kpe. Again, the gradual increase in o,
and decrease in o, drives the ratio up from 0.4 to about unity,
similar to the first buckling. For both bucklings we observe a
very similar evolution in terms of the velocity dispersions and
their ratios.

So far we have shown that the bar buckles twice during the
simulations: the first time abruptly, fast, and in the central part,
and the second time slower, less pronounced, and in a different
part of the bar. In both bucklings we observe the loss of sym-
metry in the vertical plane, the drop in the value of 4, and the
equalizing of the vertical and radial velocity dispersions. After
each buckling the bar becomes more symmetric, with the dif-
ference that after the first buckling the asymmetry starts to build
anew, and after the second buckling the asymmetry is com-
pletely washed out.

To summarize, three main factors characterize the end of the
buckling instability: 4, starts to decrease, the asymmetry in the
rz-plane decreases (given by 4;.), and 02/0? — 1. When we
apply these conditions to our model, the end of the first buckling
appears at ~2.4—2.8 Gyr and the end of the second buckling at
~8 Gyr.

Since the buckling leads to a sudden vertical thickening of
the bar and is therefore characterized by particle injection above
the disk plane, we can monitor this instability by following the
particle distribution. When viewed along the bar minor axis,
during the first buckling the bar bends and develops a boxy/
peanut-shaped bulge, while during the second buckling the bar
acquires an asymmetric shape that leads to the appearance of an
X-shaped bulge (Fig. 3). These shapes have a direct relationship
to the population of orbits trapped by the main family of periodic
orbits in the bar (Pfenniger & Friedli 1991; § 4 below).

4. ANALYSIS: BAR ORBITAL STRUCTURE EVOLUTION

Stellar bars are three-dimensional objects that exhibit dy-
namical and secular evolutionary trends both in their morphol-
ogy and in their internal structure. In this section, we study the
evolution of the orbital structure in the bar by searching for the
main two-dimensional and three-dimensional families of orbits
at various snapshots, with a particular emphasis on the recurrent
buckling periods. A comprehensive search for the orbits is be-
yond the scope of this work. We analyze the main parameters of
detected orbits and calculate their stability. This section uses a
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Fig. 7.—Three snapshots of the bar orbital structure evolution: /eft, immediately after the first buckling; middle, during the second buckling; right, well after the
second buckling. The 7 = 7.1 Gyr frame is nonsymmetrized (vertically), while the others are vertically symmetrized. (a) Characteristic diagrams in the xy-plane
showing y-intersections of regular orbits with the x = 0 axis as a function of Jacobi energy of the orbits. The bar is oriented along the x-axis. Solid lines represent
stable orbits, and dotted lines represent unstable ones. The dashed lines show the zero-velocity curves (ZVCs). (b) Characteristic diagrams in the xz-plane showing
z-intersections of regular orbits. Since the 7.1 Gyr snapshot is nonsymmetrized and the bar buckles in this plane, the distribution of the BAN orbits is also
asymmetric, and most of the stable BAN orbits are concave down (see text). They have a larger curvature and extend further into the z < 0 region, leading to the bar
asymmetry in the edge-on view (Fig. 3). (¢) Characteristic diagrams in the xz-plane showing the z families. The 7.1 Gyr snapshot is omitted because all the ABAN
orbits are unstable at this time and, therefore, are difficult to calculate in unsymmetrized potential.

specific terminology developed for nonlinear orbital dynamics
(e.g., Binney & Tremaine 1987; Sellwood & Wilkinson 1993).
Readers unfamiliar with this terminology can skip it and go
directly to § 5. We discuss the results of the orbital analysis in the
context of the bar evolution in § 6.

The initial vertical axial ratio of the bar that develops in our
models is c/a ~ 0.1 (nearly a two-dimensional object) and
grows dynamically and secularly to ~0.2 over the Hubble time.
We first analyze the bar’s orbital structure in the equatorial plane,
then add the three-dimensional effects accounting for the finite
thickness and shape of the bar. In doing so, we limit our analysis
to the periodic orbits within rcg, which are largely responsible
for the bar shape, and to specific times of bar evolution: 7 = 1.4
Gyr (just prior to the first buckling), 2.8 Gyr (after the first
buckling), 7.1 Gyr (during the second buckling), and 11.8 Gyr
(after the second buckling). The orbits are searched in the po-
tential symmetrized horizontally with respect to the four quad-
rants. Figure 5 confirms that the vertical symmetry is violated
during the buckling periods. The first buckling is fast and there is
little meaning, therefore, to calculating the orbits without some
frame averaging; the stars see only a time-averaged potential.
Hence, we resort to a vertically symmetrized potential at 2.8 Gyr.
On the other hand, the second buckling is much more gradual,
and we calculate the orbits in the actual “raw” potential at
7=7.1 Gyr to capture the persisting asymmetry. The third
snapshot, in which the bar is symmetric again, is treated simi-
larly to the first snapshot for simplicity.

The extent of the orbital families and their stability are dis-
played by means of characteristic diagrams. The y, z, and Z in-
tercept values with the x = 0 plane are plotted in Figure 7 with

respect to their Jacobi integral, Ej (e.g., Binney & Tremaine
1987). The Jacobi (energy) integral of motion is conserved along
any given orbit in the rotating bar frame. The orbits form curves
or families in the characteristic diagrams. The actual trajectories
do not coincide exactly with these periodic orbits but may be
“trapped” in their vicinity. The properties of periodic orbits and
their temporal changes, therefore, reflect the bar structural
evolution.

The most important single-periodic orbits in the bar midplane
are those aligned parallel or normal to the bar’s major axis, the
so-called x; and x, orbits (e.g., Contopoulos & Papayannopoulos
1980; Binney & Tremaine 1987). The x; family constitutes the
main family of orbits that support the bar figure. While this
family exists always within rcg, the x, family appears only if the
planar ILRs are present. Typically, numerical bars form with a
pattern speed sufficiently high to avoid the ILRs, at least in the
beginning, and hence the x; family completely dominates the bar
midplane, short of the corotation region.

The vertical shape of the bar is determined by the projection of
the populated three-dimensional orbits onto the corresponding
planes. We search for the vertically unstable gaps in the x;
family. It is at these gaps where the three-dimensional families
bifurcate through z and Z bifurcations (e.g., Pfenniger 1984;
Pfenniger & Friedli 1991; Skokos et al. 2002a, 2002b; Patsis
etal. 2002a). These gaps coincide with the vertical ILR and other
vertical resonances. When an orbital family goes from being
stable to unstable, in the mentioned gaps, we get the three-
dimensional prograde families, i.e., orbits with initial conditions
(y, 2z, 3, 2) = (a, b, 0, 0), with a and b # 0. When it goes from
being unstable to stable, we get the retrograde families,
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(y,z, 9,2 =(c, 0,0, d),withcand d # 0, where x, y, and z are
oriented along the bar’s major, minor, and vertical axes.

While the vertical ILR is associated with the boxy/peanut
bulge shapes, which develop as a result of the resonance heating
of midplane orbits, Patsis et al. (2002a) have found that this
effect is not limited to a particular resonance and not to the barred
galaxies per se, but operates equally well in nearly axisymmetric
and/or ovally distorted disks. Furthermore, the buckling itself is
not a necessary condition for these shapes to form, but rather
accelerates the process from a secular to a dynamical timescale.

The main families of three-dimensional orbits that are re-
sponsible for the appearance of the boxy/peanut-shaped bulges
are the BAN (prograde to the bar rotation) and ABAN (retro-
grade) families found by Pfenniger & Friedli (1991). They are
called x1vl and x102, respectively, and appear as the three-
dimensional generalizations of the x; and x, families in the no-
menclature of Skokos et al. (2002a). In general terms, the BAN
orbits can be described as concave down (z > 0) and concave up
(z < 0), and ABAN as “oco,” when projected onto the xz-plane.
Both families are m:n:[ = 2:2:1 (i.e., two radial oscillations for
two vertical oscillations for one turn) in the notation of Sellwood
& Wilkinson (1993). Their projections onto the xy-plane have
the x; orbit shapes. We trace the planar x; and x, families and the
three-dimensional BAN and ABAN families from the bar initial
growth period. For simplicity, we have divided the simulation
into a number of characteristic time intervals and discuss them
separately.

Before and during the first buckling: T ~ 0-2.5 Gyr—During
this period the bar develops and buckles (Figs. 2—-6). It is geo-
metrically thin and is not centrally concentrated, so the vertical
ILR is not present. Neither the planar ILRs nor consequently the
x, orbits are present. The stable three-dimensional orbits lie
close to the midplane. As we stated above, there is little meaning
in calculating the orbits in the rapidly varying potential without
the proper time-averaging. Because the midplane of the bar is
bent in the xz-plane (Fig. 3), so are the x| orbits.

After the first buckling: T ~ 2.5-3.5 Gyr—The bar has in-
creased its central mass concentration and acquired its boxy/
peanut-shaped bulge (see Fig. 3). As we stated above, there is
little meaning in calculating the orbits in the vertically un-
symmetrized potential at the time of the first buckling because of
the rapidly varying potential. Moreover, the bar midplane is bent
in xz at this time, and so are the x; orbits (Fig. 3). Hence, we have
vertically symmetrized the potential at this time frame (Fig. 75,
left). In the midplane, the x; orbits dominate and no x, family
exists (Fig. 6a). Most of the x; orbits are stable, except for a
small gap, where the vertical ILR is located. At 7 = 2.8 Gyr the
gap is at Ey ~ —2.66, where the BAN and ABAN orbits bifur-
cate (Fig. 7a). The BAN and ABAN orbits are traced (Figs. 76
and 7¢): their origin in the z = 0 plane moves gradually out with
time toward higher Jacobi energies. By the end of the first
buckling it stabilizes and subsequently creeps toward higher
values of E) as the bar brakes against the halo. BAN orbits
appear stable from 300 pc above the midplane, with a broad
unstable gap at z ~ 1.1-1.3 kpc and a narrow stability island
(Fig. 7b). Initially, the stable part of these families is limited to a
very small height above the bar midplane, compared to the bar
vertical thickness. Gradually the stable extent of the BAN family
increases both in z and in x (Fig. 8). The ABAN family is un-
stable when BAN is stable and vice versa (Fig. 7¢), as first noted
by Pfenniger & Friedli (1991).

Before and during the second buckling: T ~ 3.5-8 Gyr—The
bar is growing both in size and amplitude and exhibits a pro-
nounced boxy profile when viewed along its minor axis. It ap-
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Fic. 8.—Projection of three-dimensional orbits onto the xz-plane in three
different snapshots: after the first buckling, during the second buckling, and
after the second buckling. Only stable orbits of the main families described in
the text and in Fig. 7 are plotted. The horizontal extension of the orbits increases
with time. The general shape evolves from a peanut/boxy shape to a vertically
asymmetric shape and then to a peanut/X-shape.

pears symmetric with respect to the bar midplaneup to 7 ~ 5 Gyr
(Fig. 3), although 4, shows that some small residual asymmetry
remains between the bucklings (Fig. 5). After 7 ~ 5 Gyr, the
vertical symmetry of the bar is broken for an extended period of
time, ~3 Gyr ( Figs. 3 and 5). The maximal distortion happens at
~7.1 Gyr. No x; orbits exist during this time period, and the
unstable gap in x; moved to somewhat higher energies, approx-
imately —2.4 < Ej < —1.7, due to the bar braking (Fig. 7a). An
additional unstable gap has appeared at —2.68 < Ej < — 2.65,
where the 3:2:1 orbit family bifurcates.

Note that the analysis shown in the 7 = 7.1 Gyr frame of
Figure 7 is performed in the actual gravitational potential of the
N-body simulation, i.e., without symmetrization with respect to
the z = 0 plane. Therefore, we should not expect to find all the
families existing in the symmetrized potentials. But we should
be able at least to identify the reason for the vertical asymmetry of
the particle distribution in the projection of the three-dimensional
orbits onto the xz-plane from the orbital shapes (Fig. 85). We find
the BAN family and also the x1¢9 family, in the nomenclature of
Patsis et al. (2002b).

The BAN family appears stable everywhere above the mid-
plane, except around z ~ 2 kpc (Fig. 7b), while the ABAN
family is unstable everywhere and so is not shown here. For
z £ 0, the BAN family is detached from the midplane and starts
at z ~ —0.5 kpc. It forms a kind of loop in the characteristic
diagram. We do not find any stable orbit below z ~ —2 kpc. The
x109 family is stable only for a low range in energies and only
below the midplane, which makes it important for contributing
to the vertical asymmetry in the bar (Fig. 8b).
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Afier the second buckling: T > 8 Gyr—The bar slowly regains
its vertical symmetry and becomes symmetric after ~8 Gyr. As
a result of this instability, the bar has developed a pronounced
X-shape, which differs from the “usual” peanut shape because of
the extended concave region between the spikes, i.e., peanuts
(Fig. 8c). Orbits that appear at the same z-value in the charac-
teristic diagram but at different time frames differ in their pro-
jections. After the second buckling the orbits are longer and
extend higher; i.e., the convexity and concavity have significantly
changed. The vertical ILR has moved to £y ~ —2.36 by 11.8 Gyr.
The BAN orbits are stable, while the ABAN orbits are unstable.
Overall, the boxy/peanut-shaped bulge has increased in size from
~1-2 kpc (after the first buckling) to ~8 kpc (after the second
buckling).

The x, orbits and consequently two ILRs in the xy-plane ap-
pear only after the second buckling, =7.2 Gyr. Initially occupy-
ing a small range in energies, their extent grows with time. The
x1 family is mostly stable up to the (mostly) unstable “shoulder”
in the characteristic diagram (Fig. 7a, right), which has con-
tinued to move out to higher Jacobi energies, along with the last
stable orbit supporting the bar.

We also use the characteristic diagrams to get an independent
estimate for the bar’s physical size. Unlike the case of analytical
bars, where this issue is resolved trivially, to estimate the length
of the /ive numerical and “observed” bars can be more difficult.
For example, if the bar potential or bar nonaxisymmetric force is
used for this purpose, one can get an erroneous result that the bar
extends beyond its corotation radius. If one relies on the density
distribution, one can overestimate the size as well, because the
bar can drive a pair of open spirals. Instead, we use the calculated
orbital structure of the bar and rely on the properties of the x;
family, which is generally stable except for narrow gaps (in
Jacobi energy) and in the region around the corotation. Specif-
ically, close to the corotation, the x; curve bends upward (e.g.,
Fig. 7a; Binney & Tremaine 1987). We use the x-axis extent of
the last stable x; orbit that lies on this upward branch. It is the
slow drift of unstable gaps and of the elbow of the x;-curve
toward higher Ej that leads to the trapping of orbits and the
secular increase in the bar size. A large number of models here
and in Berentzen et al. (2006) have been used for the comparison
with the isodensities fitted to the bar (§ 3).

The bar amplitude 4, shows that the outer half of the bar
practically dissolves in the first buckling and weakens substan-
tially in the recurrent buckling (Fig. 2). The ellipse fit to the bar
reflects this by a dramatic decrease in the bar length from ~11 to
~6 kpc in radius. Unfortunately, it is more tricky to estimate the
bar size from the orbital analysis at this time: the underlying
potential is time-dependent, while the analysis is performed in
the frozen potential. Nevertheless, both methods agree before
and after the first buckling and capture the change in the growth
rate of the bar length after the second buckling. To summarize,
the bar size decreases during the first buckling and levels off
during the second one.

The simple explanation for the success of the orbital analysis
method is that it is the most self-consistent method known to us
and relies on the orbit trapping by the stable periodic family
whose existence basically defines the bar. We note that the
middle frame of Figure 7a does show a large unstable gap just
below the elbow of the x; curve. However, we note once more
that the potential in this frame has not been vertically symme-
trized and that the weakening of the bar during this time of
buckling is in fact a direct consequence of this gap.

In summary, the characteristic diagrams and their respective
orbital families reflect both the dynamical and secular evolution
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of the bar shown in Figure 3 and the accompanying animation.
The unstable gaps, where the vertical families (BAN and ABAN)
bifurcate, move toward higher Jacobi energies, while the orbits
become more extended along the bar axes. The orbital families
evolve not just quantitatively but also qualitatively; this shows up
in the changing shape of the bar. Although we do not measure the
population of the different families, the bar shapes appear to be
governed mainly by the BAN family, which evolves by changing
the concavity of its orbits, thus giving the bar the pronounced
peanut/boxy/X-shapes when viewed along the minor axis. The
change in the orbital structure of the bar supports our observation,
based on independent arguments, that there is a recurrent buck-
ling. Atthe second buckling time, the vertical families differ above
and below the plane. The former are stable orbits extending more
along the x-axis and giving it more of a boxy shape. The latter ones
are stable orbits that give the bar more of a peanut shape. The
appearance of the x, family confirms that the ILRs form only after
the second buckling of the bar.

5. DISK-HALO ANGULAR MOMENTUM EXCHANGE:
THE ROLE OF THE RESONANCES

The disk region that gives rise to a bar is known to lose its
angular momentum (J). In principle, a number of components in
a galaxy can acquire this momentum, namely, the outer disk, the
bulge, and the halo. While the former two components are able
to store J, the responsive (i.e., live) halo can serve as a partic-
ularly large angular momentum sink due to its large mass and
low J. Athanassoula (2002a, 2003) has shown that the disk-halo
interaction is mediated by lower resonances. In order to under-
stand more fully the complex behavior exhibited by the model,
such as the initial bar growth, its recurrent bucklings, and sub-
sequent secular growth, we find it instructive to determine the
balance of the angular momentum and its evolution. We pay
particular attention to the resonant interactions between the
model components.

We first determine the overall J balance in the different re-
gions of the disk and the halo. Figure 9 shows the total angular
momentum evolution for three different regions in the disk and
halo: the inner (0—7 kpc), intermediate (7—15 kpc), and outer
(15-35 kpc or 15-50 kpc) regions. The inner and intermediate
regions are those hosting the bar for various times during its
evolution. The time of the bar formation is characterized by a
substantial loss of J in the inner disk. This angular momentum
is redistributed to the intermediate region and especially to the
outer disk (Fig. 8). During the first buckling, there is some in-
dication that the inner disk gains some angular momentum, and
we return to this issue in § 6.2. The subsequent growth of the bar
is accompanied by a slow J growth in the outer disk and the halo.
Interestingly, after the second buckling J stops growing in the
outer disk, while the outer halo picks up J at an increasing rate.
There is a general loss of angular momentum from the disk and
there is a general gain in the halo. The loss of J in the disk
correlates with the slowdown of the bar, which is known to
anticorrelate with the growth of the bar (e.g., Athanassoula
2003).

Next we calculate the contribution of the resonances between
disk and halo particles with the bar’s €, to the angular mo-
mentum exchange between the disk and the halo. We generally
follow the procedure described in Athanassoula (2002a). The
principal frequencies, {2 and x, of azimuthal motion and of radial
oscillations of the three-dimensional orbits, respectively, have
been determined by means of spectral analysis (Binney &
Spergel 1982). We freeze the gravitational potential in the model
at times 7 = 2.8 and 5.2 Gyr but allow the bar to tumble with its



222 MARTINEZ-VALPUESTA, SHLOSMAN, & HELLER

0~2_" - 'OI<'r{7'k;')cl R ]
/7 <r <15 kpc - —-
15 < r < 35 kpc

J DISK

o +—+—+—+—t—+—+—+—+—F—+—+—
02 r —— 0 <r<7kpc ]
— — - /7 <r <15 kpc
o1s L 15 < r < 50 kpc ]
@)
2
< I 1
T o1t i
- I 1
0.05 [ i
0
5 10
Time (Gyr)

Fic. 9.—Evolution of angular momentum in the various regions of the disk
(top) and the halo (bottom). The specified radii are given in cylindrical ge-
ometry. [See the electronic edition of the Journal for a color version of this

figure.]

original 2, and integrate the orbits of 1.5 x 10° randomly picked
particles in the disk and the same amount in the halo for an
additional 9.4 Gyr, about 20 bar tumblings. Results are plotted in
Figure 10 as a function of the frequency ratio = (2 — Q,)/k,
where Nj particles are binned in the intervals of An = 0.005
(Fig. 10, top). The difference AJin angular momentum between
the two times is given as a function of n at 7 = 5.2 Gyr (Fig. 10,
bottom). The major resonances are located at n = £0.5 (ILR
and OLR), +1:3, £1:4, etc., with the positive 7 indicating the
resonances inside the corotation radius and 77 < 0 outside the
corotation. The corotation resonance corresponds to 17 = 0.
The resonant and near-resonant particle distributions Ny at the
time 7 = 2.8 Gyr are clearly nonuniform and are permeated by
numerous resonances. The trapping of orbits by the resonances
is also evident. The dominant resonance in the disk appears to be
the ILR, which traps the largest number of particles and there-
fore facilitates the loss of the angular momentum from the disk
(Fig. 10, bottom). Note that we have cut Ny, for this resonance to
keep the same scales for disk and halo diagrams: it extends to
39 x 103. The x, orbits within the CR and, later on, the x, (if pop-
ulated) orbits, as well as the BAN and ABAN orbits, are trapped
within this resonance. The broad asymmetric peak (Fig. 10,
top left) in the range of n ~ £0.35-0.45 is made out of near-
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resonant orbits in the (rotating) boxy/peanut-shaped bulge,
many of them near-resonant BAN orbits. Those have been in-
jected during the first buckling. They appear on both sides of the
CR because J along these orbits oscillates wildly, AJ ~ J, and it
is sometimes difficult to disentangle the prograde from retro-
grade ones among them. For comparison, we repeated this
procedure at 7 = 11.8 Gyr and confirmed that more than half of
the particles in the above broad peaks have been trapped by the
nearby ILR and the outer Lindblad resonance (OLR) by that
time. The resonances for n < 0, with CR and OLR as the next
strongest ones, absorb the angular momentum, and their values
of AJ are all positive.

The halo is dominated by the corotation resonance, which
absorbs J from the disk. Overall, the disk resonances emit and
the halo resonances absorb J. This behavior was demonstrated
by Athanassoula (2002a, 2003), where similar plots to Figure 10
were given, and there is a very good agreement between our
results. The only difference we find is that the halo ILR is ac-
tually losing J in our model, albeit a small amount, unlike in
Athanassoula’s models. The modeled halo extends well beyond
the disk, and its outer part appears to be actively storing J, up to
n ~ —3. This effect is confirmed by the overall J evolution in the
halo (Fig. 9). We find that the trapping of orbits by the reso-
nances is robust: almost all the particles trapped at 7 = 2.8 Gyr
remain trapped at 5.2 Gyr. The ability of the barred disk to
transfer its angular momentum to the halo while J saturates in the
outer disk explains why the bar is able to grow during this time
interval as exhibited by the 4, amplitude and the size of the bar
(e.g., Figs. 2-5). It is this growth of the bar that is ultimately
responsible for the recurrent buckling phenomenon analyzed
here.

6. DISCUSSION

We have modeled the evolution of collisionless (stellar) bars
embedded in responsive (live) axisymmetric dark matter halos
using high-resolution N-body simulations. We find that bars
experience secular growth over the simulation (~Hubble) time,
except during well-defined time periods when the bars encounter
spontaneous breaks of vertical symmetry, so-called buckling (or
fire-hose) instability (e.g., Fig. 3 and accompanying animation).
We detect such a recurrent buckling during which the bar, and
especially its outer half, weakens substantially, but the growth is
resumed subsequently. Two different techniques have been used
to measure the bar size, namely, the nonlinear orbital analysis and
the isodensity ellipse fitting. The bar strength has been measured
using the amplitude of the m = 2 mode, and the bar vertical asym-
metry has been measured using the vertical m = 1 mode. More-
over, we have analyzed the bar evolution and its buckling periods
by means of the nonlinear orbit analysis and the ratio of vertical to
planar velocity dispersions. Finally, we have examined the bar
development in terms of the angular momentum redistribution be-
tween various components in the disk-halo system mediated by
the resonant interactions using orbital spectral analysis.

Low-resolution N-body simulations exhibit fast (e.g., during
one disk rotation) stellar bar growth, followed by a vertical
buckling and secular weakening. High-resolution simulations
with N 2 10°—10° show a more complex evolution. They allow
for modeling the disks embedded in live halos and account for
the resonant interactions between the halo and the disk, adding a
new and crucial element to the simulations in the form of angular
momentum transfer between these components. The main dif-
ference between the previous low-resolution models and that
presented in this work is the ability of the stellar bar to strengthen
again after its original weakening following the buckling, a
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Fic. 10.—Resonance interaction in the live disk-halo system. 7op: Histogram of particle distribution Ny with the principal frequency ratio n = (2 — )/ for the
disk and (rotating) boxy/peanut-shaped bulge (lef?) and for the halo (right), with about 1.5 x 103 randomly picked particles each, at 7 = 2.8 Gyr. The cusp at the ILR
(n = 0.5) for the disk is shown only partially; it extends to ~39 x 10°. The broad peaks near 1 ~ £0.4 are made mostly of near-resonant bulge particles injected
during the first buckling. Bottom: Angular momentum difference, AJ, between the particles at 7 = 5.2 and 2.8 Gyr in the disk (/eff) and halo (right) as a function of
n at a time of 5.2 Gyr. The lower resonances, such as the ILR (1 = 0.5), the corotation (n = 0), the OLR (n = —0.5), 1:3 (n = £0.33), 1:4 (n = 0.25), etc., are
clearly visible. The ILR dominates the loss of the angular momentum in the disk, and the corotation dominates the absorption of the momentum by the halo (see
more in the text). The frequency ratio is binned into intervals of An = 0.005. Note that the 7 scales are different for the disk and the halo.

process that leads to the bar growth and consequently to its
recurrent buckling.

6.1. Disk-Halo Resonant Interactions

The bar growth has been associated with the existence of
“sinks” of angular momentum located elsewhere. Athanassoula
(2002a, 2003) has shown that a galactic halo can play such a role
and absorb large quantities of angular momentum from the disk/
bar region. This effect appears to completely invert the original
suggestion by Ostriker & Peebles (1973) about the stabilizing
function of dark matter halos in disk galaxies against the bar
formation instability. Angular momentum redistribution, at least
in principle, can have contributions both from the nonresonant
and resonant interactions between the bar and orbits in the halo.
To capture the latter requires large N to stabilize the population
of resonant particles (e.g., Weinberg & Katz 2002).

It is therefore important to demonstrate that resonant particles
are indeed responsible for the angular momentum transfer in the
first place. We start with the relative contributions to the J
transfer between the disk and the halo and between the inner
(i.e., bar unstable, ~15 kpc) and outer disks (Fig. 9). Although
the efficiency of this redistribution is of course model dependent,
we nevertheless quote the numbers, assuming that to a certain
degree, they are representative. We find that ~39% of the an-
gular momentum in the disk is lost to the halo during the evo-
lution. The bar unstable region, <15 kpc, has lost about 71% of
its original J, of which about 38% went to the outer disk and the

rest was absorbed by the halo. The most intensive flow of Jto the
outer disk happens in the early stage, which ends with the first
buckling. The halo particles have much larger dispersion ve-
locities than the disk, and until the bar fully develops, their
resonant interaction with the m = 2 asymmetry in the disk is
virtually nonexistent.

After the first buckling, it is the halo that absorbs most of the
angular momentum lost by the bar region, and from Figure 9
(bottom) it is clear that the lion’s share of this exchange is res-
onant and mediated by the CR and the OLR in the halo and by
the ILR and the CR in the disk, with some contribution from the
numerous minor resonances. This results in the increase of the
bar’s size and strength and leads to the gradual decrease in the ra-
tio of the velocity dispersion, 02/02, in a close analogy with the
disk evolution preceding the first buckling. The second buckling
of'the bar, therefore, can be directly traced to its robust growth in
our model.

The issue of a bar dissolution versus growth has become
controversial recently. While it is beyond the scope of this work,
we do indirectly touch on it. First, we confirm the results of
Martinez-Valpuesta & Shlosman (2004) that vertical bucklings
do not destroy the bar, unlike those suggested by Raha et al.
(1991; see also Sellwood & Wilkinson 1993). Next, in various
axisymmetric models, here and in Berentzen et al. (2006), a
robust growth in the bar is observed after the first buckling,
supplemented by the angular momentum exchange between the
disk and the halo. Athanassoula (2003) has analyzed the effect of
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initial conditions on this J redistribution, namely, of the initial
disk-to-halo mass ratio and of the Toomre Q parameter: the
angular momentum exchange varied from ~2% to ~35%, with a
clear correlation between the amount of the exchanged mo-
mentum and the size of the bar. In comparison, our models have
a halo-to-disk mass ratio of unity within the central 10 kpc,
0O ~ 1.5, and a halo core of ~2 kpc. They lie between the models
MH1, M~3-4, and MQ4 of Athanassoula.

Interestingly, Valenzuela & Klypin (2003) argued that it is the
mass and force resolutions of numerical models that dictate the
efficiency of the J transfer to the halo and hence play an im-
portant role in the evolution of the bar. Insufficient resolution
results in an excessive growth of numerical bars and an exces-
sive decrease in the bar pattern speed. However, it seems rather
that the physical conditions mentioned above take priority: their
high-resolution models have extended and hot halos. High dis-
persion velocities in the halo affect the particle trapping by the
resonances and so are expected to lower substantially the J
transfer.

6.2. Bar Size Evolution

If one neglects the dissipative component in a modeled gal-
axy, the bar pattern speed decreases secularly, except during
brief time intervals of internal instabilities in the bar itself. At
least in numerical models of stellar bars, their overall slowdown
is accompanied by an increase in the bar length, so the bar
roughly extends to its corotation radius, which increases with
time (Athanassoula 1992). Alternative theoretical models of
bars terminating at the ILR exist (Lynden-Bell 1979), but dif-
ficulties remain in actually reproducing them in numerical
simulations (but see, e.g., Polyachenko & Polyachenko 1994 for
the so-called slow bars). A sole exception consists of a system of
nested bars, where the inner (nuclear) bars form within the ILR
(e.g., Shlosman et al. 1989; Friedli & Martinet 1993; Englmaier
& Shlosman 2004). However, a dissipative component is re-
quired to be present for self-consistency in this case. How ex-
actly the bar traps the disk orbits in order to increase its length is
not known at present.

We have demonstrated that while the size of the bar, r,,,, drops
during the first buckling (Fig. 2a), the ratio of rcr/rp,: (Fig. 4b)
does not increase dramatically above the range of 1.2 £ 0.2
determined by Athanassoula (1992) to fit the observed shapes of
the offset dust lanes in barred galaxies. Amazingly, the reason for
this is that 7cg drops as well due to the sudden increase in the bar
pattern speed in the same time interval. This is not unexpected
due to a clear trend between €2, and 4, (Athanassoula 2003) and
a long-known fact that the bar lengthens with its slowdown in
numerical simulations. What is new here is that we find that §2,,
increases sharply during the first buckling, and this increase
apparently correlates with the sudden decrease in the bar length.
Hence, the relation between €2, 4, and ry,,, appears to be more
fundamental than anticipated and holds for both decelerating
and accelerating bars.

We associate the continued bar growth with the ability of the
halo to absorb angular momentum from the disk region lying
within the corotation radius, a region that itself expands with
time. This process leads to a stronger bar and can be seen as a
counterbalance to a number of other processes that have been
discussed in the literature within the framework of bar dissolu-
tion. Recent observational results from the Galaxy Evolution
from Morphology and SEDs (GEMS; Rix et al. 2004) survey
have shown that the bar size and axial ratio distributions at
intermediate redshifts of z ~ 0.2—1 are compatible with those in
the local universe (Jogee et al. 2004; Elmegreen et al. 2004;
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Sheth et al. 2003). Our models, which exhibit a slow secular bar
growth over the Hubble time, are in general agreement with these
results. They do lack the gaseous component that can dramatically
shorten the bar life cycle (e.g., Bournaud & Combes 2002). How-
ever, it is difficult to understand how the short-lived (e.g., less than
1.5 Gyr; Bournaud & Combes 2002; Combes 2004) bars can form
at the same rate and with the same sizes and axial ratios at which
they are being destroyed by the gas. Yet, taken at face value, in
order to agree with the GEMS results, the bars must preserve their
size and strength distributions nearly unchanged over the last
8 Gyr. Clearly, the precise role of gas in the bar evolution must still
be determined.

6.3. Bar Shape Evolution

Next we focus on some aspects of the bar’s three-dimensional
shape evolution in the model, specifically on the axial ratio in the
bar midplane and on the bar symmetry in the vertical plane. The
midplane axial ratio, or alternatively the bar ellipticity e, is
measured from the ellipse fitting (Fig. 4¢) and agrees with the
evolution of the bar amplitude 4,. At the same time, the varia-
tions in e appear less dramatic than those in 4,, although re-
current bucklings are clearly visible as a decrease or saturation.

The ratio rcgr/rpsr has also dynamical implications for the bar.
For example, it determines the shape of the offset dust lanes in
barred galaxies, which in turn delineate shocks in the gas flow
(Athanassoula 1992). The strength of the underlying shocks
determines the gas inflow toward the central kiloparsec. A bar
that is considerably weakened will slow down the radial gas
inflow. The observed shapes constrain the ratio rcr/rpar t0
1.2 + 0.2. The modeled ratio (Fig. 4b) typically falls within the
required limits, except during the first buckling when it is higher,
~1.5.

After the second buckling, the bar shows the so-called ansae
(handles) on both its ends. We observe them as characteristic
density enhancements in the face-on (Fig. 11) or edge-on (Fig. 3)
disks. Athanassoula (2001) related the appearance of ansae to
initial conditions in the models (e.g., the halo-to-disk mass ratio).
It remains unknown why they appear at this particular evolution-
ary stage, 7 > 8 Gyr. The ansae can be seen in some early-type
barred galaxies, e.g., NGC 4262, NGC 2859, and NGC 2950
(Sandage 1961), NGC 4151 (Mundell & Shone 1999), and ESO
509-98 (Buta et al. 1998).

Vertically, the bar evolves from a geometrically thin configura-
tion, similar to the disk hosting it. The vertical bar buckling, when
viewed along the bar’s minor axis, shows a rapidly evolving bend-
ing that relaxes to a boxy bulge, i.e., a bulge with flat or mildly
convex isodensities (Fig. 8a). Subsequently, the bulge acquires a
peanut shape. During the second buckling, for ~3 Gyr, the verti-
cal asymmetry persists with one-sided boxy and peanut symme-
tries that derive from the asymmetric BAN family (Fig. 8b). With
the asymmetry washed out, the boxy/peanut-shaped bulge/bar has
a pronounced X-shape: two pointed spikes with a large concave
region in between (Fig. 8¢). The X-shapes have been seen before
in numerical simulations (e.g., Athanassoula & Misiriotis 2002)
and have been observed as well: e.g., NGC 4845, NGC 1381, and
1C 4767 (Whitmore & Bell 1988), IC 3370 (Jarvis 1986), and AM
1025—401 (Arp & Madore 1987; Bureau & Freeman 1999; Patsis
etal. 2002b). Mihos et al. (1995) proposed a merging scenario for
the formation of the X-shaped bulges, e.g., a minor merger for the
Hickson 87a galaxy. This merger triggers the bar instability in the
disk, followed by the buckling and the X-shaped bulge, when
viewed from a specific aspect angle. In principle, there may be
more than one cause for the bar buckling and for the formation of
peanut/boxy/X-shaped bulges. But when taken together, a high
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Fi. 11.—Ansae at time 7 = 9.9 Gyr. A face-on view of the modeled barred
disk. The gray-scale contours represent the surface density and are spaced
logarithmically. The box size is 18 kpc x 18 kpc. [See the electronic edition of
the Journal for a color version of this figure.]

observed frequency of these bulges (Liitticke et al. 2000) and the
need for only mild asymmetry in the disk for their appearance
(Patsis et al. 2002a) may hint at their intrinsic origin.

6.4. Vertical Asymmetry of the Bar

The vertical asymmetry of the modeled bar has been detected
during its recurrent bucklings for about 1 and ~3 Gyr, respec-
tively (Figs. 3 and 5). Its characteristic shape, in principle, is
detectable by observations of edge-on galaxies (e.g., Fig. 3 and
accompanying animation), especially during the second buckling
due to its prolonged period. Observationally, the bucklings differ
when viewed edge-on along the bar’s minor axis. The main differ-
ence is the location of the maximal asymmetry: it is close to the
rotation axis during the first buckling and around the middle re-
gion of the bar during the second buckling.

Liitticke et al. (2000) present first statistics of edge-on gal-
axies with the boxy/peanut-shaped bulges and show some iso-
phote fits (their Fig. 2). They distinguish between peanut-shaped
and boxy bulges. A total of 27% of the sample of 734 galaxies
with boxy/peanut-shaped bulges have bulges that are either
close to boxy or, due to low resolution, could not be distin-
guished between boxy and peanut-shaped. Some of these bulges
show a mild vertical asymmetry similar to that found during the
second buckling; e.g., NGC 4289 is a good example of a pos-
sible observed secondary buckling. Of course, to corroborate the
numerical simulations one needs a large, statistically significant
sample with high resolution. The main difficulty lies in the un-
ambiguous determination of the inclination angle of a galactic
disk: it must be edge-on within +5°-7°.

From a theoretical point of view, it is unclear how widespread
is the recurrent buckling in stellar bars: how sensitive it is to disk
and especially halo parameters, such as mass distribution and
dispersion velocities. While the condition for a second buckling
seem to be directly related to the ability of the bar to strengthen
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after the initial weakening, this process can depend on a number
of additional parameters. For example, Athanassoula (2003) has
found that the angular momentum transfer between the disk and
the halo depends on the mass distribution in the halo and weakens
substantially for hotter halos. Berentzen et al. (2006) have de-
tected a recurrent buckling in their LS2 model with a 2 kpc flat
core (live) halo with a logarithmic potential. At the time of the
second buckling, the bar in this model appears somewhat stron-
ger than in the first buckling. Moreover, the secondary buckling
can be apparently seen in Figure 4 of O’Neill & Dubinski (2003)
and also in Figure 11 of Valenzuela & Klypin (2003), the latter
based on the evolution of the bar pattern speed, strength, and the
angular momentum rate change. Secondary buckling is also
present in some models of L. Athanassoula (2005, private com-
munication). In all cases they went unnoticed. Finally, we com-
ment on the addition of the dissipative component to the stellar
disk (Berentzen et al. 1998). The effect of the clumpy gas com-
ponent is to weaken the buckling instability, but without quan-
tifying the degree of clumpiness within the central kiloparsec, it is
not clear whether the isothermal equation of state used has led in
fact to overdamping of this instability.

7. CONCLUSIONS

To summarize this work, we have studied the long-term stellar
bar evolution in a high-resolution self-consistent model of a disk
and a responsive halo. We find that a developing bar goes
through the vertical buckling instability, which weakens it and
dissolves its outer half. Subsequently the bar experiences a re-
newed growth that leads to a recurrent buckling. This evolution
is driven by the resonant interaction between the barred disk and
the surrounding halo; we quantify this effect by means of the
spectral analysis of individual orbits in the disk and the halo and
show that the halo particles are trapped by numerous lower
resonances with the bar and that this trapping is robust. During
these periods of recurrent instability, and especially during the
slower second buckling, the bar remains vertically asymmetric
for a prolonged ~3 Gyr time interval, which in principle can be
detected observationally. However, two issues can potentially
complicate this detection. First, it is not clear how widespread
are the conditions favorable for the recurrent bar growth, al-
though we have detected it in a number of models with different
initial conditions. Second, while it was shown that a clumpy
gaseous component with an isothermal equation of state in the
disk will weaken this instability, the effect of a realistic ISM was
never estimated. A statistically significant sample of (nearly)
edge-on galaxies is required to test the prediction of a prolonged
vertical asymmetry.

We also find that the secular bar growth and the triggered
buckling instabilities lead to pronounced changes in the bulge
shape: it grows both radially and vertically, acquiring a peanut-
shaped, a boxy, and finally the X-shaped appearance. While the
bar size approximately follows the 4:1 (ultraharmonic) resonance
in the disk, the boxy/peanut-shaped bulge size appears to be
guided by the vertical ILR. Concurrently, the bar is going through
a structural evolution: new families of three-dimensional periodic
orbits appear (or become more pronounced) after the bucklings.

Finally, we find that the bar strength correlates with its pattern
speed in both strengthening and weakening bars. While it was
known already that a stellar bar becomes stronger as it slows
down, we detect the reverse trend as well: bars that weaken
during the buckling speed up their tumbling. Moreover, the bar
size appears to be sensitive to these changes: bars slowing down
become longer, while bars speeding up shorten.
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