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Abstract

An annulus triangulation G is a 2-connected plane graph with two disjoint faces
f1 and f2 such that every face other than f1 and f2 are triangular, and that every
vertex of G is contained in the boundary cycle of f1 or f2. In this paper, we prove
that every annulus triangulation G with t vertices of degree 2 has a dominating set
with cardinality at most ⌊ |V (G)|+t+1

4 ⌋ if G is not isomorphic to the octahedron. In
particular, this bound is best possible.

1 Introduction

In this paper, all graphs are undirected and simple. For a graph G, let V (G) and E(G)
denote the vertex set and the edge set of G, respectively. For v ∈ V (G), let N(v) denote
the set of vertices which are adjacent to v. In particular, we call the set N [v] = {v} ∪N(v)
the closed neighborhood of v. Moreover, for S ⊂ V (G), let N(S) denote the neighborhood of
S, i.e., the set of vertices adjacent to a vertex of S in G. For S, T ⊂ V (G), we say that S
dominates T if T ⊂ S ∪N(S). If D ⊂ V (G) dominates V (G), then D is called a dominating
set of G. The domination number of G is the minimum cardinality over all dominating sets
of G and denoted by γ(G).

A disk triangulation is a 2-connected plane graph such that every face except for the
infinite face is triangular. Matheson and Tarjan proved the following theorem by an elegant
coloring method:

Theorem 1 (Matheson and Tarjan [3]) Let G be a disk triangulation with n vertices.
Then γ(G) ≤ ⌊n

3
⌋.

They constructed a disk triangulation with n vertices in which any dominating sets
have cardinality at least ⌊n

3
⌋, and hence the estimation in Theorem 1 is best possible. The

examples they constructed are maximal outerplanar graphs, (i.e., a 2-connected plane graph
such that there is a single face f containing all vertices on the boundary cycle, and that every
face other than f is triangular), and so they asked what happens if every face is triangular:

Conjecture 2 (Matheson and Tarjan [3]) Let G be a planar triangulation with n ver-
tices. If n is sufficiently large, then γ(G) ≤ ⌊n

4
⌋.

They constructed a plane triangulation G with n vertices satisfying γ(G) = ⌊n
4
⌋ for

any large n. but the conjecture is still open so far. For this conjecture, Plummer, Ye and
Zha [4] proved that every 4-connected plane triangulation with n ≥ 26 vertices satisfies
γ(G) ≤ ⌊5n/16⌋. In addition, King and Pelsmajer [2] proved that every plane triangulation
G of maximum degree 6 with n vertices satisfies that γ(G) ≤ ⌊n

4
⌋. But we do not know of

any other progress on the problem.
Let us focus on maximal outerplanar graphs. By Theorem 1, every maximal outerplanar

graph G with n vertices has domination number at most ⌊n
3
⌋. This result is easily obtained

by a proper 3-coloring, as follows: A maximal outerplanar graph is known to have a proper
3-coloring c : V (G) → {1, 2, 3}. Observe that for i = 1, 2, 3, the set c−1(i) dominates G where
c−1(i) is the set of vertices colored by i for the coloring c. Hence for some i ∈ {1, 2, 3}, we have
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|c−1(i)| ≤ n
3
since |c−1(1)|+ |c−1(2)|+ |c−1(3)| = n, and we are done. Moreover, there exists a

maximal outerplanar graph each of whose dominating set requires ⌊n
3
⌋ vertices [3]. Campos

and Wakabayashi [1] pointed out that maximal outerplanar graphs with a large domination
number have many vertices of degree 2, and they (and Tokunaga independently)proved the
following theorem.

Theorem 3 ([1, 5]) Let G be a maximal outerplanar graph with n vertices and t vertices
of degree 2. Then γ(G) ≤ ⌊n+t

4
⌋, where the bound is sharp.

In this paper, we introduce an “annulus triangulation” and consider its domination num-
ber. An annulus triangulation is a 2-connected plane graph with two disjoint special faces
f1 and f2 such that every face of G except for f1 and f2 are triangular, and that every vertex
of G is contained in the boundary cycle of f1 or f2. We call f1 and f2 holed face and any
other faces facial 3-cycles. The boundary cycle of f1 and that of f2 are called the boundary
of G. This seems to be a natural extension of maximal outerplanar graphs.

Our main theorem is as follows:

Theorem 4 Let G be an annulus triangulation with n vertices and t vertices of degree 2. If
n ≥ 7, then γ(G) ≤ ⌊n+t+1

4
⌋, where this estimation is sharp.

A big difference between maximal outerplanar graphs and annulus triangulations is that
an annulus triangulation G is not necessarily 3-colorable, and that G might not have vertices
of degree 2. In this paper, we elaborate a coloring method in [3, 5] and prove Theorem 4. In
Section 2, we will prove lemmas to show the main theorem, and in Section 3, we prove the
main theorem.

2 Dominating k-set-assignment

Let G be a graph and k be a positive integer. A k-coloring is a map c : V (G) → {1, 2, ..., k},
and c is proper if c(x) ̸= c(y) for any xy ∈ E(G). A k-coloring c is said to be a dominating
k-coloring if for any i ∈ {1, . . . , k}, the vertex set c−1(i) is a dominating set of G. By the
definition, we have the following:

Proposition 5 If a graph G admits a dominating k-coloring, then γ(G) ≤ ⌊ |V (G)|
k

⌋. ■

Proposition 5 is useful to prove that a maximal outerplanar graph G with n vertices
has a dominating set with cardinality at most ⌊n

3
⌋, since every proper 3-coloring of G is a

dominating 3-coloring of G, as is mentioned in the previous section.

Extending the notion of a dominating k-coloring of a graph G, we define a “dominating
k-set-assignment”, as follows: An assignment f : V (G) → 2{1,...,k} is a dominating k-set-
assignment if for any i ∈ {1, . . . , k}, the vertex set

Df (i) = {v ∈ V (G) : i ∈ f(v)}

2
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is a dominating set of G. It is easy to see that f is a dominating k-set-assignment if and
only if every vertex v has all k colors in its closed neighborhood. Let

dG(f) =
k∑

i=1

|Df (i)|.

By the definition, we have:

Proposition 6 If a graph G admits a dominating k-set-assignment f , then γ(G) ≤ ⌊dG(f)
k

⌋.

Note that if |f(v)| = 1 for every vertex v ∈ V (G) in Proposition 6, then the statement
coincides with Proposition 5. In order to prove our theorem, we give the definition of a
property called good. Let G be a graph embedded on the plane. We say a 4-set-assignment
f of a graph G is good if f satisfies all of the following conditions,

(D1) for each vertex v of degree at least 3 except for at most one vertex u, |f(v)| = 1,

(D2) for each vertex w of degree 2 or the vertex u as above (if it exists), |f(w)| = |f(u)| = 2,
and

(D3) for every facial 3-cycle C = xyz of G, there exist three distinct colors i1, i2, i3 ∈
{1, . . . , 4} such that i1 ∈ f(x), i2 ∈ f(y), i3 ∈ f(z).

Note that if f is good, then we have dG(f) ≤ n + t + 1, where n is the number of
vertices of G and t is the number of vertices of degree 2 in G. In particular, Tokunaga [5]
proved Theorem 3 by constructing, for a maximal outerplanar graph, a good dominating
4-set-assignment with additional properties.

Proposition 7 ([5]) Let G be a maximal outerplanar graph with n vertices and t vertices
of degree 2. Then G has a good dominating 4-set assignment f such that

(P1) there is no exception in (D1) and hence dG(f) = n+ t, and

(P2) for any 4-cycle xyzw in G, the four colors 1, 2, 3, 4 are contained in the four sets
f(x), f(y), f(z), f(w) bijectively.

Let G be an annulus triangulation and let C1 and C2 denote boundary components of
G. An edge e is a boundary edge if e is contained in C1 or C2. An edge e is trivial if e is
not a boundary edge but the endpoints of e are contained in the same boundary component.
For example, the edge x0x1 in Figure 1 is a boundary edge and y1y3 is trivial. We usually
represent an annulus triangulation G by a rectangle cutting G along a non-trivial and non-
boundary edge x0y0, as in Figure 1. By identifying the arrows of both ends, we obtain the
annulus triangulation.

Suppose that an annulus triangulation G has a trivial edge e = xy whose endpoints are
contained in C1. Let P and P ′ be the two paths of G such that V (P )∪V (P ′) = V (C1), that
V (P )∩V (P ′) = {x, y}, and that the cycle P ∪{e} bounds a maximal outerplane subgraph D
of G. We call D the ear of G separated by the edge xy. In particular, we say D is maximal
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Figure 1: Different representations of an annulus triangulation.

if G has no trivial edge separating an ear including D as a proper subgraph. Removing an
ear except for x and y decreases the number of trivial edges. So, repeating this operation,
we finally get one with no trivial edges, which is called an essential subgraph of G and taken
uniquely in G. See Figures 2 and 3. The graph drawn in Figure 3 is the essential subgraph
of the graph in Figure 2.

In an essential annulus triangulation G, an edge e is called a spoke if an endpoint of e
has degree 3. (We note that G has no vertex of degree less than 3 since G is essential.) An
edge e is called a frame edge if e is neither a spoke nor boundary edge. The frame of G is
the subgraph of G induced by the frame edges.

Figure 2: An annulus triangulation
Figure 3: The thick edges are frame and the
dotted ones are spoke

We first introduce two propositions for an annulus triangulation.

Proposition 8 Let G be a non-essential annulus triangulation and let Y be a maximal ear
of G separated by a trivial edge e = xy. Let G′ be the annulus triangulation such that
G′∪Y = G and V (G′)∩V (Y ) = {x, y} (See Figure 4). Then if G′ admits a good dominating
4-set-assignment or if G′ is isomorphic to the octahedron, then G has a good dominating
4-set-assignment.

Proof. Without loss of generality, we may assume degY (y) ≥ degY (x). First, we will show
that the edge xy is incident to a facial 3-cycle in G′. Let f1 and f2 be two distinct holed
faces such that the vertices x and y are on the boundary of f1. The edge xy is incident to
exactly two faces, say f1 and f3 in G. If f3 = f1, then the edge xy is a cut edge of G, which
contradicts 2-connectivity of G. Moreover, if f3 = f2, e is on the boundary of both f1 and
f2, which contradicts that f1 and f2 are disjoint with each other. Thus e is incident to a
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Figure 4: The ear reduction. The shaded area in the left figure is the maximal ear Y of G.

facial 3-cycle f3 = xyv. Moreover, since Y is a maximal ear, the vertex v is on the boundary
of f2.
Next, we show that G has a good dominating 4-set-assignment. If G′ has a good dominating
4-set-assignment f ′, without loss of generality, we may assume 1 ∈ f ′(x) and 2 ∈ f ′(y). On
the other hand, if G′ is isomorphic to the octahedron, then we let f ′ be as shown in Figure
5.

Figure 5: The 4-set-assignment f ′ of the octahedron.

We divide the proof into two cases depending on |V (Y )|.

Case 1 Suppose |V (Y )| ≥ 4.
Since Y is a maximal outerplane graph and degY (y) ≥ degY (x), we have degY (y) ≥ 3. Thus
we may assume that Y has a cycle C = xyzw such that wy ∈ E(Y ). By Proposition 7, Y
admits a good dominating 4-set-assignment fY such that 1 ∈ fY (x), {2} = fY (y), 3 ∈ fY (z)
and 4 ∈ fY (w).

We define the assignment f as

f(u) =

{
f ′(u) (u ∈ V (G′)),

fY (u) (u ∈ V (Y )− {x, y}).

By the construction of f , it is sufficient to prove that every vertex which is adjacent to x or
y or which is x or y itself has all 4 colors in its closed neighborhood. We see that every vertex
in V (G′) − {y} has all 4 colors in its closed neighborhood by f ′ in either case. Moreover,
since y is contained in the cycle C in Y , y has all 4 colors in its closed neighborhood in Y .
Thus every vertex in V (G′) has all 4 colors in its closed neighborhood for f . Next, we show
that every vertex which is adjacent to x or y in Y has all 4 colors for f . Since fY (y) ⊂ f(y)
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in either case, the vertices which are adjacent to y also have all 4 colors for f . Moreover,
if degY (x) = 2, then NY (x) = {y, w} and hence fY (x) = {1, 3} by the assumptions and
Proposition 7. Since 3 ∈ fY (z), the vertices which are adjacent to x in Y have all 4 colors
for f . On the other hand, if degY (x) ≥ 3, then we have fY (x) = {1}. In this case, we
have fY (x) ⊂ f(x) and hence the vertices which are adjacent to x have all 4 colors for f .
Therefore, we see that f is a good dominating 4-set-assignment in G.

Case 2 Suppose |V (Y )| = 3.
In this case, Y is isomorphic to the complete graph K3. Let w ∈ V (Y ) be the vertex which
is neither x nor y. In this case, we get a good dominating 4-set-assignment f of G from f ′

such that

f(u) =

{
f ′(u) (u ∈ V (G′)),

{3, 4} (u = w). ■

Proposition 9 Let G be an essential annulus triangulation and v be a vertex to which at
least three consective spokes av, bv, cv are incident. Moreover, let G′ be the graph obtained
from G by removing the three edges av, bv, cv and smoothing the vertices a, b, c of degree 2,
as shown in Figure 6. If G′ is simple and admits a good dominating 4-set-assignment or if
G′ is isomorphic to the octahedron, then G admits a good dominating 4-set-assignment.

Figure 6: the spoke reduction

Proof. We devide the proof into two cases whether G′ has a dominating 4-set-assignment
f ′ or G is isomorphic to the octahedron.

Case 1 Suppose G′ has a good dominating 4-set-assignment f ′.

Clearly, G′ has no vertices of degree 2. Let vL (vR respectively) be the vertex which is
adjacent to v and a (v and c respectively) with vL ̸= b (vR ̸= b respectively) as in Figure 6.
Without loss of generality, we may assume 1 ∈ f ′(vL), 2 ∈ f ′(v) and 3 ∈ f ′(vR).

We define f : V (G) → 2{1,2,3,4} as

f(z) =


f ′(z) (z ∈ V (G′)),

{3} (z = a),

{4} (z = b),

{1} (z = c).

6
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We can easily check that all vertices except for vL and vR in G have all 4 colors in their
closed neighborhoods and all facial cycles have distinct three colors. Suppose f is not a good
dominating 4-set-assingment. By symmetry, we may assume vL does not have four colors
in its closed neighborhood. Since f ′ is a good dominating 4-set-assignment in G′, we have
f(vR) = {3, 4} and NG[vL] ∩Df (4) = ∅. On the other hand, G has a facial cycle uvLv such
that u ̸= vR. Since f ′ is good, we have f(u) = {3}. In this case, by exchanging the color of
the vertices a and b in f , we obtain a good dominating 4-set-assignment in G.

Case 2 Suppose G′ is isomorphic to the octahedron.
By symmetric, G is isomorphic the graph as shown in Figure 7 and we assign a 4-set assign-
ment f to G as follows.

Figure 7: The graph G obtained from the octahedron by adding three spokes.

It is easy to see that f is a good dominating 4-set-assignment in G. ■

3 Domination number of annulus triangulations

For a graph G, a proper 4-coloring c : V (G) → {1, 2, 3, 4} is an admissible 4-coloring of G if
every four vertices of G contained in a 4-cycle have four distinct colors. We can easily check
that a 4-set-assignment f which includes an admissible coloring c (i.e. c(v) ∈ f(v) for every
v ∈ V (G)) satisfies the conditions (D3) and (P2). It is easy to see following.

Lemma 10 Every maximal outerplane graph with n ≥ 4 vertices has an admissible 4-
coloring.

Let G be a maximal outerplane graph and c : V (G) → {1, 2, 3, 4} be an admissible 4-
coloring. Since every 4-cycle has all 4 colors, each color class c−1(i) dominates all vertices of
degree at least 3. On the other hand, every vertex v of degree 2 has exactly one color i such
that the set c−1(i) does not dominate v. In this case, the color i is the missing color for v.

The following is a key claim for the proof.

Theorem 11 Let G be an annulus triangulation with n vertices which is not isomorphic to
the octahedron. If G has no vertex of degree 2 or at least 7, then G has a good dominating
4-set-assignment.

Proof. Let G be a minimum counterexample of Theorem 11.

7

Abe et al.: Domination number of annulus triangulations

Published by Digital Commons@Georgia Southern, 2020



Claim 12 G does not have a vertex of degree 6.

Proof. Suppose not. Let v be a vertex of degree 6 and let v1, v2, v3, v4, v5, v6 be the neighbors
of v in this order with respect to the rotation of v, as in Figure 8. Let G′ be the maximal
outerplane graph obtained from G by removing v, v3 and v4, where we note that exactly one
of v1 and v2, say x, has degree 2 in G′ and so does exactly one of v5 and v6, say y. Since
G is essential, G′ has no vertex of degree 2 except for x and y, and hence by Lemma 10,
G′ has an admissible 4-coloring c such that each of x and y has a missing color. Without
loss of generality, we may assume c(v1) = 1, c(v2) = 2 and the missing color of x is 4. Let
c(v6) = a1, c(v5) = a2 and let the missing color of y be a3. By Lemma 10, it is easy to see
that a1, a2 and a3 are distinct. Now we construct a good dominating 4-set-assignment f in
G as follows.

Figure 8: The vetex v and the neighbor of v

Case 12.1 Suppose a3 ∈ {1, 2, 3}.

We let b3, b4 ∈ {1, 2, 3, 4} as follows.

b4 ∈

{
{2} (a2 ̸= 2, a3 ̸= 2),

{1, 3} − {a2} (otherwise).

b3 ∈

{
{1, 3} − {a3} (a2 ̸= 2, a3 ̸= 2),

{1, 3} − {b4} (otherwise).

Then we define an assignment f as

f(z) =


{c(z)} (z ∈ V (G′)),

{a3, 4} (z = v),

{b4} (z = v4),

{b3} (z = v3).

If a2 ̸= 2 and a3 ̸= 2, then we have {b3, b4, a3} = {1, 2, 3}. Otherwise, we have {b3, b4} =
{1, 3}. In either case, we can easily check that every vertex has distinct four colors in its
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closed neighborhood and that f also satisfies good in G, which contradicts the assumption.

Case 12.2 Suppose a3 = 4.
We assign

f(z) =


{c(z)} (z ∈ V (G′)),

{4} (z = v),

{1, 2} (z = v4),

{3} (z = v3).

In this case, it is easy to see this assignment f is also a good dominating 4-set-assignment.
It contradicts the assumption. □

Suppose G has a vertex of degree 5, say v. Let v1, v2, v3, v4, v5 be the neighbors of v in
this order with respect to the rotation of v, as in Figure 9. Let G′ be the maximal outerplane
graph obtained from G by removing v and v3, where we note that exactly one of v1 and v2,
say x, has degree 2 in G′ and so does exactly one of v4 and v5, say y. By the assumption, G′

has no vertex of degree 2 except for x and y, and hence by Lemma 10, G′ has an admissible
4-coloring c such that each of x and y has a missing color. Without loss of generality, we
may assume c(v1) = 1, c(v2) = 2 and the missing color of x is 4. Let c(v5) = a1, c(v4) = a2
and the missing color of y be a3.

Figure 9: a vertex of degree 5

Claim 13 If G has a vertex v of degree 5, then a2 = 4 and a3 = 2 where a2 and a3 are
defined as above.

Proof. Suppose not.

Case 13.1 Suppose a3 ∈ {1, 2, 3}.
We let b3 as follows.

b3 ∈

{
{1, 3} − {a2} (a2 /∈ {2, 4}),
{1, 3} − {a3} (otherwise).

9
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Then we define f as

f(z) =


{c(z)} (z ∈ V (G′)),

{a3, 4} (z = v),

{b3} (z = v3),

If a2 /∈ {2, 4}, then b3 is uniquely obtained and it is easy to see that f is a good dominating
4-set-assignment in G. If a2 = 2, then we have {a3, b3} = {1, 3} and it is easy to see that f
is a good dominating 4-set-assignment in G. Moreover, if a2 = 4 and a3 ̸= 2, then we have
{a3, b3} = {1, 3} and hence f is a good dominating 4-set-assignment in G.

Case 13.2 Suppose a3 = 4
We define f as

f(z) =


{c(z)} (z ∈ V (G′)),

{4} (z = v),

{1, 3} (z = v3),

In this case, we have f is a good dominating 4-set-assignment in G. □

Suppose G does not have a vertex of degree 4. In this case, every vertex in G has degree
3 or 5. Now we will show that G is uniquely obtained in this case. Since G is essential, we
see that every vertex v ∈ V (G) is an endpoint of a frame edge if and only if degG(v) = 5.
Let C = x0x1...xk−1 and C ′ = y0y1...ym−1 be two distinct boundary components in G.
First, suppose that G has a boundary edge xixi+1 such that degG(xi) = degG(xi+1) = 5,
where the subscript is taken modulo k. Since xi and xi+1 are endpoints of the frame edges
and xixi+1 ∈ E(G), G has a vertex yj ∈ V (C ′) such that xiyj, yjxi+1 are frame edges
of G. Moreover, since yj is endpoint of the frame edges and xixi+1 ∈ E(G), we have
degG(yj) = 4. This contradicts the assumption. Next, suppose that G has a boundary edge
xixi+1 such that degG(xi) = degG(xi+1) = 3. In this case, neither xi nor xi+1 are endpoints
of frame edges. Since they are endpoints of the spokes, they are adjacent to a common
vertex y ∈ V (C ′). This indicates that y has degree at least 6 and this fact contradicts the
assumption. Thus, the vertices of degree 3 and ones of degree 5 appear alternatively in C
and C ′. Moreover, by counting the number of non-boundary edges, we have 2k = 2m. This
indicates that |V (C)| = |V (C ′)|. Without loss of generality, we may assume degG(x0) = 3
and x0y0 ∈ E(G). Since G is an annulus triangulation, we have degG(y0) = 5 and hence
y0x1 ∈ E(G). Moreover, we see that x1y1, x1y2 ∈ E(G) and that y2x2 ∈ E(G) by the same
reason as above. By repeating these argument, G is uniquely obtained as shown in Figure
10.

Let G′ = G − {x1, y1}. By lemma 10, G′ has an admissible coloring c so that c(x2) =
1, c(y2) = 2 and missing color of x2 is 4. We can easily check this coloring c satisfies that if
c(y0) = 4, then the missing color of x0 is 1 and hence c does not satisfy Claim 13. Thus we
may assume G has a vertex of degree 4. Next, we prove that G must be a 4-regular graph.

Claim 14 G does not have a vertex of degree 5.

10
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Figure 10: A situation without vertices of degree 4

Proof. Suppose not. Since G has a vertex of degree 4, G has a frame edge connecting a
vertex of degree 5 and one of degree 4. Let v be a vertex of degree 5 and let v1, v2, v3, v4, v5
be the neighbors of v in this order with respect to the rotation of v, as in Figure 9. We
may assume that v2 is a vertex of degree 4. Let u be the endpoint of the frame edge which
is incident to v1 with u ̸= v2. Since G′ = G − {v, v3} is a maximal outerplanar graph,
G′ has an admissible coloring c by Lemma 10. Without loss of generality, we may assume
c(v1) = 1, c(v2) = 2 and the missing color of v2 is 4. By Claim 13, c(v4) = 4 and hence
u ̸= v4. Next, we construct a good dominating 4-set-assignment as follows.

Case 14.1 Suppose degG(v1) = 4. We define an assignment f as

f(z) =


{c(z)} (z ∈ V (G′)− {v2}),
{2} (z = v),

{4} (z = v2),

{1, 3} (z = v3).

In this case, it is easy to see that every vertex which is not adjacent to u and whose degree is
at least 3 in G′ has all 4 colors in its closed neighborhood by f . Moreover, since u ̸= v4 and
any 4-cycles in G′ except for the cycle bounded by v2v1wu have all 4 colors by Lemma 10,
where w is a vertex which is adjacent to v1 and u with w ̸= v2, we have |N [u] ∩ c−1(2)| = 2.
Thus the vertex u also has all 4 colors in its closed neighborhood by f . Moreover, it is easy
to see that every vertex vi(i ∈ {1, 2, ..., 5}) has all 4 colors in its closed neighborhood by f .
Thus f is a good dominating 4-set-assignment in G.

Case 14.2 Suppose degG(v1) = 5.

In this case, v1 has one spoke v1w
′. If u = v4, then it is easy to see that NG′ [v4]∩NG′ [v5]∩

c−1(2) ̸= ∅, which contradicts Claim 13. Thus we conclude u ̸= v4. We define an assignment
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f as

f(z) =



{c(z)} (z ∈ V (G′)− {v2, w′}),
{2, 4} (z = v),

{3} (z = v2),

{1} (z = v3),

{2} (z = w′).

By the similar argument as before, we conclude f is a good dominating 4-set-assignment. □

By Claim 12 and 14, the degree of every vertex in G is at most 4. Suppose that G has a
vertex of degree 3, say v. Since G does not have a vertex of degree 2, v must be an endpoint
of a spoke vw. This implies that the degree of w is at least 5, which is a contradiction.
Thus G is a 4-regular graph. Let C = x0x1...xk and C ′ = y0y1...ym be two distinct boundary
components of G. Without loss of generality, we may assume x0y0, x0y1 ∈ E(G). We can
easily check |V (C)| = |V (C ′)| and G is uniquely obtained, as shown in Figure 11.

Figure 11: A 4-regular graph

Claim 15 |V (G)| is at most 6.

Proof. Suppose not. Since G′ = G − {x1, y1} is a maximal outerplanar graph, G′ has the
admissible coloring c by Lemma 10. Without loss of generality, we may assume c(x2) =
1, c(y2) = 2 and c(y3) = 3. If k is odd, then we see that (c(x0), c(y0)) = (1, 2) and hence we
can get a good dominating 4-set-assignment f in G naturally as follows.

f(z) =


{c(z)} (z ∈ V (G′)),

{4} (z = x1),

{3} (z = y1).

Otherwise, we see that (c(x0), c(y0)) = (4, 3). In this case, we define f as

f(z) =


{c(z)} (z ∈ V (G′)− {y2}),
{2} (z = x1),

{1, 3} (z = y1),

{4} (z = y2).
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Since G is not isomorphic to the octahedron, we see that k ≥ 4. Every vertex in V (G′) −
{x0, x2, y2, y3} has all 4 colors in its closed neighborhood by f . Moreover, since c(y4) = 2,
the vertex y3 also has all 4 colors in its closed neighborhood. It is easy to see that any
other vertices have all 4 colors in their closed neighborhood. Thus f is a good dominating
4-set-assignment in G. Therefore, by Claim 12, 14 and 15, if G is not isomorphic to the
octahedron, then G has a good dominating 4-set-assignment. ■

4 Proof of Theorem 4

Proof. By Proposition 6, it is sufficient to prove that G has a good domminating 4-set-
assignment unless G is the octahedron. Let G be a counterexample as above with minimum
cardinality. Suppose G is non-essential (i.e. G has a trivial edge xy). Let G′ be a graph
obtained by removing a maximal ear Y of G except for xy. It is easy to see that G′ is an
annulus triangulation. By the minimality of G, G′ has a good dominating 4-set-assignment
or that G′ is isomorphic to the octahedron. On the other hand, by Proposition 8, we conclude
that G has a good dominating 4-set-assignment, which contradicts the assumption. Thus
we may assume G is essential.

Suppose G has a vertex of degree at least 7. Then G has a vertex v such that v is
an endpoint of at least three spokes av, bv, cv. Let G′ be the graph obtained from G by
removing the three edges av, bv, cv and smoothing the vertices a, b, c of degree 2. Let vL
(vR respectively) be the vertex which is adjacent to v and a (v and c respectively) with
vL ̸= b (vR ̸= b respectively) as in Figure 6. It is easy to see that G′ is not simple if and
only if vLvR ∈ E(G) and degG(v) = 7. If G′ is simple, then G′ has a good dominating
4-set-assignment or G′ is isomorphic to the octahedron. By Proposition 9, G has a good
dominating 4-set-assignment for either case, which contradicts the assumption. Therefore,
we may assume that G is not simple, then G has the edge vLvR and degG(v) = 7. Since
vLvR ∈ E(G) and since G is a simple annulus triangulation, the structure of G is restricted
as shown in Figure 12. The ? areas in Figure 12 may have some spokes.

Figure 12: A situation of G such that G′ is not simple.

By symmetry, we may assume degG(vL) ≤ degG(vR). If G satisfies that degG(vR) ≥ 8
or that degG(vR) = 7 and xv /∈ E(G), then we obtain the simple annulus triangulation G′′
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by focusing on vR instead of v. Thus G has a good dominating 4-set-assignment by the
induction hypothesis, which contradicts the assumption. Moreover, if degG(vR) = 4, then
degG(vL) = 4 and hence G has a multiple edge. Thus we have 5 ≤ degG(vR) ≤ 7 We
construct a good dominating 4-set-assignment in G depending on degG(vR) as follows.

Case 1 Suppose that degG(vR) = 7 and xv ∈ E(G).
We assign the 4-set-assignment as shown in Figure 13.

Figure 13: The degree of vR is 7 and xv ∈ E(G).

Case 2 Suppose that degG(vR) = 6.
In this case, we see that 4 ≤ degG(vL) ≤ 6. We assign the 4-set-assignment of G as in

Figures 14 to 16.

Figure 14: degG(vL) = 4 Figure 15: degG(vL) = 5 Figure 16: degG(vL) = 6

Case 3 Suppose that degG(vR) = 5.
In this case, we see that 4 ≤ degG(vL) ≤ 5. We assign the 4-set-assignment as in Figures

17 and 18.

Figure 17: degG(vL) = 4 Figure 18: degG(vL) = 5

In either case, we see that each assignment as above is a good dominating 4-set-assignment
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in G, which contradicts the assumption. Thus we may assume that G does not have a vertex
of degree at least 7.

By Theorem 11, G has a good dominating 4-set-assignment. Thus in any cases except for
the octahedron, we constructed a good dominating 4-set-assignment with dG(f) ≤ n+ t+1.
■

In order to prove the sharpness of the theorem, we construct an annulus triangulation
satisfying the equality of the estimation. See Figure 19. We show γ(G) = 7. Let Ai be the
closed neighborhood of ai, for i = 1, 2, 3, 4, 5, 6. Then observe that A1, . . . , A6 are pairwise
disjoint. Thus we must have γ(G) ≥ 6, since we have to choose at least one vertex from Ai

for i = 1, 2, 3, 4, 5, 6, in order to dominate ai. Hence we suppose that G has a dominating
set S with |S| = 6. It is trivial |S ∩ Ai| = 1 for any i. Observe that b1 is the only vertex in∪

Ai adjacent to x and so S ∩A1 = {b1}. Next, in order to dominate the vertex c1, we have
S ∩ A3 = {b3}. By the same reason, we have b5 ∈ S to dominate c3. By any choice of three
vertices in A2, A4, A6, S does not dominate y. Hence γ(G) > 6.

Figure 19: n = 24, t = 3, γ(G) = 7

By the similar discussion, we have an annulus triangulation with γ(G) = ⌊n+t+1
4

⌋ for
some n ≥ N , where N is a large constant.

5 Domination number of k-holed triangulations

As a natural extension of maximal outerplanar graph, we concern a graph called k-holed
triangulation. A k-holed plane triangulation is a 2-connected plane graph with k disjoint
special faces f1, ..., fk such that every face of G except for fi are triangular, and that every
vertex of G is contained in the boundary cycle of boundary cycles. If k = 1, then G is a
maximal outerplane graph. Moreover if k = 2, then G is an annulus triangulation.

It is not hard to see the following.

Proposition 16 Let G be a k-holed triangulation with n vertices and t vertices of degree 2.
Then γ(G) ≤ ⌊n+t+2(k−1)

4
⌋.

The upper bound is tight since the it holds with equality for the octahedron. However,
there seems to be no other graphs for which the bounds hold equality, hence we conjecture
as follows.
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Conjecture 17 Let G be a k-holed triangulation with n vertices and t vertices of degree 2.
If G is not isomorphic to the octahedron, then γ(G) ≤ ⌊n+t+(k−1)

4
⌋.

The graph shown in Figure 20 holds with equality for k = 4. In a similar way, we can
construct k-holed triangulations with γ(G) = ⌊n+t+(k−1)

4
⌋ for any k.

Figure 20: A 4-holed triangulation with n = 45, t = 0, k = 4 and γ(G) = 12
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