
Scholars' Mine Scholars' Mine

Doctoral Dissertations Student Theses and Dissertations

Spring 2020

Novel approaches for reliable and efficient circuit design Novel approaches for reliable and efficient circuit design

Prashanthi Metku

Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations

 Part of the Computer Engineering Commons

Department: Electrical and Computer Engineering Department: Electrical and Computer Engineering

Recommended Citation Recommended Citation
Metku, Prashanthi, "Novel approaches for reliable and efficient circuit design" (2020). Doctoral
Dissertations. 2871.
https://scholarsmine.mst.edu/doctoral_dissertations/2871

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/doctoral_dissertations
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/doctoral_dissertations?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2871&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2871&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/doctoral_dissertations/2871?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2871&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

NOVEL APPROACHES FOR RELIABLE AND EFFICIENT CIRCUIT DESIGN

by

PRASHANTHI METKU

A DISSERTATION

Presented to the Graduate Faculty of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

DOCTOR OF PHILOSOPHY

in

COMPUTER ENGINEERING

2020

Approved by:

Dr. Minsu Choi, Advisor

Dr. Daryl Beetner

Dr. Sahra Sedigh Sarvestani

Dr. Joe Stanley

 Dr Abusayeed Saifullah

 2020

Prashanthi Metku

All Rights Reserved

iii

PUBLICATION DISSERTATION OPTION

This dissertation consists of the following four articles, formatted in the style used

by the Missouri University of Science and Technology:

Paper I, found on pages 6–32, Adaptive Multi-path BCH Decoder to Alleviate

Hotspot-induced DRAM Bit Error Variation in 3D Heterogeneous Processor published

in Journal of Semiconductor Technology and Science.

Paper II, found on pages 33–51, Novel Area-Efficient Null Convention Logic based

on CMOS and Gate Diffusion Input (GDI) Hybrid Methodology accepted in Journal of

Semiconductor Technology and Science.

Paper III, found on pages 52–80, A Low Power Design Technique for the

Asynchronous Null-Convention Logic Circuits is intended for submission to IEEE

Transactions on Very Large Scale Integration (VLSI) Systems.

 Paper IV, found on pages 81–103, Energy-Performance Scalability Analysis of a

Novel Quasi-Stochastic Computing Approach published in Journal of Low Power

Electronics and Applications.

iv

ABSTRACT

In this research work, a suite of approaches are presented to improve reliability of

3D heterogeneous processors (3DHP) and to reduce the area overhead of asynchronous

designs. This work is primarily divided into two parts. In the first part, we present an

approach for improving reliability in 3DHP. Typically, in 3DHP, thermal hotspots

introduce spatial and temporal variability that results in wide bit error variation in DRAM

dies. To address this issue multi- path BCH decoder is introduced. Based on the thermal

gradient data generated by on-chip temperature sensors, the proposed methodology

specializes in adaptively estimating the number of errors in the incoming word and also

selecting the fast decoding path to correct these errors. Thus, provides DRAM error

protection with minimal decoding latency. In the next part of this work, we focus on

reducing the area overhead of asynchronous paradigm-driven null convention logic (NCL)

design using Gate Diffusion Input (GDI). We first develop technique for realizing NCL

gates. In the process, we demonstrate that there is a voltage swing at the output that may

introduces errors. To address this limitation, a HYBRID approach is introduced where

conventional complementary metal oxide semiconductor (CMOS) technology is integrated

with GDI methodology. With this approach, we demonstrate that we can reduce the

transistor count (TC) of the NCL designs while addressing the limitations due to voltage

drop. To further reduce the TC of the NCL designs, GNCL is developed. This approach

utilizes the regenerative buffers to overcome the performance degradation and also reduce

the area overhead. Overall in this dissertation, we demonstrate reductions in area and power

overheads for asynchronous designs.

v

ACKNOWLEDGMENTS

I want to extend my sincere gratitude to my advisor, Dr. Minsu Choi for allowing

me to work and learn under his tutelage and helping me acquire invaluable insights to make

this work possible. Dr. Choi’s constant support and patience has helped me develop the

skills at my own pace and time. All these years working under him will go down as some

of the most valuable and productive years of my student life.

I profoundly thank Dr. Daryl Beetner, Dr. Sahra Sedigh Sarvestani, Dr. Joe Stanley

and Dr Abusayeed Saifullah for being my committee members and for their valuable

inputs. I would also like to thank my lab partners and friends from Missouri University of

Science and Technology especially Krishnan Raghavan and Vikram Chowdhury, for

providing help and support during the course of my doctoral studies at Missouri S&T.

I am immensely grateful and owe my utmost gratitude towards my parents

Venkateshwar Metku and Kalpana Metku for giving me the chance to be who I am today.

Thank you both for believing in me and giving me strength to chase my dreams. Finally,

special thanks to my brothers Virjanand Sagar, Vivekanand Sagar amd Sandeep Nallagula

for constant understanding and encouragement.

vi

TABLE OF CONTENTS

Page

PUBLICATION DISSERTATION OPTION ... iii

ABSTRACT ... iv

ACKNOWLEDGMENTS ...v

LIST OF ILLUSTRATIONS ...x

LIST OF TABLES ... xiii

SECTION

1. INTRODUCTION .. 1

PAPER

I. ADAPTIVE MULTI-PATH BCH DECODER TO ALLEVIATE HOTSPOT

INDUCED DRAM BIT ERROR VARIATION IN 3D HETEROGENEOUS

PROCESSOR .. 6

ABSTRACT .. 6

1. INTRODUCTION ... 7

2. ARCHITECTURE ... 8

3. ADAPTIVE MULTI-PATH DECODER DESIGN .. 11

3.1. SYNDROME BLOCK DESIGN FOR MULTI-PATH BCH DECODER.... 14

3.2. EEROR LOCATOR POLYNOMIAL CALCULATOR DESIGN................ 16

3.3. CHIEN SEARCH BLOCK DESIGN .. 18

3.4. PARALLEL ADAPTIVE BCH DECODING FOR REDUCED

DECODING .. 20

4. PERFORMANCE EVALUATION .. 22

vii

4.1. SERIAL DECODING PERFORMANCE EVALUATION 23

4.1.1. Average Decoding Latency for Various Bit Error Probabilities 25

4.1.2. Cumulative Error Coverage ... 27

4.2. PARALLEL DECODING PERFORMANCE ... 27

5. CONCLUSION ... 29

BIBLOGRAPHY ... 30

II. NOVEL AREA-EFFICIENT NULL CONVENTION LOGIC ON CMOS AND

GATE DIFFUSION INPUT (GDI) HYRBID METHODOLOGY33

ABSTRACT .. 33

1. INTRODUCTION ... 33

2. PRELIMINARIES AND REVIEW .. 36

2.1. NULL CONVENTION LOGIC .. 36

2.2. GATE DIFFUSION INPUT .. 40

3. THE PROPOSED HYBRID METHODOLOGY ... 41

3.1. REALIZATION OF NCL USING FNCL APPROACH (BASED ON F1

 AND F2 FUNCTIONS OF GDI GATE) ... 41

3.2. PERFORMANCE DEGRADATION OF FNCL APPROACH 43

3.3. CMOS-GDI HYBRID APPROACH ... 45

4. PERFORMANCE EVALUATION .. 47

4.1. NCL GATES UTILIZED FOR REALIZING NUI CIRCUITS 48

4.2. TRANSISTOR COUNT FOR VARIOUS NUI IMPLEMENTATIONS 48

5. CONCLUSION ... 50

BIBLOGRAPHY ... 50

viii

III. A LOW POWER DESIGN TECHNIQUE FOR THE ASYNCHRONOUS

NULL-CONVENTION LOGIC CIRCUITS ... 52

ABSTRACT ... 52

1. INTRODUCTION ... 53

2. PRELIMINARIES AND REVIEW ... 56

3. LIMITATION OF NCL ... 59

4. PROPOSED APPROACH FOR DESIGNING NCL CIRCUITS 61

4.1. BASIC IMPLEMENTATION OF NCL GATES USING GDI

TECHNIQUE (GDI-NCL TECHNIQUE) ... 61

4.2. GENERALIZED APPROACH (GNCL) FOR REALIZING NCL GATES 68

5. SIMULATION RESULTS ... 69

5.1. 27 FUNDAMENTAL NCL GATES .. 71

5.1.1. Transistor Count... 71

5.1.2. Power Consumption ... 72

5.1.2.1. Static power. ..72

5.1.2.2. Dynamic power. ..72

5.2. COMBINATIONAL CIRCUITS ... 73

5.2.1. Transistor Count... 74

5.2.2. Power Consumption ... 74

5.2.2.1. Static power. ..75

5.2.2.2. Dynamic power. ..76

6. CONCLUSION .. 76

BIBLOGRAPHY ... 77

IV. ENERGY-PERFORMANCE SCALABILITY ANALYSIS OF A NOVEL

QUASI-STOCHASTIC COMPUTING APPROACH .. 81

ABSTRACT ... 81

ix

1. INTRODUCTION ... 82

2. BACKGROUND ... 83

2.1. STOCHASTIC COMPUTING... 83

2.2. QUASI-STOCHASTIC BIT SEQUENCE GENERATION 85

3. ENERGY PERFORMANCE SCALABILITY OF NOVEL QUASI-

STOCHASTIC COMPUTING APPROACH .. 88

4. SIMULATION-BASED ENERGY-PERFORMANCE SCALABILITY

ANALYSIS .. 93

5. CONCLUSION .. 101

BIBLOGRAPH .. 102

SECTION

2. CONCLUSION .. 104

BIBLIOGRAPHY ... 105

VITA .. 108

x

LIST OF ILLUSTRATIONS

PAPER I Page

Figure 1. 3D stacking of CPU, GPU, analog and DRAM dies using TSVs 8

Figure 2. DRAM error rate as a function of temperature and refresh period reported in

[4] .. 10

Figure 3. The proposed multi-path BCH Decoder .. 13

Figure 4. Syndrome block diagram .. 16

Figure 5. Chien Search block diagram for t = 5 case ... 19

Figure 6. An example of the proposed parallel decoding .. 21

Figure 7. Distribution of error probabilities for variable pBE values 26

PAPER II

Figure 1. Dual-rail representation of NCL AND function ... 37

Figure 2. NCL system framework ... 37

Figure 3. (a) THmn threshold gate (b) TH34w2 threshold gate 38

Figure 4. Transistor level realization of TH23 gate using Static CMOS methodology 39

Figure 5. Transistor level implementation of TH23 gate using semi-static methodology 39

Figure 6. (a) Basic GDI cell structure (b) Different functions input configurations 40

Figure 7. FNCL implementation of TH22 gate ... 42

Figure 8. Simulation results demonstrating voltage drop of FNC TH22 gate 44

Figure 9. Structure of FNCL FA .. 44

Figure 10. Simulation results of FA validating the volatge drop at sum is greater than

 carryout .. 45

Figure 11. The proposed HYBRID framework ... 46

xi

Figure 12. Simulation results of a 1-bit full adder using HYBRID approach 46

Figure 13. Number of transistors utilized by CMOS and FNCL 48

Figure 14. Percentage reduction in the transistor count ... 49

PAPER III

Figure 1. NCL framework .. 56

Figure 2. (a) THmn threshold gate (b) TH34w2 threshold gate 57

Figure 3. (a) Structure of static CMOS implementation of NCL gates (b) Static

 CMOS transistor level implementation of TH23 NCL gate 58

Figure 4. Conventional Boolean OR gate (a) symbol (b) Static CMOS implementation. 59

Figure 5. (a) NCL input-complete OR function: Z=X+Y (b) Static CMOS

implementation of TH22 NCL gate .. 61

Figure 6. Structures of different GDI functionality cells .. 62

Figure 7. GDI implementation of TH23 NCL gate .. 63

Figure 8. Number of transistors required for implemetung NCL gates using CMOS

and GDI-NCL methodology .. 64

Figure 9. GDI-NCL implementation of few NCL gates .. 65

Figure 10. Voltage drop at the output of GDI-NCL TH23 gate 66

Figure 11. Voltage drop at the output of GDI-NCL TH23 gate for different input

combinations .. 66

Figure 12. Addition of regnerative buffer at the output of GDI-NCL TH23 67

Figure 13. Output wavefprm of GDI-NCL TH23 gate after the use of renerative

buffers .. 67

Figure 14. GNCL implementation of TH23 gate .. 69

Figure 15. Transistor counts for 27 NCL gates using CMOS and GNCL techniques 71

Figure 16. Static power consumption of 27 NCL gates ... 73

xii

Figure 17. Dynamic power consumption of 27 NCL gates .. 73

PAPER IV

Figure 1. Basic circuits used in stochastic computation. .. 84

Figure 2. Distribution of pseudo-random points (top) and LD points (bottom) in the

unit square .. 86

Figure 3. Accuracy and energy consumption during edge detection of clock test image ..90

Figure 4. Structure of EQSNG ... 91

Figure 5. Open source test images used for edge detection ... 94

Figure 6. Reduction in energy consumption for various PSNR values using EQSNG

methodology compared to LFSR approach .. 96

Figure 7. Edge detection on the clock test image using the proposed EQSNG SC

apporach ... 98

Figure 8. Edge detection on the clock test image using conventional LFSR-based SC

apporach. .. 98

Figure 9. Edge detection on the crowd test image using the proposed EQSNG SC

apporach ... 99

Figure 10. Edge detection on the crowd test image using conventional LFSR-based SC

apporach. ... 99

Figure 11. Edge detection on the aerial test image using the proposed EQSNG SC

apporach .. 100

Figure 12. Edge detection on the aerial test image using conventional LFSR-based

SC apporach. ... 100

xiii

LIST OF TABLES

PAPER I Page

Table 1. FPGA resource utilization and decoding latency of four decoding paths in the

proposed adaptive multi-path BCH decoder .. 23

Table 2. Average decoding latency (ADL) for different pBE values 25

Table 3. Cumulative error coverage for various pBE values ... 26

Table 4. Parallel decoding simulation results showing the average decoding latency by

varying pBEH /pBEC , fhot
/fcold and sizebuf ... 28

PAPER II

Table 1. Comparison of static CMOS and HYBRID methodologies 49

PAPER III

Table 1. GDI-NCL TH23 gate results for different input combinations 65

Table 2. Total number of transistor used for implemententing various NCL circuit 74

Table 3. Static power consumption for different NCL circuits .. 75

Table 4. Dynamic power consumption for different NCL circuits 75

PAPER IV

Table 1. Table showing the no of clock cycles and energy consumption for various

PNSR.. 97

SECTION

1. INTRODUCTION

For the past few decades, scientists have been scaling devices to increasingly

smaller feature sizes for enhanced performance of complementary metal-oxide

semiconductor (CMOS) technology, thereby increasing the functionality of integrated

circuits and systems [1, 2, 3]. However, with the exponential growth of transistor densities,

power efficiency has become primary determinant of performance in todays’

semiconductor industry [4]. In addition to power concerns, off-chip bandwidth trends are

also expected to have a major impact on the scalability of the future designs [5]. In

particular, the demand for high computing performance has increased in accordance with

the requirements for smaller and more energy efficient devices. One way to obtain high

computation performance is by increasing the robustness of a single processor [7]. This

can be achieved by increasing its clock frequency and mounting more transistors such that

more calculations could be executed. However, with the physical limits of such processors

being fully exploited and an advanced version of computing strategy, heterogeneous

computing i.e. using heterogeneous or hybrid platform containing more than one type of

processor was introduced such that different types of tasks can be executed by processors

that are specialized in them [7].

Recently, many of highly-ranked Performance computing systems include discrete

Graphics Processing Unit accelerators (GPU) [8]. Systems where discrete GPUs are

connected to CPUs over PCI-E bus, however, frequently suffer from a significant data copy

2

overhead between two processors. To address this limitation, researchers in industry and

academia are trying to seek a solution in a single-chip heterogeneous processors where

CPU and GPU share a unified memory hierarchy [9]. However, parallelism and scalability

of such heterogeneous processors are still severely constrained by limited bandwidth, high

latency, and energy consumption of offchip DRAM [10, 11]. To address these bottlenecks,

the processor architecture is evolving toward a 3D heterogeneous integration (commonly

termed as 3DIC) [12]. In 3DIC four heterogeneous dies (i.e., CPU, GPU, analog and

DRAM) are vertically interconnected by a massive number of through-Silicon Vias

(TSVs). Compared with the traditional off-chip interconnects, TSVs enable a massive

number of vertical channels among CPU, GPU and DRAM dies while providing much

shorter distance of data travel [12, 13]. Therefore, 3DHP technology is anticipated to

inherently provide much higher bandwidth, low latency and power consumption. Despite

numerous unprecedented benefits, however, there is a big challenge which is a thermal

reliability issue [13].

 A significantly higher power density, thinned substrate, and low thermal

conductivity of inter-layer material all make heat dissipation a serious problem that

threatens circuit reliability and performance in 3DIC [13]. Various design-time solutions

are available to tackle hotspots in 3DIC designs but the transient nature of thermal hotspots

cause the design time solutions less effective. The increase in power density of 3D stacking

causes an elevation in the temperature, which nominally results in an exponential rise in

charge leakage of DRAM cells [13]. Therefore, requires significant increase in refresh

frequency to retain data at the expense of additional power and performance overhead.

Also, the spatial and temporal variability in temperature (i.e., hotspots) further complicates

3

the DRAM reliability issues thereby requiring error detection and correction (EDAC)

techniques.

The conventional 2D EDA assume a near constant bit error rate (BER) over time.

Hence, EDAC engine does not need to be designed to adapt to a varying BER over time.

For instance, state-of-the-art SECDED (Single Error Correction, Double Error Detection)

code [14] and buses with CRC (Cyclic Redundancy Check) code [15] cannot be directly

applied to the proposed 3DHP, since it is anticipated to have a varying BER and TSV

failure rate over time caused by the thermally-induced reliability issues. Therefore, a novel

approach to tackle this limitation is presented in the first part i.e. paper I of this dissertation.

The second and third part of this dissertation discuss about the asynchronous

paradigm, null convention logic (NCL). The advantages, limitations and a methodology to

address these challenges have also been part of the dissertation. Conventional synchronous

logic with clocked structures have been dominating semiconductor industry over the past

decades [16]. However, the continuous decreasing in the feature size and increasing

operating frequency of integrated circuits (IC), clock-related issues such as clock skews,

increased power at the clock edges, extra area, and layout complexity for clock distribution

networks, and glitches are emerging as the dominant factor hindering increased

performance [17]. These limitations have caused renewed interest asynchronous digital

design. Asynchronous, clockless circuits require less power, generate less noise, and

produce less electro-magnetic interference (EMI), compared to their synchronous

counterparts, without degrading performance. Furthermore, delay-insensitive (DI)

asynchronous paradigms have a number of additional advantages, especially when

designing complex circuits, like Systems-on-a-Chip (SoCs), including substantially

4

reduced crosstalk between analog and digital circuits, ease of integrating multi-rate circuits,

and facilitation of component reuse [18, 19].

Null Convention Logic (NCL) is a delay-insensitive (DI) asynchronous. NCL was

first proposed by Karl Fant and Scott Brandt in 1994 [20, 21], and further developed by

Dr. Scott Smith’s research group [22]. NCL initially aimed at designing Application

Specific Integrated Circuit (ASIC) and Very-large-scale Integration (VLSI) circuits with

lower power, lower noise, and lower electromagnetic interference (EMI). Various NCL

based circuits have shown these characteristics. An NCL based Motorola STAR08

processor [23] shows the power and noise reduction up to 40% and 10dB, respectively,

comparing to its synchronous counterpart. In [24], an 8-operation NCL ALUs was designed

as a benchmark. The simulation result shows that the dual-rail NCL circuit consumes less

power and other designs like NCL divider [25] and NCL multiply-and-accumulate unit

[26] have shown the benefits of speed improvement and reduction in power consumption,

noise, and EMI. However, the major drawback of NCL designs is that it requires a larger

area compared with the conventional Boolean logic version. The area overhead is

approximately 1.5 – 2 times as much as an equivalent synchronous design when using static

CMOS gates, but less for semi-static CMOS gates [27].

This dissertation proposes and demonstrates two novel approaches to address this

limitation of NCL. These approaches when compared with the conventional static CMOS

methodology show a significant reduction in the transistor count which in turn helps in

reducing the area overhead. However, power and delay analysis in the first approach was

not fully studied. Similarly, latency analysis of the second approach will be the part of the

future work. In additional to these work, additional research has conducted in the area of

5

stochastic computing (SC) which is discussed in the fourth part of the dissertation.

Traditionally, SC’s accuracy heavily depends on the stochastic bitstream length. Therefore,

generating acceptable approximate results while minimizing the bitstream length is

challenging, as energy consumption tends to linearly increase with bitstream length. To

address this issue, a novel energy-performance scalable approach based on quasi-stochastic

number generators is proposed and validated in this work.

6

PAPER

I. ADAPTIVE MULTI-PATH BCH DECODER TO ALLEVIATE HOTSPOT-

INDUCED DRAM BIT ERROR VARIATION IN 3D HETEROGENEOUS

PROCESSOR

ABSTRACT

A 3D heterogeneous processor (commonly termed as 3DHP) integrates multiple

processor (such as CPU/GPU) and DRAM dies, interconnected vertically by a massive

number of Through-Silicon Vias (TSVs). The 3DHP is expected to address the limited

bandwidth, high latency and energy consumption of off-chip DRAM. However, spatial and

temporal variability due to hotspots in on-chip thermal gradient may result in wide bit

error variation in DRAM dies. This work proposes a novel adaptive multi-path BCH

decoder to efficiently address this issue. Instead of having a static BCH decoder designed

from the worst-case bit error probability analysis, the proposed adaptive multi-path BCH

decoder offers multiple decoding paths with varying target number of error bits to

correct, which is estimated from the thermal gradient data generated by on-chip

temperature sensors. Thus minimizes the overall decoding latency adaptively. The

proposed approach has been verified by implementing an adaptive 4-path BCH decoder

in FPGA hardware. A series of decoding performance evaluation data has been generated

to demonstrate the efficiency of the proposed design.

7

1. INTRODUCTION

Processors are evolving toward a 3D heterogeneous integration (3DIC) of CPU,

GPU and DRAM dies vertically interconnected by TSVs (Through-Silicon Vias) to

alleviate power, bandwidth and latency bottlenecks. Figure. 1 shows an example where

four heterogeneous dies (i.e., CPU, GPU, analog and DRAM) are stacked and

interconnected by TSVs. When compared with the traditional off-chip interconnects, TSVs

enable a massive number of vertical channels along CPU, GPU and DRAM dies while

proving a much shorter distance of data travel. Therefore, 3DHP technology is anticipated

to inherently provide higher bandwidth, low latency and low power consumption. Despite

the numerous unprecedented benefits, 3DHP face a big challenge which is thermal

reliability issues.

The conventional 2D integration/packaging technology is mature enough to assume

a near constant bit error probability (BEP) over time in DRAM. Hence, the Error

Detection and Correction (EDAC) engine does not need to be designed to adapt to a

varying BEP over time. However, the same EDAC strategy cannot be directly applied to

3DHP, since it is anticipated to have a varying BEP caused by hotspots (i.e.,

spatial/temporal variation in temperature). Various design-time solutions are available to

tackle hotspots in 3DIC designs but the transient nature of thermal hotspots cause the

design time solutions to be less effective. It is thus important to monitor the chip

temperature during runtime using distributed temperature sensors to avoid potential

temperature-induced failures. The main objective of this work is to propose and validate a

novel adaptive multi-path BCH error correction decoder that provides just-enough DRAM

8

error protection to minimize the overall decoding latency. The proposed decoder can be

coupled with on-chip distributed temperature sensor network to analyze the thermal

gradient to adaptively tolerate spatial/temporal bit error variance in a 3DHP.

Figure 1. 3D stacking of CPU, GPU, analog and DRAM dies using TSVs [1]

This article is organized as follows. Preliminaries and review are given in Section

2. Then, the proposed adaptive multi-path BCH decoder design is extensively discussed in

Section 3. Design and performance evaluation data including the area and latency are

included in Section 4. Finally, concluding remarks are made in Section 5.

2. ARCHITECTURE

In 3DHP, the increase in power density of 3D stacking causes an elevation in the

temperature, which nominally results in an exponential rise in charge leakage of DRAM

cells. Therefore, requires significant increase in refresh frequency to retain data at the

9

expense of additional power and performance overhead. Also, the spatial and temporal

variability in temperature (i.e., hotspots) further complicates the DRAM reliability issues.

The Leakage power of DRAM cell is modeled to exponentially increase with

temperature, T, as Pleakage = P0 . exp(−A / A − B) where P0 is the room-temperature

leakage power and parameters A and B are empirical constants [2], [3]. The number of

discharged cells in DRAM is proportional to the dissipation of the leakage power of cells.

In [4], the relation between the error rate (i.e., the number of discharged cells divided by

the total number of cells) and temperature is modeled as 𝐸𝐷𝑅𝐴𝑀 ∝ 𝑃𝑙𝑒𝑎𝑘𝑎𝑔𝑒 where EDRAM

is the error rate and Pleakage is a function of T. The retention time distribution of cells is

known to be divided into two regions: 1) tail distribution, and 2) main distribution [5]. For

thermally-stable operation condition, the retention time of almost all the memory cells

belong to “Main Distribution”. However, there are a few memory cells whose retention

time does not belong to “Main Distribution.” This shorter retention time distribution is

defined as “Tail Distribution.” The refresh characteristics of DRAM are dominated by

“Tail Distribution”. Further, because leakage power is exponentially increased as

temperature rises, which means more and more cells fail to retain charge and become a part

of the “Tail distribution”. To compensate this reduction in retention time, refresh period

should be shorten to refresh more frequently. Yun et al has used the data reported in [6],

[7] to fit the parameters and the resulting plot is shown in Figure 2. This figure shows how

DRAM error rate is related to temperature and refresh period.

In 3DHP, high temperature exponentially increases the charge leakage in DRAM

memory. High refresh rates can address this issue, but reduces the performance and

increases power consumption [4] [7]. The temporal and spatial change in temperature,

10

known as hotspots further complicates the reliability issue in 3DHPs [8]. Error Correction

Code (ECC) is used to address this issue in 3DIC. There are different ways the ECC can

be employed depending on the number of errors detected and corrected. For example single

error correction and double error detection [9] (SECDED) method can detect up to two

errors but can only correct a single error.

Figure 2. DRAM error rate as a function of temperature and refresh period reported in [4]

For multi-bit burst error correction, strong BCH cyclic codes can be used to provide

better error correction performance [10, 11]. However, the hardware complexity of ECC

circuit exponentially increases as the number of error bits to correct increases. Therefore,

a novel the ECC solution with a lower area-latency product is needed to address the bit

error variability caused by hotspots in 3DHP.

11

3. ADPATIVE MULTI-PATH DECODER DESIGN

A DRAM die consists of multiple memory cells, where each data bit is stored as a

charge in the storage capacitor. The charging and discharging actions of the storage

capacitor are directly related to temperature. Due to hotspots, leakage current increase

which thusly discharges the charge stored by the capacitor and increases the probability of

the memory errors [2].

To ensure thermal reliability and better performance of DRAM dies in 3DHP, a

temperature-based adaptive ECC is proposed. Bose-Chaudhuri-Hocquenghem (BCH)

codes are strong efficient error-correcting codes used to detect and correct enormous errors

that have occurred in memory [11]. In 3DHP, hotspots show spatial/temporal localities as

they are mainly caused by aggressive switching activities in CPU and GPU processor dies.

To ensure thermal integrity among 3D-stacked dies, on-chip temperature sensors are placed

to detect hotspots. When the proposed adaptive BCH decoder reads a word to decode,

temperature measurement data from the distributed on-chip temperature sensor network is

also read and used to calculate nEEB, which is the estimated number of Error Bits for the

incoming word. Then, the fastest decoding path which can be used to correct nEEB number

of error bits gets adaptively selected to decode the incoming codeword with the minimum

decoding latency. The main advantage of the proposed adaptive multi-stage BCH decoder

to single stage BCH decoder is the reduced decoding latency with area overhead.

For any integer m ≥ 3 and t < 2m − 1, there exists a binary t-error-correcting (n,

k) BCH code, which satisfies the following conditions: (1) n = 2m − 1, (2) n − k ≤ mt,

and (3) 𝑑𝑚𝑖𝑛 ≥ 2𝑡 + 1, where n is the total number of bits per codeword, k is the number

12

of information bits, n − k is the number of check bits, t is the maximum number of error

bits corrected per codeword, and dmin is the minimum Hamming distance.

The proposed multi-path BCH decoder has multiple decoding paths with variable

target t and decoding latency. As a concrete demonstration of the proposed multi-path BCH

decoding approach, a 7-error correcting (511, 448) BCH decoder (i.e., m = 9) with p = 4

decoding paths with target t = 1, 3, 5 and 7 has been designed and verified in this work.

ECC word size is normally chosen to match the size of the last level cache block, which is

64B for most current processors. Current ECC DRAMs come with 1/8th of the capacity for

storing ECC check bits, thus a 64B memory block already has 64 bits reserved for ECC.

Hence, the closest n and k values (i.e., n = 511 and k = 63) are chosen for the proposed

design. Figure 3 shows a block diagram of the proposed adaptive multi-path BCH decoder

with p = 4.

The proposed adaptive multi-path BCH decoder has three main advantages over the

static BCH decoder designed for a fixed t (e.g., static BCH decoders for t = 1 for faster

decoding and t = 7 for higher error correction coverage). First, it can reduce the overall

decoding latency, when compared to a static BCH decoder with higher t (e.g., t = 7).

Second, it can provide better error correction coverage, when compared to a static BCH

decoder with lower t (e.g., t = 1). Third, it can be used to decode multiple words depending

on nEEB for further reduction in decoding latency, as it has multiple independent decoding

paths.

The proposed BCH decoder design consists of four decoding paths, each designed

to correct a specified number errors. The temporal and spatial changes in the temperature

13

are recorded by the distributed onchip temperature sensors, from which Bit Error

Probability (pBE) is calculated. pBE is used to determine nEEB.

Figure 3. The proposed multi-path BCH Decoder. The estimated number of error bits

for the incoming BCH codeword is calculated from the measurement data from

onchip temperature sensors and is denoted as nEEB [12]

To ensure accuracy, there is a provision for calculating nEEB depending on

confidence level. The confidence level is interpreted as the likehood that a particular

confidence interval contains the actual nEEB. For the proposed nEEB estimator, a one-sided

upper-bounded confidence interval is appropriate since estimation error only happens when

the actual number of erroneous bits is greater than nEEB. The confidence interval can be

selected to calculate nEEB depending on the desired accuracy. This calculation is based on

pBE. There exists a trade-off between nEEB and the confidence level. For the higher

confidence level, nEEB calculation is more precise, resulting in a higher number of expected

error bits. As the number of error correcting bits increases the decoding latency increases

slowing down the decoding.

14

 The first decoding algorithm for binary BCH codes was devised by Peterson in

1960 [13]. Since then, the Petersons algorithm has been refined by Berlekamp [14], Massey

[15], Chien [16], Forney [17], and many others. The BCH decoder follows the sequence of

decoding steps which are Syndrome Calculator [18], Error Locator Polynomial [19] and

Chien Search [19]. These algorithms are interrelated, i.e. the syndrome calculator

calculates the syndrome according to the received data. Error locator polynomial is

generated from syndrome value, and the error location is calculated using Chien search and

the transmitter can be achieved.

3.1. SYNDROME BLOCK DESIGN FOR MULTI-PATH BCH DECODER

BCH code can be implemented in hardware and software. There have been

numerous efficient decoding algorithms reported in the literature. Two recent examples are

[18, 20]. For a BCH code with n = 2m − 1 and generator polynomial g(x), a code

polynomial 𝑐(𝑥) = 𝑐0 + 𝑐1𝑥 + 𝑐2𝑥2 + ⋯ + 𝑐𝑛−1𝑥𝑛−1 is generated from the encoder

and its binary representation is stored as a word in the DRAM. When this word is read

from DRAM, a received polynomial (i.e., polynomial representation of the received word)

is created as 𝑟(𝑥) = 𝑟0 + 𝑟1𝑥 + 𝑟2𝑥2 + ⋯ + 𝑟𝑛−1𝑥𝑛−1. Note this received word is

expected to contain nEEB number of error bits and should be decoded for error correction,

if 1 ≤ nEEB ≤ 7. In the BCH code, 𝑟(𝑥) = 𝑐(𝑥) + 𝑒(𝑥), where 𝑒(𝑥) = 𝑒0 + 𝑒1𝑥 +

 𝑒2𝑥2 + ⋯ + 𝑒𝑛−1𝑥𝑛−1 is the error polynomial.

The initial step in BCH decoder is the syndrome calculator. It provides information

to later decoding stages for error detection and correction. The received codeword is error

free when the syndrome outputs are zeros. Consider a t-error-correcting BCH code of

15

length n = 2m − 1 with generator polynomial g(x), where g(x) has α, α2, … . , α2𝑡 roots, as

g(αi) = 0 for 1 ≤ 𝑖 ≤ 2𝑡. To check whether r(x) is a code polynomial or not, one can

simply test whether 𝑟(α𝑖) = 0 for 1 ≤ 𝑖 ≤ 2𝑡. If yes, then r(x) is a code polynomial,

otherwise r(x) is not a code polynomial and error correction decoding is needed.

Syndrome calculation in BCH decoding directly deals with the errors present. For

the target t, 2t syndrome components are calculated for 1 ≤ j ≤ 2t,

 𝑆 = ∑ 𝑟𝑖α𝑖𝑗𝑛−1

𝑖=0
 (1)

where α is the primitive element. The polynomials which are not factorable (i.e., divisible

by one and itself) are called irreducible polynomials. The root of this polynomial is called

primitive polynomial [21] and it generates all non-zero field elements. These non-zero

fields are used in the generation of 𝐺𝐹 (2𝑚) and α is its primitive element. Thus, sj is

calculated as 𝑠𝑗 = (((((𝑟𝑛−1α𝑗 + 𝑟𝑛−2)α𝑗 + 𝑟𝑛−3) α𝑗 … . +𝑟1) α𝑗 + 𝑟0).

Figure 4 shows the procedure followed for syndrome calculation. From the n bit

received data the (n − 1) bit is first multiplied by the primitive element αj then the resultant

is XORed with the (n − 2) bit. The obtained result is again multiplied with αj and the

resultant is XORed with (n − 3) bit. This process is continued untill bit position 0 and the

final result is sj. The calculation of odd syndrome components from even syndrome

components leads to area efficient hardware design with reduced latency [18], as the

relation between them is

 𝑠2𝑡 = 𝑠2
𝑡 (2)

 For the proposed adaptive BCH decoder with 4 decoding paths (i.e., BCH1, BCH2,

BCH3 and BCH4), four individual syndrome sets are needed to be calculated. Then, from

16

Equation 2, s2 is easily calculated from s1by squaring it (i.e. s1
2). Similarly, for BCH2 is

designed to correct upto t = 3 error bits, j ranging from one to six (i.e., 2t = 6). So, the

numbers of syndrome components calculated are six (i.e. s1 to s6). BCH3 can correct upto

five error bits, so j varies from one to ten. Hence the syndrome calculations are done from

s1 to s10. For BCH4 the calculated syndromes are from s1 to s14, since the j ranges from one

to fourteen. In all cases, odd syndrome components are first calculated. Then, even

components are found by squaring them and the transmitter can be achieved.

Figure 4. Syndrome block diagram [22]

3.2. ERROR LOCATOR POLYNOMIAL CALCULATOR DESIGN

The secondary stage of the BCH decoder is to determine the error locator

polynomial. The syndrome calculator outputs are used to generate this polynomial [18].

The relation the between syndrome calculator and error locator is expressed as:

 ∑ 𝑠𝑡+𝑖−𝑗Λ𝑗
𝑡

𝑗=0
= 0 (3)

where s is the syndrome and ᴧis the error locator coefficient. Then, the error locator

polynomial can be expressed as Λ(𝑥) = Λ0 + Λ1𝑥 + Λ2𝑥2 + ⋯ + Λ𝑡𝑥𝑡[19]. To

deduce the error locator polynomial Peterson, Berlekamp and Euclidean are the most

prominently used decoding algorithms in hardware the BCH decoder [23]. The Peterson

17

algorithm is known to be the best choice, when the error correcting capability is less than

or equal to three, since its computation is simple and less costly, especially in hardware

[24]. Euclidean algorithm is advantageous in terms of speed and can be used in design

where speed is the major objective [19]. Berlekamp algorithm has less hardware

complexity in calculating the error locator polynomial and is used in the design where area

is a limiting factor [24]. In designing BCH1 and BCH2 the Peterson error locator

computation algorithm [19] has been used, since the number of errors to be corrected (i.e.,

target t) for these designs are less than or equal to three. As the Peterson error locator

polynomial computation is complex for more than three errors Simplified Truncated

Inverse Berlekamp Massey algorithm (SiBM) [25] is used for designing BCH3 and BCH4

as it provides better speed with less area overhead for determine error location polynomial

coefficient.

According to the Peterson algorithm [19], 𝛬(𝑥) is computed directly and the

degree of 𝛬(𝑥) is equal to the number of error bits occurred. For 𝑡 = 3 as an example, 𝛬

(i.e., coefficients of the error locator polynomial) is represented as follows:

 [
1 0 0
𝑠2 𝑠1 1
𝑠4 𝑠3 𝑠2

] * [
Λ1

Λ2

Λ3

] = [

s1

s2

s3

] (4)

For BCH1, Λ0 = 1 and Λ1 = s1. For BCH2, deleting the two rightmost columns and two

bottom rows of matrix leads to a singular matrix, and solving the corresponding equation

yields: 𝛬0 = 1, 𝛬1 = 𝑠1, 𝛬2 = (𝑠2𝑠3 + 𝑠5)/(𝑠1
3 + 𝑠3), and 𝛬3 = (𝑠1

3 + 𝑠3) +

 (𝑠1𝛬2) [26].

18

The proposed decoding paths BCH3 and BCH4 have 𝑡 = 5 and𝑡 = 7,

respectively. Therefore, Peterson algorithm is inappropriate due to its poor hardware

scalability. Therefore, the Simplified truncated inverse Berlekamp Massey algorithm

(SiBM) has been used to find the coefficients of the error polynomial. SiBM [25] is known

to provide higher decoding speed with less area overhead to determine the error locator

polynomial coefficients. Its efficiency comes from two factors including: 1) for binary

BCH codes, the Berlekamp-Massey algorithms’ odd iterations can be skipped, and 2) since

the error value is always binary, one error evaluator polynomial is not required. SIBM

consists of an error locator polynomial and discrepancy polynomial block. Appending the

error locator polynomial to the discrepancy polynomial will result in the disappearance of

the error evaluator polynomial after the iteration is completed.

 The SiBM processing element (PE) is capable of updating the coefficients of both

error locator polynomial and discrepancy polynomial simultaneously. The odd coefficient

of the extended polynomial is not capable to interact with the even coefficients. Therefore,

PEs is placed as nearly two independent layers. The upper layer affects the lower layer

through dependency, while the lower layer has no effect on the upper layer. The lower

layer variables have little effect on the final error locator polynomial and can be simply

shifted out. This further reduces the computational time and optimize SiBM algorithm.

3.3. CHIEN SEARCH BLOCK DESIGN

The final step of BCH decoder is to find the error location(s) through the Chien

search method. Error location is obtained by finding the roots of the error locator

polynomial [19]. The roots are searched as follows:

19

1. For each power of α (i.e., primitive element) for 𝑖 = 0 𝑡𝑜 𝑛 − 1, 𝛼𝑖 is taken as the test

root

2. Calculate the polynomial coefficients of the current root using coefficients of the past

iteration using αj = 𝛼𝑗−1 · 𝛼1 during the jth iteration.

3. Calculate the sum of the polynomial coefficients.

4. When the sum is zero, an error bit is present at that location.

The factorization method [27] is used to reduce the complexity of the conventional

method. It allows designing another form of the circuit of the Chien search that minimizes

a large number of the used logic gates in the circuit. This block finds the error location

depending on the error locator polynomial. Figure 5 shows a Chien search block diagram

for t = 5 case as an example. In this figure, one is multiplied with αt and then the resultant

is multiplied with the 𝛬𝑡. The obtained result is XORed with 𝛬𝑡−1, again this resultant is

multiplied αt, and then XORed with 𝛬𝑡−2 and the process repeats until 𝛬0. The above said

process iterates until 𝛼0. In this way, the roots of the error location determine the error

location.

Figure 5. Chien Search block diagram for t = 5 case [19]

20

3.4. PARALLEL ADAPTIVE BCH DECODING FOR REDUCED DECODING

In addition to the serial decoding (i.e., decoding one codeword at a time), the

proposed adaptive multi-stage BCH decoder can be utilized to correct multiple words in

parallel provided incoming codewords have different nEEB. Even though one or more

decoding paths are occupied, if there is an unoccupied path with minimum t ≥ nEEB of the

incoming codeword, that path can start decoding it in parallel for further reduction in

decoding latency. If there is no idle decoding path that can be used to decode the incoming

codeword, it is temporarily stored in the storage buffer until an appropriate vacant decoding

path becomes available.

Figure 6 illustrates an example of the proposed parallel decoding process. As seen

in the first clock cycle (φ = 1), the nEEB of the incoming codeword is 3 and the decoding

path with the minimum 𝑡 ≥ 𝑛𝐸𝐸𝐵 is BCH2 (i.e., t = 3). So, BCH2’s availability is checked

and it is currently idle. Therefore, the word is given to BCH2 to be decoded. In 𝜑 = 5,

another word is read from the memory, which is estimated to contain two error bits. It is

given to BCH3 to be decoded, because BCH2 is currently decoding the first word and the

next higher error correcting decoder path available is BCH3. Similarly, the next incoming

codeword is estimated to have five error bits and is read from the memory in 𝜑 = 10.

This codeword is read from the memory in φ = 10. This codeword is given to BCH4,

since BCH3 is busy decoding the second word. As seen from the figure for φ = 16 when

the codeword with nEEB = 7 is coming for decoding, it is stored in the storage buffer instead,

since BCH4 is currently busy decoding another word. When the respective decoder

becomes available the word stored in storage buffer is fetched to be decoded.

21

Figure 6. An example of the proposed parallel decoding

22

4. PERFORMANCE EVALUATION

To quantitatively demonstrate and verify the decoding performance of the proposed

adaptive multi-path BCH decoder approach, the presented 7-error-correcting (511, 448)

adaptive BCH decoder (i.e., m = 9) with p = 4 decoding paths with target t = 1, 3, 5 and 7

has been designed in Verilog HDL (Hardware Description Language) and verified.

Simulation and synthesis have been carried out using Xilinx ISE tool on a Virtex5 FPGA

(target device: XC5VLX30). Resource utilization and decoding latency results of the

FPGA prototype are summarized in Table 1.

In FPGA, reconfigurable resources are grouped into slices which contain a set of

LUTs (Look-Up Tables), flip-flops and multiplexers. These LUTs represent a group of

logic gates that are hard-wired on the FPGA and stores the output depending on the input.

Thus, these LUTs provide the fastest way to retrieve the output when needed. A flip-flop

circuit is used for change of state and stores a single bit of data. A slice register is the group

of flip-flops used to store a data word. A register has a clock, enable pin, input and output

data ports. For every clock cycle depending on the input, the output is updated and stored.

It should be noticed that as the error correcting capability of the decoder increases the

hardware resources utilized also increases leading to a large area overhead. As in this Table

1, hardware implementations of different BCH decoder paths show poor scalability as t

increased.

Therefore, a decoding path with minimum t ≥ nEEB should be used to decode. This

would adaptively minimize the overall decoding time. The area overhead of the proposed

adaptive 4-path BCH decoder compared to the static BCH decoder designed to tolerate

23

maximum t = 7 is calculated using the number of occupied slices used in both designs. The

static decoder which has only one decoding path of BCH4 utilizes 1, 776 FPGA slices and

the proposed adaptive 4-path BCH decoder design utilizes 2, 628 slices. Therefore, the area

overhead of the proposed adaptive 4-path BCH decoder is only 47.97%, even though it has

4 physically separate decoding paths. This area overhead is relatively small, since decoding

paths with smaller t (i.e., BCH1, BCH2 and BCH3) have considerably lower hardware

complexities and require only 852 (i.e., 47.97% of BCH4’s 1,776) additional slices to be

realized.

Table 1. FPGA resource utilization and decoding latency of four decoding

paths in the proposed adaptive multi-path BCH decoder

4.1. SERIAL DECODING PERFORMANCE EVALUTION

In this section, serial decoding performance of the prototype adaptive error-

correcting (511, 448) BCH decoder (i.e., m = 9) with p = 4 decoding paths with target t =

1, 3, 5 and 7 (adaptive 4-path BCH decoder, in short) will be evaluated. In the proposed

adaptive multi-path BCH decoding approach, distributed onchip temperature sensors in

BCH1

(t = 1)

BCH2

(t = 3)

BCH3

(t = 5)

BCH4

(t = 7)

of Slice Registers 49 93 220 444

of Slices LUT
107 586 1817 2536

of LUT FF used
44 98 203 397

of Occupied Slices
44 220 558 1776

Decoding Latency
7.21 ns 12.73 ns 28.59s 39.33s

24

3DHP provide temerature measurement data for DRAM die to the nEEB estimator as shown

in Figure 3. Then, the nEEB estimator calculates the pBE of the codeword that is being read

from DRAM with a certain user-provided confidence level as previously discussed in

Section 3.

For variable pBE , the probability of having k number of error bits occurred in n-bit

BCH codeword can be calculated using binomial equation, 𝑝(𝑘) = 𝑛𝑘 𝑘𝐵𝐸 (1 − 𝑝𝐵𝐸)𝑛𝑘.

For the prototype adaptive 4-path BCH decoder, the distribution of six different error

probabilities can be calculated as follows:

1) P(0), where no decoding is necessary, since nEEB= 0;

2) P(1), where BCH1 decoding path is used to correct single bit error;

3) P(2 ∧ 3), where BCH2 decoding path is used to correct 2 to 3 error bits;

4) P (4 ∧ 5), where BCH3 decoding path is used to correct 4 to 5 error bits;

5) P (6 ∧ 7), where BCH4 decoding path is used to correct 6 to 7 error bits.

6) P (> 7) = 1 − Pi=1 P (i), which means uncorrectable.

Figure 7 depicts the distribution of error probabilities for various pBE values, which

are arbitrarily chosen as 0.04, 0.004, 0.0004 and 0.0004. This graph illustrates implications

of pBE on the utilization of 4 decoding paths. For example, when pBE = 0.04, the probability

of codeword having more than seven error bits per codeword is dominant; thereby, almost

all codewords are uncorrectable. On the other hand, pBE = 0.00004 yields codewords with

no error bits (i.e., codewords with no decoding is necessary) almost 98% of the time.

Therefore, no useful error correction decoding happens in both of these extreme cases and

the utilization of decoding paths is extremely low. The pBE = 0.004 case gives higher

utilization of 4 decoding paths as P (0) ≈ 13% (i.e., no error - no decoding needed) and P

25

(> 7) ≈ 0% (i.e., almost no uncorrectable codewords). In this case, BCH2 with t = 3 shows

the highest utilization of 45% among 4 decoding paths.

4.1.1. Average Decoding Latency for Various Bit Error Probabilities. Table 2

shows the average decoding latency of the proposed adaptive 4-path BCH decoder for

variable pBE. From Figure 7, for pBE = 0.04 case, the excepted number of error bits is mostly

more than seven. Therefore, codewords containing more than seven errors are not

correctable by the proposed design. Hence, its average decoding latency is near zero as

almost no decoding occurs. The other extreme case of pBE = 0.00004 is similar, as the

decoding paths are under-utilized as the most of codewords are error-free requiring no

decoding. Notably, the other two intermediate cases (i.e., pBE = 0.004 and 0.0004) can be

used to represent the error distribution of 3DHP with hotspot induced pBE variation. The

pBE= 0.004 case has an order of magnitude higher pBE when compared with pBE = 0.0004

case, so it can be used as an exemplary pBE for hotspots in 3DHP. Also, the other has 10

times lower pBE, so it can be used an exemplary pBE for the other area not affected by the

hotspots.

Table 2. Average decoding latency (ADL) for different pBE values. For pBE = 0.04, P (>7)

≈ 100%, which means almost all codewords are uncorrectable and not decoded. For the

other extreme, pBE = 0.00004, 98% of codewords are error-free and do not need decoding

pBE 0.04 0.004 0.0004 0.00004

nEEB Highest Mid-high Mid-low Lowest

max P (t)

P (> 7)

≈ 100%

P (2 ∧ 3)

= 46%

P (0)

= 81.5%

P (0)

= 98%

ADL ≈ 0 11.50 ns 1.44 ns 0.15 ns

26

Figure 7. Distribution of error probabilities for variable pBE values

Table 3. Cumulative error coverage for various pBE values

As clearly shown in Figure 7, the average decoding latency for codewords read

from the area not affected by hotspots (i.e., pBE = 0.0004) is 1.14 ns, which is considerably

lower than 11.50 ns decoding latency of the hotspot-affected codewords. Notably, even

this slowest 11.50 ns decoding latency is significantly lower than the worst-case (i.e., t =

7) static BCH decoding latency of 39.33 ns reported in Table 1.

pBE P (0) P (1) P (2 ∧ 3) P (4 ∧ 5) P (6 ∧ 7) P (> 7)

0.04 8.7e-10 1.9e-08 1.6e-06 4.01e-05 0.00047 1

0.004 0.1289 0.3936 0.84945 0.9820 0.99878 1

0.0004 0.8151 0.9817 0.999938 0.99999 0.99999 1

0.00004 0.9797 0.9997 0.999997 0.999998 0.99999 1

27

4.1.2. Cumulative Error Coverage. The proposed adaptive 4-path BCH decoder

can correct up to 7 error bits per word. Table 3 shows the cumulative error coverage for

variable pBE. As per the results shown in the table maximum error coverage is found near

more than seven errors for high pBE value. As the pBE value decreases error coverage is

maximum for small number of errors.

There is tradeoff between error coverage and latency. The staged BCH decoder for

any input irrespective of varying pBE offer maximum error coverage with maximum latency

overhead. Whereas the adaptive multi-stage BCH decoder relies on pBE and offers required

error coverage with the reduced latency. Therefore the proposed model can provide

efficient error coverage with less delay for varying temporal and spatial changes.

4.2. PARALLEL DECODING PERFORMANCE

 As discussed in Section 3.4, multiple independent decoding paths given in the

proposed adaptive multi-path BCH decoder can be utilized to decode multiple codewords

from DRAM in parallel. The performance of the proposed parallel decoding technique will

be extensively evaluated using the adaptive 4-path BCH decoder design as an example in

this section. A cycle-accurate simulator has been implemented in Matlab to generate

simulation results for the proposed parallel decoding technique. Bit error variations caused

by hotspots are simulated by introducing the following user-provided simulation

parameters:

1. pBEH : the increased bit error probability due to hotspots.

2. pBEC : the baseline bit error probability unaffected by hotspots.

3. fhot: the relative frequency of codewords subject to pBEH .

28

4. fcold: the relative frequency of codewords subject to pBEC , where fhot + fcold = 100%.

 sizebuf : the storage buffer size

 Accordingly, each respective decoder’s status is checked for its availability. If the

decoder is not available then the next available higher error correcting decoder (i.e., the

decoder which can correct more number of errors when compared to the required no of

error correction) is selected for decoding. When there is no available decoder with t ≥ mEEB

, then the respective word is stored in the storage buffer. If the storage buffer is completely

occupied then the word is not read from the memory. Table 4 shows the average decoding

latency for various pBEH /pBEC , fhot/fcold and sizebuf values chosen arbitrarily. It can be

noticed that decoding latencies differ with sizebuf and fhot/fcold ratio. Decoding latency

increases with the increases in the number of words read from hotspot region.

Table 4. Parallel decoding simulation results showing the average decoding

latency by varying pBEH /pBEC , fhot
/fcold and sizebuf

pBEH /pBEC
sizeBUF fHOT/fCOLD

40/60

fHOT/fCOLD

60/40

fHOT/fCOLD

80/20

0.003/0.002 4

8

16

15.7 ns

15.6 ns

15.8 ns

15.8 ns

15.69 ns

15.8 ns

16.8 ns

16.4 ns

16.2 ns

0.009/0.002 4

8

16

17.1 ns

16.8 ns

16.6 ns

20 ns

19.7 ns

19.63 ns

23.3 ns

23.1 ns

22.8 ns

0.011/0.005 4

8

16

23.2 ns

22.9 ns

22.5 ns

26.9 ns

26.7 ns

26.5 ns

30.2 ns

29.8 ns

29.6 ns

29

 The obtained results also indicate that the average decoding latency for the

proposed adaptive multi-path BCH decoder leveraging the parallel decoding technique

has less decoding latency when compared to the static BCH decoder with fixed t = 7,

which has a constant 39.33 ns decoding latency. Thus, it can be concluded that the

proposed adaptive 4-path BCH decoder can achieve significantly lower decoding latency

ranging from 15.7 ns to 29.6 ns for pBEH /pBEC , fhot/fcold and sizebuf values chosen with are

a overhead of 47.97%.

5. CONCLUSION

In this paper, a novel adaptive multi-path BCH decoder design approach is

proposed and validated to address the bit error variation issue caused by hotspots in 3DHP.

The proposed design has multiple decoding paths with variable decoding latency and area

trade-off. For each word read from DRAM, thermal gradient data from the on-chip

temperature sensors is utilized to estimate the expected number of error bits. Then, the

fastest possible decoding path which is able to correct the expected number of error bits is

adaptively selected to reduce the overall decoding time. Also, a parallel decoding approach

leveraging the multiple independent decoding paths of the proposed decoder design is also

proposed and validated in this work. To clearly evaluate the latency reduction performance

and area overhead of the proposed approach, an adaptive 4-path BCH decoder has been

implemented in FPGA hardware. Then, its serial and parallel decoding performances along

with area overhead have been extensively evaluated. The proposed adaptive 4-path BCH

decoder can achieve significantly reduced average decoding latency ranging from 15.7 ns

30

to 29.6 ns for variable pBEH /pBEC , fhot/fcold and sizebuf value sets chosen with area overhead

of 47.97%.

BIBLOGRAPHY

[1] S. Naffziger, “Technology impacts from the new wave of archi-tectures for media-

rich workloads,” in VLSI Technology (VLSIT), 2011 Symposium on, 2011, pp. 6–

10.

[2] W. Liao, F. Li, and L. He, “Microarchitecture level power and thermal simulation

considering temperature dependent leakage model,” in Low Power Electronics and

Design, 2003. ISLPED ’03. Proceedings of the 2003 International Symposium on,

2003, pp. 211–216.

[3] J.-H. Ahn, B.-H. Jeong, S.-H. Kim, S.-H. Chu, S.-K. Cho, H.-J. Lee, M.-H. Kim, S.-

I. Park, S.-W. Shin, J.-H. Lee et al., “Adaptive self-refresh scheme for battery

operated high-density mobile DRAM applications,” in Solid-State Circuits

Conference, 2006. ASSCC 2006. IEEE Asian. IEEE, 2006, pp. 319–322.

[4] W. Yun, K. Kang, and C.-M. Kyung, “Thermal-aware energy minimization of 3D-

stacked L3 cache with error rate limitation,” in Circuits and Systems (ISCAS), 2011

IEEE International Sym-posium on, 2011, pp. 1672–1675.

[5] T. Hamamoto, S. Sugiura, and S. Sawada, “On the retention time distribution of

dynamic random access memory (DRAM),” Electron Devices, IEEE Transactions

on, vol. 45, no. 6, pp. 1300– 1309, 1998.

[6] M. Cho, Y. Kim, D. Woo, S. Kim, M. Shim, Y. Park, W. Lee, and B.-I. Ryu,

“Analysis of Thermal Variation of DRAM Retention Time,” in Reliability Physics

Symposium Proceedings, 2006. 44th Annual, IEEE International. IEEE, 2006, pp.

433–436.

[7] M. Hashimoto and R. Baumann, “Investigation of cell leakage and data retention in

eDRAM,” in Solid-State Circuits Conference, 2000. ESSCIRC’00Proceedings of the

26rd European, 2000, pp. 356–359.

[8] M. Guan and L. Wang, “Temperature aware refresh for DRAM performance

improvement in 3D ICs,” in Quality Electronic Design (ISQED), 2015 16th

International Symposium on, 2015, pp. 207–211.

[9] M. Richter, K. Oberlaender, and M. Goessel, “New Linear SEC-DED Codes with

Reduced Triple Bit Error Miscorrection Probability,” in On-Line Testing

Symposium, 2008. IOLTS’08. 14th IEEE International, 2008, pp. 37–42.

31

[10] P.-Y. Chen, C.-L. Su, C.-H. Chen, and C.-W. Wu, “Generalization of an Enhanced

ECC Methodology for Low Power PSRAM,” IEEE Trans. Comput., vol. 62, no. 7,

pp. 1318–1331, 2013.

[11] Z. Chishti, A. Alameldeen, C. Wilkerson, W. Wu, and S.-L. Lu, “Improving cache

lifetime reliability at ultra-low voltages,” in Microarchitecture, 2009. MICRO-42.

42nd Annual IEEE/ACM International Symposium on, 2009, pp. 89–99.

[12] K. K. Prashanthi Metku, Ramu Seva and M. Choi, “Multi-Stage BCH Decoder to

Mitigate Hotspot-Induced Bit Error Variation,” in 2015 International SoC Design

Conference, pp. 89–90.

[13] W. Peterson, “Encoding and error-correction procedures for the Bose-Chaudhuri

codes,” IRE Transactions on Information Theory, vol. 6, no. 4, pp. 459–470, 1960.

[14] E. Berlekamp, “On decoding binary Bose-Chadhuri Hocquenghem codes,” IEEE

Trans. Inf. Theory, vol. 11, no. 4, pp. 577–579, 1965.

[15] J. Massey, “Step-by-step decoding of the Bose-Chaudhuri- Hocquenghemcodes,”

IEEE Trans. Inf. Theory, vol. 11, no. 4, pp.580–585, 1965.

[16] R. Chien, “Cyclic decoding procedures for Bose- Chaudhuri-Hocquenghem codes,”

IEEE Trans. Inf. Theory, vol. 10, no. 4, pp. 357–363, 1964.

[17] G. Forney, “On decoding BCH codes,” IEEE Trans. Inf. Theory, vol. 11, no. 4, pp.

549–557, 1965.

[18] H. Kristian, H. Wahyono, K. Rizki, and T. Adiono, “Ultrafast scalable BCH decoder

with efficient-Extended Fast Chien Search,” in Computer Science and Information

Technology (ICCSIT), 2010 3rd IEEE International Conference on, vol. 4, 2010, pp.

338–343.

[19] X. Zhang and Z. Wang, “A Low-Complexity Three-Error Correcting BCH Decoder

for Optical Transport Network,” IEEE Trans. Circuits Syst. II, vol. 59, no. 10, pp.

663–667, 2012.

[20] Y.-M. Lin, H.-C. Chang, and C.-Y. Lee, “Improved High Code Rate Soft BCH

Decoder Architectures With One Extra Error Compensation,” IEEE Trans. VLSI

Syst., vol. 21, no. 11, pp. 2160–2164, 2013.

[21] Lempel, “Analysis and synthesis of polynomials and sequences over,” IEEE Trans.

Inf. Theory, vol. 17, no. 3, pp. 297–03, 1971.

[22] N. Ahmadi, M. Sirojuddiin, A. Nandaviri, and T. Adiono, “An optimal architecture

of BCH decoder,” in Application of Information and Communication Technologies

(AICT), 2010 4th International Conference on, 2010, pp. 1–5.

32

[23] Y. Liu, “Channel Coding,” Henan Science and Technology Press,1992.

[24] X. Qi, X. Ma, D. Li, and Y. Zhao, “Implementation of accelerated BCH decoders on

GPU,” in Wireless Communications & Signal Processing (WCSP), 2013

International Conference on, 2013, pp. 1–6.

[25] M. Yin, M. Xie, and B. Yi, “Optimized algorithms for binary BCH codes,” in Circuits

and Systems (ISCAS), 2013 IEEE International Symposium on, 2013, pp. 1552–

1555.

[26] X. Zhi-yuan, L. Na, and L. Le-le, “New decoder for triple error correcting binary

BCH codes,” in Industrial Electronics and Applications, 2008. ICIEA 2008. 3rd

IEEE Conference on, 2008, pp. 1426–1429.

[27] E.-H. El Idrissi Anas, E. Rachid, and H. Lamari, “A low power error detection in the

Chien Search Block for Reed Solomon code,” in Complex Systems (ICCS), 2012

International Conference on, 2012, pp. 1–3.

33

II. NOVEL AREA-EFFICIENT NULL CONVENTION LOGIC ON CMOS AND

GATE DIFFUSION INPUT (GDI) HYBRID METHODOLOGY

ABSTRACT

A Null convention logic (NCL) is a promising delay insensitive paradigm for

constructing asynchronous circuits. Traditionally, NCL circuits are implemented utilizing

complementary metal oxide semiconductor (CMOS) technology that has large area

overhead. To address this issue, a HYBRID methodology is introduced for realizing NCL

circuits in this paper. The proposed approach utilizes both CMOS and gate diffusion input

(GDI) techniques to significantly reduce the area. Compared with the conventional static

CMOS NCL counterpart, the HYBRID implementation of an NCL up counter demonstrate

an average of 10% reduction in the transistor count.

1. INTRODUCTION

The clocked synchronous paradigm currently dominates the semiconductor design

industry [1]. However, there are major drawbacks of this synchronous approach, including

critical timing analysis and clock skew issues [2]. Typically, a precise clock distribution

network is used to address these limitations, which is a tedious and complex task.

Moreover, with the decreasing feature size, power consumption of clock distribution

network is found to be rapidly increasing, which is a major limiting factor for emerging

low power semiconductor industry [3]. Since asynchronous designs consumes less power,

34

produce less noise and electromagnetic interference (EMI) than their synchronous

counterparts, there is renewed interest in this field [4].

Asynchronous circuits are characterized into two classifications: bounded-delay

and delay-insensitive (DI) models [3]. Bounded-delay models consider that the both gate

and wire delays are bounded and therefore, require extensive timing analysis to determine

the delay [1]. On the other hand, DI circuits assume both interconnects and logic elements

delay are unbounded and wire forks within the components are isochronic [5]. However,

wires connecting the components do not adhere to this isochronic fork assumption,

ensuring the correct operation regardless on the input availability. Hence, DI circuits

require little timing analysis and yield average case performance rather than the worst-

case performance of bounded-delay and traditional synchronous paradigms [6].

Literature provides several DI paradigms such as Seitz’s, DIMS, Anantharaman’s,

Singh’s, and David’s Phased Logic and NULL Convention Logic [1]. Most of these DI

methods (Seitz’s, DIMS, Anantharaman’s, Singh’s, David’s, Phased Logic) either depends

on C-element or synchronous design to achieve DI. More elaborate description of these

DI methodologies can be found in [7]. Conversely, NCL methodology uses a library of

hysteresis state holding functionality gates to attain DI. These gates enable transistor level

optimization, which help in reducing the overall circuit area [8]. Hence, NCL is the best

alternative for integrating asynchronous digital design into the predominantly synchronous

semiconductor design industry.

The NCL paradigm consists of 27 hysteresis state holding logic gates [2]. These

gates are traditionally implemented using one of the CMOS techniques: static, semi-static,

differential or dynamic methods. Detailed information regarding these approaches can be

35

found in [8]. Among these methods, the static CMOS method is most commonly used as it

results in less leakage and noise compared to other CMOS techniques [9]. However, the

main drawback of static CMOS implementation is the area overhead. The results indicate

that the area occupied by static CMOS NCL implementation is approximately 1.5-2 times

the equivalent synchronous design [7]. To address this drawback, this paper proposes a

HYBRID technique for designing NCL circuits. The proposed approach integrates both

CMOS and gate diffusion input techniques to realize NCL designs.

Gate diffusion input methodology is a low power design technique that utilizes only

two transistors to implement different functions [1]. The input configuration required to

implement various function can be found in [9-12]. Hence, by applying GDI

methodology for realizing NCL gates, total transistor count is reduced, which in turn

reduces switching power. However, the biggest drawback of GDI methodology is the

voltage drop at the output which results in performance degradation [12-15]. Hence, a new

HYBRID methodology that can address both of these limitations, voltage drop of GDI and

area overhead of CMOS is proposed in this work.

The aim of this work is to utilize both CMOS and GDI techniques to design NCL

circuits. This approach where in both CMOS and GDI based NCL gates are used to design

NCL circuits helps in reducing the transistor count when compared to the conventional

static CMOS approach. To validate the performance of the proposed approach, a variety of

NCL up-counter increment (NUI) circuits were realized and compared with the static

CMOS methodology. The proposed approach shows a minimum of 4% reduction in the

transistor count when compared with the static CMOS approach.

36

The rest of the paper is organized as follows: Section 2 discusses the preliminaries

and review of NCL and GDI. Section 3 presents the design description of the HYBRID

methodology. Section 4 illustrates the simulation results, followed by conclusion in Section

5.

2. PRELIMINARIES AND REVIEW

2.1. NULL CONVENTION LOGIC

NCL is a clockless DI model that works correctly regardless of input accessibility.

It is a self timed logic model where both data and control are integrated to a single signal

and communication is accomplished through local handshaking [1]. To provide

synchronization DATA and NULL states are used which are obtained using dual or quad-

rail logic. A dual-rail signal, D utilizes two wires D0 and D1 to represent values DATA0,

DATA1 and NULL [4] as shown in Figure 1. The NULL state (D0 = 0, D1 = 0) symbolizes

that D is not available. The DATA0 state (D0 = 1, D1 = 0) and DATA1 state (D0 = 0, D1

=1) represents Boolean logic 0 and 1 [8]. These two rails are mutually exclusive and cannot

be asserted at the same time. This means that if both the rails are high, the state is known

as an invalid/illegal state.

The framework of NCL system is shown in Figure 2. As observed from the figure,

combinational logic (CL) is always sandwiched between two DI registers and these

adjacent DI registers communicate through request and acknowledge signals ki and ko.

NCL utilizes a special set of logic element known as threshold gates for realizing the

combinational logic, DI registers and competition detection circuits [3].

37

Figure 1. Dual-rail representation of NCL AND function: Z = X • Y: initially

X=DATA1 and Y=DATA0, so Z=DATA0; next X and Y both transition to NULL,

so Z transitions to NULL; then X and Y both transition to DATA1, so Z transitions

to DATA1 [7]

There are 27 threshold gates and the primary type of threshold gate depicted in

Figure 3(a), is known as THmn, where 1 ≤ m ≤ n [2]. Here, n represents the number of

inputs and m denotes the number of inputs that need to be asserted for the output to be

asserted. The secondary type of threshold gate illustrated in Figure 3(b) is refered as a

weighted threshold gate, denoted as THmn Ww1w2…wR. The constant equation is w1,

w2…wR > 1, where w1, w2…wR are the integer weights of input1, input2 … inputR,

respectively [5]. These threshold gates have built-in hysteresis behavior to ensure DI.

Hysteresis in NCL ensures that two DATA wavefront are not overwritten and are always

separated by a NULL wavefront.

Figure 2. NCL system framework [3]

38

Figure 3. (a) THmn threshold gate (b) TH34w2 threshold gate [3]

The general algebraic expression of an NCL gate is the combination of set and hold

equations. The set equation defines the functionality of the gate and the hold equation

determines till when the gate should be asserted once it is asserted. The set equation i.e.

the functionality of each NCL gate is presented in [1] whereas; the hold equation remains

the same for every gate, which is simply OR-ing, all the inputs. Therefore, the general

equation for an NCL gate is given by Z = set + (Z- • hold), where Z- is the previous output

value and Z is the current value. Prevailing methodologies utilized for realizing NCL

circuits are static and semi-static CMOS technology. Figure 4 and Figure 5 depicts the

static and semi-static CMOS implementation of TH23 gates.

As depicted in Figure 3(b), the semi-static implementation only requires set and

set’ expressions are utilized to realize TH23 gate. To achieve hysteresis, the semi-static

implementation uses weak feedback inverters, which slows down the gate operation

leading to large latency overhead. This limitation is addressed by using static CMOS

implementation that utilizes pull-up (set) and pull-down networks (reset) as shown in the

Figure 3(a). As observed from the figure, the additional circuitry is required to maintain

the built-in hysteresis property of NCL gates. This leads to an area overhead where NCL

designs are approximately 1.5 - 2 times larger than the equivalent synchronous designs [7].

39

Figure 4. Transistor level realization of TH23 gate using Static CMOS methodology [7]

Figure 5. Transistor level implementation of TH23 gate using semi-static methodology [7]

Therefore, it is crucial to address this limitation so that NCL designs become viable

alternative for synchronous design. This drawback is be addressed by utilizing a low power

design methodology called GDI.

40

2.2. GATE DIFFUSION INPUT

GDI is a low power design technique commonly used in synchronous design to

reduce area and dynamic power consumption [1]. The structure of basic GDI cell is

depicted in Figure 6. It has three inputs G (common gate input of both the nMOS and the

pMOS), P (input to the source/drain of the pMOS), N (input to the source/drain of the

nMOS). The bulks of nMOS and pMOS transistors are constantly connected to GND and

VDD, respectively [6].

Figure 6. (a) Basic GDI cell structure (b) Different functions input configurations [10]

Various logic functions of GDI cell for different input configurations are illustrated

in Figure 6(b). Since, the pull-up and pull-down networks of these functions are not always

connected to power supply (VDD) and ground (GND), a voltage drop at the output is

observed. This drawback is the biggest limitation of GDI methodology based

implementation [9-15]. Similarly, by realizing NCL gates using GDI technique, voltage

swings prevail in the circuit. Therefore, this work mainly focuses on addressing this issue

such that GDI technique can be used for realizing NCL circuit.

41

The next section presents the mechanism for realizing the NCL gates using GDI

methodology. The efficacy of the proposed approach is verified by realizing the several

NUI circuits and comparing with the static CMOS methodology.

3. THE PROPOSED HYBRID METHODOLOGY

First, the mechanism to realize NCL gates using GDI methodology, also known as

FNCL approach is discussed. Since this approach utilizes both F1 and F2 functions unique

to GDI as shown in Figure 3, it is named as FNCL. The limitation of voltage drop of FNCL

approach is also presented in this subsection. Finally, the HYBRID methodology, which

utilizes both CMOS and GDI techniques to address the area overhead limitation of NCL

designs, is described in detail.

3.1. REALIZATION OF NCL USING FNCL APPROACH (BASED ON F1 AND F2

FUNCTIONS OF GDI GATE)

To realize NCL threshold gates using FNCL approach, first the Boolean expression

of THmn gate is factorized. Then, based on the factorized expression GDI function F1, F2

and MUX are utilized to implement the gate. As an example, steps for realization of TH22

gate is shown below:

Step 1: Factorized expression of TH22 gate is: Z = AB + Z (A+B)

Where, A, B are the inputs and Z is the output.

Step 2: The GDI functions are utilized to realize AND (AB) and OR (A+B) expressions.

Among all the GDI functions, only F1 and F2 are utilized, as they demonstrate voltage

42

drop for only one input combination compared to the others (AND, OR) functions. Hence,

F1 and F2 are used to implement AB and A+B as shown in the Figure 7.

Step 3: The GDI MUX cell is used to determine final output i.e. whether to pass set data

or hold data based on the previous results. The MUX is configured such that the output F1

cell (AB) and the O2 output of F2 cell (A+B) are fed to the sources of pMOS and nMOS

as shown in Figure 7. This will allow to select set equation (AB) when Z=0 and hold data

(A+B) when the Z is 1.

Figure 7. FNCL implementation of TH22 gate

Therefore, the proposed FNCL approach requires only eight transistors to

implement TH22 gate. Compared to the static CMOS approach, a 20% reduction in the

transistor count is observed. However, the main drawback of this approach is the

performance degradation due to the substantial voltage drop at the final output. The

mechanism to address this limitation is discussed in next subsection.

43

3.2. PERFORMANCE DEGRADATION OF FNCL APPROACH

The performance degradation is due to the different input configuration of the

nMOS and pMOS transistors. A voltage drop of Vtp (threshold voltage of pMOS) and VDD

- Vtn (threshold voltage of nMOS) for pMOS and nMOS transistors are observed when

their sources are not tied to VDD and GND respectively [9].

To demonstrate this phenomenon, the simulation results of the proposed TH22 gate

is illustrated in Figure 8. It is observed in Figure 8, when either of the inputs or any one of

the inputs are low (A=0, B=0, Z=0), the outcome is Vtp rather than strong low ‘0’. This

can be explained as follows: whenever A = 0, the voltage at the pMOS source of MUX cell

is 0. Since, pMOS passes weak ‘0’, the result would be Vtp. Conversely, when A and B

are high, the output is VDD without any voltage drop since pMOS passes strong ‘1’. Hence,

three out of four input combinations result in voltage drop.

This voltage swing issue further escalates when two FNCL gates are

interconnected. To validate this conclusion an NCL Full adder (FA) circuit is implemented

using the FNCL approach. The structure of FA and its simulation results are depicted in

Figure 9 and Figure 10. From Figure 10 it is observed that TH23 gates generates carryout

and TH34w2 gates utilizes these results to generate the sum (S0, S1). When the FA circuit

is simulated, voltage swings (for logic low) at carryout was ~ 0.1V, whereas for sum it was

~ 0.38V.

This increased voltage swing at the sum output is due to the voltage drop at TH23

gate being carried on to TH34w2 gate. Therefore, realizing the whole circuit using FNCL

gates is not viable option. To address this limitation, novel HYBRIB approach is also

proposed in this paper.

44

Figure 8. Simulation results demonstrating voltage drop of FNC TH22 gate

Figure 9. Structure of FNCL FA

This voltage swing issue further escalates when two FNCL gates are

interconnected. To validate this conclusion an NCL Full adder (FA) circuit is implemented

using the FNCL approach. The structure of FA and its simulation results are depicted in

Figure 6 and Figure 9. From Figure 10 it is observed that TH23 gates generates carryout

and TH34w2 gates utilizes these results to generate the sum (S0, S1). When the FA circuit

is simulated, voltage swings (for logic low) at carryout was ~ 0.1V, whereas for sum it was

~ 0.38V. This increased voltage swing at the sum output is due to the voltage drop at

TH23 gate being carried on to TH34w2 gate. Therefore, realizing the whole circuit using

45

FNCL gates is not viable option. To address this limitation, novel HYBRIB approach is

also proposed in this paper.

Figure 10. Simulation results of FA validating the volatge drop at sum is greater

than carryout

3.3. CMOS-GDI HYBRID APPROACH

The design of the HYBRID model is inspired by the observation that in NCL

system framework the DI combinational logic (CL) is always enclosed between DI

registers. In other words, inputs or outputs of CL always pass through a DI register to

ensure synchronization (two DATA wavefronts are not overwriting). The idea of the

HYBRID methodology is to redesign this NCL structure using both static CMOS and

FNCL techniques. Figure 11 depicts the framework of NCL system using HYBRID

methodology. The difference between the original and the new (HYBRID) structure is the

46

method by which NCL blocks CL, DI register and completion detection (CD) are realized.

The FNCL approach is utilized to realize CL and CD blocks, while static CMOS method

is used to implement the DI registers (CMOS_DI_reg).

Figure 11. The proposed HYBRID framework

Figure 12. Simulation results of a 1-bit full adder using HYBRID approach

As discussed, the FNCL blocks (CL, CD) yield a voltage drop at their output. This

limitation can be addressed by transferring these outputs through the CMOS_DI_reg. The

47

CMOS_DI_reg have strong pull-up and pull-down network which helps to restore signal

strength and generate an output of either VDD or ground. Thus, the HYBRID approach

prevents the voltage drop of the GNCL blocks from progressing to the next stage. Figure

12 shows the application of this idea to a one-bit full adder circuit and the simulation results

depicts that HYDRIB approach has no performance degradation.

In summary, the FNCL approach is proposed to address the area overhead

limitation of static CMOS methodology. However, the voltage drop at the output hinders

this approach for designing NCL system. Therefore, a HYDRID methodology, which

utilizes both the FNCL and static CMOS techniques to address the drawbacks of both the

approaches are introduced. To validate the effectiveness of the HYBRID methodology, the

proposed approach is applied to a case study of different NCL up-counter increment (NUI)

designs. A comparative study of the NUI circuits when implemented using static CMOS

and HYBRID methodologies are presented in the next section.

4. PERFORMANCE EVALUATION

This section presents the comparative results of NUI designs when implemented

using static CMOS and HYBRID methodologies. All the designs are realized in 45nm

technology using Cadence general-purpose design kit (PDK) which provides the standard

cell library and associated technology files for circuit realization. The schematics are

simulated using Specter simulator with VDD = 1V and temperature = 27oc.

Serval alternative designs for NCL up-counter increment circuits are realized to

verify the viability of the proposed approach. The proposed HYBRID methodology

48

achieves a significant reduction in transistor count compared to the conventional static

CMOS NCL designs.

4.1. NCL GATES UTILIZED FOR REALIZING NUI CIRCUITS

The NCL gates used for implementing various NUI designs along with their

transistor count for CMOS and HYBRID methodologies are depicted in Figure 13. As

illustrated in Figure 10, an average of 6% decrement in the number of transistors utilized

for implementing these NCL gates using FNCL methodology is observed.

Figure 13. Number of transistors utilized by CMOS and FNCL

4.2. TRANSISTOR COUNT FOR VARIOUS NUI IMPLEMENTATIONS

Table 1, presents the transistor count (TC) for various NUI designs implemented

via static CMOS and HYBRID methodologies. As observed from the Table 1, HYBRID

methodology utilizes a smaller number of transistors compared to the CMOS

implementation. The percentage reduction in transistor count for each model is illustrated

in the Figure 14. Compared to the conventional static CMOS methodology, an incomplete

AND NUI shows a 7% reduction in TC when implemented using the proposed approach.

49

Similarly, the Reduced Dual-Rail, Factored Dual-Rail, Complex Dual-Rail NUI circuits

show a 19.3 %, 12.3% and 4% reduction in TC when realized using HYBRID approach.

Table 1. Comparison of static CMOS and HYBRID methodologies

Model Type

STATIC CMOS HYBRID

TC of

only CL

Total TC

including

DI registers

TC of

Only CL

Total TC

including

DI registers

Incomplete AND 216 492 180 456

Reduced Dual-Rail 460 764 340 616

Factored Dual-Rail 308 584 236 512

Complex Dual-Rail 212 488 192 468

Figure 14. Percentage reduction in the transistor count

50

5. CONCLUSION

In this paper, a novel CMOS-GDI HYBRID methodology is proposed and validated

to address the area overhead in conventional NCL based on static CMOS implementation.

It utilizes two types of design techniques, static CMOS and GDI to realize NCL designs.

The proposed approach demonstrated an average of 10% reduction in the transistor count

when several NUI are realized using the proposed approach. This enhancement provides

the scope for NCL to be an alternative for synchronous designs. The impact of HYBRID

method on power consumption and latency will be the part of the future work.

BIBLOGRAPHY

[1] Bandapati, Satish K., and Scott C. Smith. "Design and characterization of NULL

convention arithmetic logic units." Microelectronic engineering 84, no. 2 (2007):

280-287.

[2] F. A. Parsan and S. C. Smith, “CMOS implementation of static threshold gates with

hysteresis: A new approach,” in Proc. IEEE/IFIP 20th Int VLSI and System-on-Chip

(VLSI-SoC) Conf, Oct. 2012, pp. 41–45.

[3] Smith, Scott C., Ronald F. DeMara, Jiann S. Yuan, D. Ferguson, and D. Lamb.

"Optimization of NULL convention self-time circuits." INTEGRATION, the VLSI

journal 37, no. 3 (2004): 135-165.

[4] Bandapati, Satish K., Scott C. Smith, and Minsu Choi. "Design and characterization

of NULL convention self-timed multipliers." IEEE design & test of computers 20,

no. 6 (2003): 26-36.

[5] R. Bonam, S. Chaudhary, Y. Yellambalase, and M. Choi, “Clock-free nanowire

crossbar architecture based on null convention logic (ncl),” in Proc. 7th IEEE Conf.

Nanotechnology (IEEE NANO), Aug. 2007, pp. 85-89.

[6] Bailey, Andrew D., Jia Di, Scott C. Smith, and H. Alan Mantooth. "Ultra-low power

delay-insensitive circuit design." In 2008 51st Midwest Symposium on Circuits and

Systems, pp. 503-506. IEEE, 2008.

51

[7] Smith, Scott Christopher, and Ronald F. Demara. "Gate and throughput

optimizations for null convention self-timed digital circuits." Doctor of Philosophy,

Dissertation (2001).

[8] F. A. Parsan and S. C. Smith, “CMOS implementation comparison of ncl gates,” in

Proc. IEEE 55th Int. Midwest Symp. Circuits and Systems (MWSCAS), Aug. 2012,

pp. 394–397.

[9] Mader, Roy, Eby G. Friedman, Ami Litman, and Ivan S. Kourtev. "Large scale clock

skew scheduling techniques for improved reliability of digital synchronous VLSI

circuits." In 2002 IEEE International Symposium on Circuits and Systems.

Proceedings, vol. 1, pp. I-I. IEEE, 2002.

[10] Morgenshtein, Arkadiy, Michael Moreinis, and Ran Ginosar. "Asynchronous gate-

diffusion-input (GDI) circuits." IEEE transactions on very large scale integration

(vlsi) systems 12, no. 8 (2004): 847-856.

[11] Morgenshtein, Arkadiy, Alexander Fish, and Israel A. Wagner. "Gate-diffusion input

(GDI): a power-efficient method for digital combinatorial circuits." IEEE

transactions on very large scale integration (VLSI) systems 10, no. 5 (2002): 566-

581.

[12] Morgenshtein, A. Fish, and A. Wagner, “Gate-diffusion input (gdi)-a novel power

efficient method for digital circuits: a design methodology,” in Proc. 14th Annual

IEEE Int. ASIC/SOC Conf, 2001, pp. 39–43.

[13] Morgenshtein, A. Fish, and I. A. Wagner, “Gate-diffusion input (gdi) - a technique

for low power design of digital circuits: analysis and characterization,” in Proc. IEEE

Int. Symp. Circuits and Systems ISCAS 2002, vol. 1, 2002, pp. I–477–I–480 vol.1.

[14] Morgenshtein, I. Shwartz, and A. Fish, “Gate diffusion input (gdi) logic in standard

CMOS nanoscale process,” in Proc. IEEE 26-th Convention of Electrical and

Electronics Engineers in Israel, Nov. 2010, pp. 000 776–000 780.

[15] Morgenshtein, V. Yuzhaninov, A. Kovshilovsky, and A. Fish, “Full-swing gate

diffusion input logiccase study of low-power cla adder design,” INTEGRATION,

the VLSI journal, vol. 47, no. 1, pp. 62–70, 2014.

52

III. A LOW POWER DESIGN TECHNIQUE FOR THE ASYNCHRONOUS

NULL-CONVENTION LOGIC CIRCUITS

ABSTRACT

Null Convention Logic (NCL) is a robust clock-less technique for designing

asynchronous delay-insensitive circuits. The traditional complementary metal oxide

semiconductor (CMOS) approach is often used for designing NCL circuits, which tends to

occupy a large area. To address this issue, a low power design technique Gate Diffusion

Input (GDI) is introduced for designing the NCL circuits. This GDI design methodology

is the promising alternative for the static CMOS designs, which allows the reduction in

area and power consumption while maintaining the low complexity of the logic design. In

this paper, a novel GDI based NCL designs are proposed and designed. However, the

voltage swings in the GDI approach leads to the considerable amount of voltage drop at

the output. This limitation is addressed by using low threshold transistors where a voltage

drop is expected, and high threshold transistors are used for the regenerative inverters at

the output. The proposed approach has been verified by designing the NCL Ripple Carry

Adder (RCA), uunpipelined multiplier, pipelined multiplier and unpipelined ALU by using

the GDI technique. These models are designed and simulated using Cadence Virtuoso and

an average of 13.5% reduction in the transistor count is observed for these GDI based NCL

models when compared to the CMOS models.

53

1. INTRODUCTION

With the increasing clock rate and decreasing IC feature size, meeting timing

closure requirement in the presence of clock skew is a major problem [1–3]. To address

this issue, a high-performance device allocates a large part of its area to clock drivers,

which increases power dissipation, significantly at clock edges, where switching occurs

[4–6]. Power dissipation deteriorates the operation of high-performance devices, which is

a major concern for the emerging low power industry [7, 8]. Since, asynchronous digital

designs are inherently robust in the sense of power dissipation, exhibits low noise and

electro-magnetic interference, there is a renewed interest in this area [9–11].

Asynchronous circuits are classified into two types: bounded-delay and delay

insensitive (DI) models. Bounded- delay models such as Micropipelines [12] and Huffman

[13] circuits consider both gate delays and wire delays to be bounded. The delays are added

according to the worst-case scenarios, therefore require extensive timings to ensure the

correctness of the circuits [14]. On the other hand, delay-insensitive models assume that

both the gate and wire delays are unbounded, and wire forks within basic components are

isochronic. However, the wire connecting the components doesn’t abide with the

isochronic assumption. Therefore, DI models can operate correctly regardless of input

availability [15, 16].

In the literature, several DI paradigms are available for designing asynchronous

circuits [17]. These paradigms include phasedlogic, null convention logic (NCL), Seitz’s

[18], Singh’s [19], David’s [20], Anantharaman’s [21] and DIMS [22] approaches. Among

these approaches, NCL is the most commonly used DI paradigms and it exhibits great

54

optimization potential over other DI methods. NCL designs use special types of gates

called threshold gates which has built in hysteresis state holding property to achieve DI

and to ensure that the gate is input complete [23].

Recent literature reports several CMOS methodologies that are typically utilized to

implement these gates [24]. These methodologies include dynamic, semi- static,

differential and static implementation. Detailed information about the dynamic, semi-static

and differential implementation of NCL gates can be found in [25–27]. These CMOS

methodologies either rely on parasitic capacitance (dynamic) or feedback mechanism

(semi-static and differentia) to hold state information. Parasitic capacitance based NCL

gates are susceptible to noise, leakage and charging problems, while a feedback inverter

slows down the gate’s operation due to the intrinsic switching contention.

Typically, these constraints are addressed with the use of static NCL gate

implementation providing faster and reliable operation. The static NCL gates comprises of

set and hold blocks which determines whether to perform the gate functionality or hold

data [28]. However, due to the increase in area overhead observed with NCL

implementation, their use is limited in the semiconductor industry [29]. To alleviate this

issue, a novel GNCL methodology is introduced in this paper to reduces the area overhead

of NCL gates. Furthermore, additional components are introduced within the methodology

that improves the power robustness of NCL gates.

To address the issue of area overhead, gate diffusion input technique [30, 31],

comprising of a basic GDI cell that can implement various complex Boolean circuits is

utilized. Since, a GDI–based implementation utilizes just two transistors to implement such

circuits, a reduction in transistor count is observed which in turn reduces switching power

55

[32, 33]. However, due to the application of different inputs to the pMOS and nMOS

sources, a voltage drop is observed at the output. To address the issue of voltage drop, the

cascaded inverters methodology is adopted. It is then demonstrated that, voltage swing at

the output can be observed in GDI-based NCL designs. To overcome this limitation

regenerative buffer are introduced where multi-threshold transistors are utilized for

effectiveness.

The aim of this work is to propose a low power design approach to reduce area

overhead of NCL circuits. With a comprehensive simulation study, the reduction in

transistor count and power robustness are demonstrated in this paper. Overall, a 13% - 14%

reduction in the number of transistors and a 14% - 30% decrement in the dynamic power

is shown. The contributions of this paper include: 1. Implementation of NCL gates using

GDI technique (GDI-NCL). 2. Application of regenerative buffers at the output of GDI-

NCL gates to overcome the voltage swing. 3. A generalized (GNCL) approach that uses

multi-threshold transistor technique to reduce area (transistor count), voltage swing and

power is presented.

This article is organized as follows. Section 2 presents the preliminaries and review

of NCL and GDI. Section 3 describes the limitation of NCL and the technique for

overcoming it. An extensive discussion of the proposed design is carried out in Section 4.

Performance evaluation data for various NCL circuits are included in Section 5. Finally,

the summary and concluding remarks are made in Section 6.

56

2. PRELIMINARIES AND REVIEW

NCL is a popular delay-insensitive (DI) methodology for designing asynchronous

circuits where accurate results regardless of input availability are observed. Therefore,

NCL circuits are clockless, self-timed logic paradigms that can integrate data and control

into a single signal. To achieve the delay-insensitive behavior, NCL must exhibit two

primary characteristics; (1) symbolic completeness and (2) input completeness, achieved

through dual- rail or quad- rail logic [14].

Dual rail logic consists of two wires D0 and D1, representing the states DATA0,

DATA1 and NULL. The DATA 0 (D0 = 1, D1= 0) is equivalent to Boolean logic 0,

DATA1 state (D0= 0, D1= 1) constitutes Boolean logic 1 whereas D0 = 0, D1= 0 represents

NULL state. NULL state refers to the scenario when no DATA is available at the input.

Furthermore, the state of D0 = 1 and D1 = 1, refers to the invalid stage. Similarly, quad-

rail has four wires Q0, Q1, Q2 and Q3, each representing different stages from the set

DATA0, DATA1, DATA2, DATA3, and NULL. Both rails are mutually exclusive, so that

no two rails can be asserted simultaneously [21].

Figure 1. NCL framework [17]

57

Moreover, NCL systems are composed of DI combinational logic blocks that are

enclosed between DI registers as shown in Figure 1. The structure of NCL is similar to

synchronous designs, except for the case of completion detection (CD) where data

synchronization between the logic blocks is enabled. Communication between the adjacent

DI registers are carried out by local handshaking signals i.e. request signal (Ki) and

acknowledge signal (Ko). These signals avoid overwriting two DATA wavefront by

ensuring that the two DATA wavefronts are always separated by a NULL wavefront. These

acknowledge signals are then combined in the CD circuitry to produce the request signal(s)

to the previous register stage [23].

Figure 2. (a) THmn threshold gate (b) TH34w2 threshold gate [34]

The fundamental building block for the designing any NCL circuits are the

threshold gates, which are of two types: threshold gate and weighted threshold gate [28].

Figure 2(a) depicts the primary type of threshold gate THmn, where 1 ≤ m ≤ n. Here, n

represents the total number of inputs and m indicates the minimum number of inputs to be

asserted for the output to be asserted. The weighted threshold gates are represented as

THmnWw1w2wR, where w1, w2,wR, each > 1 signifies the integer weights of input1,

58

input2,..... input R, respectively. Figure 2 (b) illustrate the weighted threshold gate

TH34W2 gate.

There are 27 basic NCL gates constituting from two to four variable functions.

These gates have built- in hysteresis state holding capacity that ensures that the gate is input

complete, which means that the output remains constant until all inputs are deserted. The

functionality (set equation) of 27 NCL gates can be found in [34] and the structure of static

NCL gate implementation is depicted in Figure 3(a).

Typically, a static NCL gate consists of two pull down (set, hold1) and two pull up

(reset, hold0) networks as depicted in Figure 3(a). The set block defines the functionality

of the gate and determines when the output should be asserted. Similarly, hold1 network is

used to retain data until all inputs are deasserted which is obtained by OR-ing all the inputs.

Therefore, hold1 is equivalent to n-input OR gate, where n is the total number of inputs

[24].

(a) (b)

Figure 3. (a) Structure of static CMOS implementation of NCL gates (b) Static

CMOS transistor level implementation of TH23 NCL gate [29]

59

The general equation for implementing static NCL gates is given as Z = set + (Z’ •

hold1), where z is the new output value and z- denotes past output value. Similarly, the

general form of Z complement is represented as Z’ = reset + (Z’ • hold0), where reset and

hold0 is the complement of set and hold1 [29]. These equations can be used for

implementing any NCL gates and Figure 3(b) depicts the transistor level implementation

of TH23 gate with set and hold1 equations as AB+BC+AC and A+B+C.

As seen from the Figure 3(a), extra logic is required to implement hold1 and hold0

increases the area overhead. This drawback is one of the factors limiting the use of NCL

designs in the semiconductor industry, and the following section discusses this drawback

in detail.

Figure 4. Conventional Boolean OR gate (a) symbol (b) Static CMOS implementation

3. LIMITATION OF NCL

It is estimated that, for a functionally identical design, NCL will have a substantial

increase in area relative to the conventional synchronous designs. Moreover, the area

consumption in static NCL designs approximately 1.5 – 2 times that of an equivalent

60

synchronous design [2]. To clearly demonstrate this idea, a realization of AND function is

compared with conventional Boolean and NCL design next. A gate and transistor level

implementation of an AND function through conventional Boolean and NCL design is

shown in Figure 4 and Figure 5 [28].

In Figure 4(b), it can be observed that conventional two input OR function requires

only six transistors. The NCL AND comprises of TH12 and TH22 threshold gates as

illustrated in Figure 5(a). Furthermore, as seen in Figure 5(b), TH22 gate require twelve

transistors and TH12 gate which is equivalent to 2-bit conventional OR gate require six

transistors for their implementation through static CMOS approach. Overall, NCL logic

requires twenty transistors to implement NCL OR gate, which is approximately three times

higher than the conventional synchronous design. Thus, proving that NCL design has a

higher transistor count and with the International Technology Roadmap for

Semiconductors (ITRS) anticipates that asynchronous circuits will account for 47% of chip

area by 2020 [34], it is very important to address this limitation. Furthermore, as

asynchronous circuits are incredibly useful in low area and power applications such as

microcontrollers, embedded medical products, encryption engines for smart card

applications, fault-attack-resistant cryptographic circuits, ternary logic, sensor networks,

and IOT devices, it is very important to address this limitation [10].

The two main causes for the increased area are the use of dual rail logic and the

requirement of additional circuitry for state holding capacity and this is observed in Figure

3(a). Since, the dual rail is required to obtain symbolic and input completeness, the internal

gate logic must be altered to achieve any reduction in area. To manipulate the internal logic

61

for NCL gates, this work introduces a GDI-based approach. The implementation of GDI-

based NCL is discussed in detail in the next section.

Figure 5. (a) NCL input-complete OR function: Z = X + Y [28] (b) Static

CMOS implementation of TH22 NCL gate

4. PROPOSED APPROACH FOR DESIGNING NCL CIRCUITS

We begin this section by describing a basic implementation of area efficient gate

diffusion input-based NCL (GDI-NCL) design paradigm. Next it is demonstrated that GDI-

based designs suffer from drop in output voltage. Next, regenerative buffers are introduced

where multi-threshold gates are utilized to eliminate voltage drops.

4.1. BASIC IMPLEMENTATION OF NCL GATES USING GDI TECHNIQUE

(GDI-NCL TECHNIQUE)

To utilize GDI methodology, the Boolean expression of a THmn or weighted NCL

gates must be factorized into series of AND and OR functionality. Next, based on the

62

resulting expression, GDI-AND, GDI-OR and GDI-MUX configuration as shown in

Figure 6 can be used for the design of NCL gates [30]. The algebraic representation for

TH23 gate, which is shown in Figure 7, is given as

 Z= AB + BC + AC + Z’(A+B+C) (1)

where A, B, C, D are the inputs, Z’ = previous result and Z = current output. Factorizing

the above equation gives

 Z = A (B + C) + BC + Z’(A+B+C) (2)

This expression implementation using GDI-NCL technique is as explained as follows.

Step 1: First the second term in the equation 2 is implemented using GDI-AND. As shown

in Figure 6(a), GDI-AND cell has two inputs G and P, and the output is measured at drain

D. So, to implement BC, B and C are the given as input to G and N and the resultant output

O1 is taken at D.

Step 2: Similarly, algebraic expression B +C is implemented using GDI-OR, where B, C

are applied to nodes G and N and the output O2 is measured at D.

Figure 6. Structures of different GDI functionality cells: (a) GDI-AND

(b) GDI-AND (c) GDI-MUX

63

Step 3: GDI-MUX is used to realize A(B+C) + BC. To implement this expression, input

A is provided to node G and the output of step1 and step 2 i.e. O1 and O2 are given to input

P and N of GDI-MUX. The output O3 is taken from node D.

Step 4: Another GDI OR are used to implement A+B+C, where A and O2 are applied to

nodes G and P and the output O4 is generated at node D.

Step 5: Finally, GDI MUX is used to realize the final expression given in equation 2. To

this MUX, Z’ the previous result is given as the input to node G, O3 is passed to node P

and O4 is provided to node N. Thus, the result i.e. the current output (Z) is measured at

node D of this GDI MUX. Note: If Z’= 0 the output would be [A(B + C) + BC] i.e. the

gate operators on current data, else, value at node N is selected which is nothing but

A+B+C i.e. holds the previous results.

 Figure 7. GDI implementation of TH23 NCL gate

64

The correctness of this implementation can be evaluated by verifying the output for

different input combinations and the results are described in Table 1. As observed in Table

1, the result (Z) of the proposed approach is identical to the actual algebraic expression

results. As seen from the Figure 7, the total number of transistors (#t) required to implement

this GDI based TH23 gate is 10, while the CMOS implementation require 18 transistors.

Thus, a 44.4% reduction in the transistor count can be observed for TH23 gate.

Similarly, all the NCL gates can be realized using GDI-NCL technique and compared to

static CMOS implementation, GDI-NCL technique approximately provides 30% - 50%

reduction in the transistor count as depicted in Figure 8. The algebraic factorization, the

method of realization and #t used for implementation few NCL gates using proposed GDI-

NCL technique is presented in Figure 9.

Figure 8. Number of transistors required for implementing NCL gates using CMOS and

GDI-NCL methodology

The main disadvantage of GDI-NCL implementation is that the full output voltage

swing cannot be achieved for all input combinations as shown in the Figure 10. This

limitation is due to the structure of the inputs applied to the pMOS and nMOS transistors

of a GDI-OR, GDI-AND, GDI-MUX cells. Since, the pMOS and nMOS transistors are a

65

strong pull- up and pull- down networks, the application of any voltage other than VDD

and gnd to their sources results in a voltage drop of Vtp (pMOS) and (V DD − Vtn)

(nMOS), where, Vtp and Vtn represents the threshold voltage for pMOS and nMOS

transistor.

Table. 1 GDI-NCL TH23 gate results for different input combinations

Inputs

Node Voltages

Algebraic Expression

Results

Z = A(B+C)+BC+Z’(A+B+C) O1 O2 O3 O4 Z

A= 1; B = C = Z’ = 0 0 0 0 1 0 0

A = C = 1; B = Z’ = 0 0 1 1 1 1 1

A= B = Z’ = 0; C = 1 0 1 0 1 0 0

Figure 9. GDI-NCL implementation of few NCL gates

66

Figure 10. Voltage drop at the output of GDI-NCL TH23 gate

Figure 11. Voltage drop at the output of GDI-NCL TH23 gate for different input

combinations

To overcome the performance degradation and achieve a full swing output voltage,

a regenerative buffer can be utilized. Regenerative buffer consists of two back- to- back

inverters that can restore the signal strength. Therefore, to avoid the voltage drop in GDI-

NCL gates, a regenerative buffer is used before the output of every gate as shown in Figure

12. The difference in voltage output (Z) levels before and after the use of regenerative

buffers are shown in Figure 12 and Figure 13 respectively. As depicted in Figure 13,

regenerative buffer increases the signal strength and allow the final output voltage to

achieve a strong zero (gnd) or a strong one (VDD). Note that regenerative buffer approach

67

for output voltage swing restoration is quite straightforward and different buffering

techniques can be found in literature [32]. However, the usage of the regenerative buffer

increases the transistor count, delay and power. Compared to the basic GDI-NCL

implementation, regenerative buffers will increase the transistor count by four for each

gate. The static power consumption is increased due to the direct leakage path.

Figure 12. Addition of regnerative buffer at the output of GDI-NCL TH23

Figure 13. Output wavefprm of GDI-NCL TH23 gate after the use of renerative buffers

68

This limitation can be addressed by designing the circuit using multi-threshold

transistors technique. As seen in [35], leakage current, the main contributor towards static

power exponentially decreases with the increasing threshold voltage. Therefore, high

threshold transistors can be used to decrease static power, but with overhead latency. So,

to achieve low power and latency, both low threshold and high threshold transistor are

utilized for implementing NCL gates. Low threshold transistors are used in the critical

paths of the circuit, while the rest of the circuit is designed with high threshold transistors.

The integration of high threshold transistors into non- critical paths is usually practiced to

maintain high performance (i.e. to reduce leakage power), while low threshold transistors

are used in critical paths to maintain speed. Thus, the multi-threshold transistor technique

can be applied to GDI-NCL technique to reduce the static power even when regenerative

buffers are used.

4.2. GENERALIZED APPROACH (GNCL) FOR REALIZING NCL GATES

 To achieve a low power design, low threshold transistors are used specifically in

path where a voltage drop is to be expected, and the rest of the circuit is designed using

high threshold transistors. Therefore, GDI-AND, GDI-OR and GDI-MUX are realized

using low threshold transistors and regenerative buffers are implemented using high

threshold transistors.

For example, consider the scenarios when TH23 gate are realized using the GNCL

approach. As described in Figure 14, GDI based AND, OR and MUX gates, realized using

low threshold transistors, are utilized for realizing BC, B + C, A A(B + C) + BC and (B +

69

C) + BC + Z’(A+B+C). On the other hand, regenerative buffers are designed using high

threshold transistor to produce a full swing final output.

Even the final design that is described in this section exhibits a considerable impact

on latency which will be discussed as part of the future effort. In the next section, the

proposed methodology, several combination circuits are implemented and comparative

results are presented.

Figure 14. GNCL implementation of TH23 gate

5. SIMULATION RESULTS

This section compares the results for various NCL circuits implemented using static

CMOS and GNCL approaches. These designs include 4-bit NCL ripple carry adder (RCA),

4-bit unpipelined NCL multiplier (UMUL), pipelined NCL multiplier (MUL) and 4-bit

unpipelined NCL arithmetic logic unit (UALU). The internal logic and structures of these

designs can be found in [23, 28]. To study the impact of proposed approach on dynamic

70

power consumption, three CMOS models are realized using different threshold voltage

transistors namely; high threshold model (High Vth), low threshold model (Low Vth) and

nominal threshold model (Std Vth). The High Vth model consists of NCL gates

implemented through high threshold voltage transistors where low power and high latency

is observed. Similarly, Low Vth and Std Vth models respectively use low threshold and

nominal threshold voltage transistors for implementation. These low threshold transistors

tend to have low latency, but high-power consumption and standard threshold transistors

provide medium delay and medium power dissipation. The GNCL design performance is

compared individually with all of these CMOS designs.

All the designs are realized in 45nm technology using Cadence proprietary general

process design kit (gpdk45). A process design kit contains the process technology and

needed information to do device-level design in the Cadence environment. The schematics

are implemented in Cadence Virtuoso tool with VDD = 1V and temperature = 27ºC. The

designs are simulated with the Spectre simulator in the Cadence Virtuoso using gpdk45

high, low and nominal threshold MOSFET transistors with W/L ratio of 2.6. All these

transistors are minimum size and simulations were carried on all the possible input patterns.

The performance comparison is based on number of transistors (#t), static power

consumption (SP) and dynamic power consumption (DP). The average of all patterns is

computed to determine the dynamic power consumption. To quantitatively demonstrate

and verify the performance of the proposed approach, a detailed analysis of NCL gates are

when implemented using GNCL technology is first presented.

71

Figure 15. Transistor counts for 27 NCL gates using CMOS and GNCL techniques

5.1. 27 FUNDAMENTAL NCL GATES

As discussed in Section 2, NCL gates are the basic building of any NCL circuits.

Therefore, comparison between CMOS and GNCL implementation of NCL gates in terms

of transistor count and power is analyzed first.

5.1.1. Transistor Count. Figure 15 illustrate the #t required by the CMOS [28] and

GNCL methodologies to implement 27 NCL gates. As shown in the graph, the GNCL

approach shows a reduction in #t for all gates except for TH1n gates. TH1n gates are

equivalent to n-input OR gates and require 2(n + 1) #t for their static CMOS

implementation. Whereas, conventional GDI technique will only require (n−1)∗2 number

of transistors. But, the conventional GDI approach has a drawback of voltage drop that

affects the performance of the gate. To overcome this limitation, the proposed approach

introduces regenerative buffers, hat increases the total #t by four. Therefore in total, the

GNCL technique require ((n−1)∗2+ 4) #t, which is equal to the CMOS approach. Thus, the

GNCL based TH1n gates have the same number of transistors as CMOS approach.

However, GNCL approach reduces the number of transistors in the range of 2-8 for the

72

other NCL gates. Therefore, an average 2.9% reduction in the transistor count for 27 NCL

gates is observed.

5.1.2. Power Consumption. Power analysis of 27 NCL gates when implemented

using different models is analyzed here. The difference in the static power and dynamic

power consumption of the different implementation is shown below.

5.1.2.1. Static power. Static power quantifies the power consumed when the circuit

is not in operation. Static power is largely dependent on the leakage current. The leakage

mechanisms that dominates the total power dissipation in a transistor are subthreshold

leakage and gate leakage that increases with reduction in threshold. As a result, higher the

vth, smaller the static power. Thus, high vth transistors will result in lower static power

dissipation compared to nominal vth and low vth transistors. Similarly, in comparison with

low vth transistor, nominal vth transistor results in low static power dissipation. Therefore,

as depicted in Figure 16, High Vth, and Std Vth models results in low static power than the

GNCL model. But, the GNCL model provides better results than Low vth model as it

contains both high and low vth transistors.

5.1.2.2. Dynamic power. Dynamic power, also known as switching power,

depends on transient power and load capacitance power consumption. Transient power is

the amount of power consumed when a device transitions from one state to another.

Therefore, it is directly tied to the number of transistors in a device that change states. As

a result, the decrease in the number of transistors can reduce dynamic power. Since, the

GNCL model requires less #t than CMOS model, it therefore consumes less dynamic ower

as shown in Figure 17. However, for some of the NCL hates such as T H1n gates, GNCL

73

model has higher dynamic power than High Vth and Std Vth models, because generative

buffers require higher power to increase the signal strength.

Figure. 16. Static power consumption of 27 NCL gates

Figure 17. Dynamic power consumption of 27 NCL gates

5.2. COMBINATIONAL CIRCUITS

 To further analyze the impact of the proposed approach on larger designs, several

combinatorial circuits such as RCA, UMUL, MUL and UALU were realized using these

74

different models (High Vth, Std Vth, Low Vth and GNCL) of NCL gates. The following

are the comparative results of these NCL circuits.

5.2.1. Transistor Count. Table 2 summarize the total number of transistors

required to implement RCA, UMUL, MUL and UALU circuits using CMOS and GNCL

approaches. As shown in the table, all CMOS models require the same number of

transistors, as they differ only in the type of transistor used. Therefore CMOS circuits

consume more #t relative to GNCL designs for implementing any of these circuits. For an

example, the CMOS models require 1128 transistors to realize a 4-bit RCA, while the

GNCL requires only 960 transistors. Therefore, the proposed approach reduces the

transistor count by 14%. Similarly, for the other circuits, an average reduction of 13.4% in

the transistor count is observed with the use of GNCL approach.

Table 2. Total number of transistor used for implemententing various NCL circuit

MODEL RCA UMUL MUL UALU

High_Vth/Std_Vth/

Low_Vth

1128

2040

2574

4084

GNCL

960

1760

2238

3520

Reduction in the

transistor count

14%

13.7%

13%

13.4%

5.2.2. Power Consumption. Power analysis of RCA, UMUL, MUL and UALU

designs when implemented using different models is analyzed here. The difference in the

static power and dynamic power consumption of the different implementation is shown

below.

75

 Table 3. Static power consumption for different NCL circuits

Table 4. Dynamic power consumption for different NCL circuits

5.2.2.1. Static power. As discussed earlier, static power consumption of NCL

gates, high Vth transistors consumes less static power than nominal Vth and Low vth

transistors. So, as seen from Table 3, for any circuit (RCA, UMUL, MUL and UALU),

High Vth model always shows low static power consumption compared to other models.

Similarly, Std Vth models designed with nominal Vth transistors consume less power than

the proposed method. However, compared to Low Vth models, the GNCL based circuit’s

shows an average 80% reduction in static power.

MODEL RCA

(nW)

UMUL

(nW)

MUL

(nW)

UALU

(nW)

High_Vth 0.05 0.3 2.17 0.63

Low_Vth 3.72 5.9 8.5 11.4

Std_Vth 0.36 0.5 1.23 1.09

GNCL 1.50 2.3 1.28 3.20

MODEL RCA

(nW)

UMUL

(nW)

MUL

(nW)

UALU

(nW)

High_Vth 13.42 21.06 28.34 17.16

Std_Vth 16.45 25.93 33.9 24.55

Low_Vth 22.44 45.83 68.40 30.53

GNCL 13.79 21.91 29.84 18.42

76

5.2.2.2. Dynamic power. In Table 4, dynamic power consumption for different

NCL circuits is summarized using CMOS and GNCL approaches. As seen in Table 6,

GNCL designs reduce dynamic power by an average of 4% for High Vth, 21.7% for High

Vth and 41% for Low Vth models.

In summary, among the presented CMOS models, GNCL shows best performance

in terms of transistor count and dynamic power. Although, the static power of High_Vth

designs are small, high Vth transistors are rarely used to design a complete device because

they increase latency. Hence, a complete device is not entirely designed with high Vth

transistors. It is therefore best to compare the performance of the GNCL approach to the

Std_Vth and Low_Vth models. Compared to these two models, GNCL shows 13% -14%

reduction in the transistor count and 30% - 40% reduction in dynamic power. The static

power consumption of GNCL model can further reduced by replacing low Vth transistors

by nominal Vth transistors.

6. CONCLUSION

This paper has proposed a novel GNCL methodology, which achieves low area and

power consumption by using GDI and multi-threshold technique. The proposed approach

shows a 13%-14% reduction in the transistor count and a 14%-30% decrement in the power

consumption when compared to the conventional CMOS NCL counterpart. This

considerable enhancement in terms of area and power will further increase the use of NCL

in asynchronous digital designs, competing with conventional synchronous designs. The

77

impact of the GNCL methodology on latency is not discussed and will be part of future

effort.

BIBLOGRAPHY

[1] M. T. Moreira, M. Arendt, F. G. Moraes, and N. L. V. Calazans, “Static differential

ncl gates: Toward low power,” IEEE Transactions on Circuits and Systems II:

Express Briefs, vol. 62, no. 6, pp. 563–567, Jun. 2015.

[2] P. A. Beerel, R. O. Ozdag, and M. Ferretti, A designer’s guide to asynchronous VLSI.

Cambridge University Press, 2010.

[3] L. D. Tran, G. I. Matthews, P. Beckett, and A. Stojcevski, “Null convention logic

(ncl) based asynchronous design—fundamentals and recent advances,” in 2017

International Conference on Recent Advances in Signal Processing,

Telecommunications & Computing (SigTelCom). IEEE, 2017, pp. 158–163.

[4] N. Nemati, P. Beckett, M. C. Reed, and K. Fant, “Clock-less DFT-less test strategy

for null convention logic,” IEEE Transactions on Emerging Topics in Computing,

vol. 6, no. 4, pp. 460–473, Oct. 2018.

[5] V. M. Wijayasekara, A. T. Rollie, R. G. Hodges, S. K. Srinivasan, and S. C. Smith,

“Abstraction techniques to improve scalability of equivalence verification for ncl

circuits,” Electronics Letters, vol. 52, no. 19, pp. 1594–1596, 2016.

[6] M. Chang and W. Chang, “Asynchronous fine-grain power-gated logic,” IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 21, no. 6, pp.

1143–1153, Jun. 2013.

[7] J. Sudhakar, Y. Alekhya, and K. S. Syamala, “A dual-rail delay-insensitive ieee-754

single-precision null convention floating point multiplier for low-power

applications,” in Innovations in Electronics and Communication Engineering.

Springer, Jan. 2018.

[8] M. T. Moreira, P. A. Beerel, M. L. L. Sartori, and N. L. V. Calazans, “Ncl synthesis

with conventional eda tools: Technology mapping and optimization,” IEEE

Transactions on Circuits and Systems I: Regular Papers, vol. 65, no. 6, pp. 1981–

1993, Jun. 2018.

[9] Y. Bai, R. F. DeMara, J. Di, and M. Lin, “Clockless spintronic logic: A robust and

ultra-low power computing paradigm,” IEEE Transactions on Computers, vol. 67,

no. 5, pp. 631–645, May 2018.

78

[10] M. Chang, P. Yang, and Z. Pan, “Register-less null convention logic,” IEEE

Transactions on Circuits and Systems II: Express Briefs, vol. 64, no. 3, pp. 314–318,

Mar. 2017.

[11] S. Le, S. K. Srinivasan, and S. C. Smith, “Automated verification of input

completeness for ncl circuits,” Electronics Letters, vol. 54, no. 20, pp. 1158–1160,

2018.

[12] I. E. Sutherland, “Micropipelines,” Commun. ACM, vol. 32, no. 6, pp. 720–738, Jun.

1989.

[13] S. H. Unger and S. Y. H. Su, “Asynchronous sequential switching circuits,” and

Cybernetics IEEE Transactions on Systems, Man, vol. SMC-3, no. 3, p. 302, May

1973.

[14] A. S. C. Smith, B. R. F. Demara, B. J. S. Yuan, C. D. Ferguson, and C. D. Lamb,

“Optimization of null convention self-timed circuits,” INTEGRATION, the VLSI

journal, vol. 36, no. 31, pp. 135–165, 2004.

[15] K. Van Berkel, “Beware the isochronic fork,” Integration, the VLSI journal, vol. 13,

no. 2, pp. 103–128, 1992.

[16] C. A. R. Hoare, Developments in concurrency and communication. Addison-Wesley

Longman Publishing Co., Inc., 1991.

[17] S. C. Smith, R. F. Demara, J. S. Yuan, M. Hagedorn, and D. Ferguson, “Delay-

insensitive gate-level pipelining,” Integration, the VLSI journa, vol. 30, no. 2, pp.

103–131, 2001.

[18] C. L. Seitz, System Timing, in Introduction to VLSI Systems. Addison-Wesley,

1980.

[19] N. P. Singh, “A design methodology for self-time systems,” Master’s Thesis,

MIT/LCS/TR-258, Laboratory for Computer Science, 1981.

[20] I. David, R. Ginosar, and M. Yoeli, “An efficient implementation of boolean

functions as self-timed circuits,” IEEE Transactions on Computers, vol. 41, no. 1,

pp. 2–11, Jan. 1992.

[21] Smith, S. C, R. F. DeMara, J. S. Yuan, M. Hagedorn, and D. Ferguson, “Null

convention multiply and accumulate unit with conditional rounding, scaling and

saturation,” Journal of Systems Architecture, vol. 47, no. 12, pp. 977–998, 2002.

[22] J. Sparso and J. Staunstrup, “Design and performance analysis of delay insensitive

multi-ring structures,” in Proc. Twentysixth Hawaii Int. Conf. System Sciences

[1993], vol. i, Jan. 1993, pp. 349–358 vol.1.

79

[23] S. K. Bandapati and S. C. Smith, “Design and characterization of null convention

arithmetic logic unit,” Microelectronic engineering, vol. 84, no. 6, pp. 280–287,

2007.

[24] F. A. Parsan and S. C. Smith, “CMOS implementation comparison of ncl gates,” in

Proc. IEEE 55th Int. Midwest Symp. Circuits and Systems (MWSCAS), Aug. 2012,

pp. 394–397.

[25] G. E. Sobelman and K. Fant, “CMOS circuit design of threshold gates with

hysteresis,” in Proc. IEEE Int. Symp. Circuits and Systems (ISCAS), vol. 2, May

1998, pp. 61–64 vol.2.

[26] M. Shams, J. C. Ebergen, and M. I. Elmasry, “Modeling and comparing CMOS

implementations of the c-element,” IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 6, no. 4, pp. 563–567, Dec. 1998.

[27] S. Yancey and S. C. Smith, “A differential design for c-elements and ncl gates,” in

Proc. 53rd IEEE Int. Midwest Symp. Circuits and Systems, Aug. 2010, pp. 632–635.

[28] Smith, S. Christopher, and R. F. Demara, Gate and throughput optimizations for null

convention self-timed digital circuits. Doctor of Philosophy, Dissertation, 2001.

[29] F. A. Parsan and S. C. Smith, “CMOS implementation of static threshold gates with

hysteresis: A new approach,” in Proc. IEEE/IFIP 20th Int. Conf. VLSI and System-

on-Chip (VLSI-SoC), Oct. 2012, pp. 41–45.

[30] A. Morgenshtein, M. Moreinis, and R. Ginosar, “Asynchronous gate-diffusion-input

(gdi) circuits,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

vol. 12, no. 8, pp. 847–856, Aug. 2004.

[31] A. Morgenshtein, I. Shwartz, and A. Fish, “Gate diffusion input (gdi) logic in

standard CMOS nanoscale process,” in Proc. IEEE 26-th Convention of Electrical

and Electronics Engineers in Israel, Nov. 2010, pp. 000 776–000 780.

[32] A. Morgenshtein, A. Fish, and I. A. Wagner, “Gate-diffusion input (gdi): a power-

efficient method for digital combinatorial circuits,” IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, vol. 10, no. 5, pp. 566–581, Oct. 2002.

[33] Morgenshtein, Arkadiy, Alexander Fish, and Israel A. Wagner. "Gate-diffusion input

(GDI)-a technique for low power design of digital circuits: analysis and

characterization." In 2002 IEEE International Symposium on Circuits and Systems.

Proceedings (Cat. No. 02CH37353), vol. 1, pp. I-I. IEEE, 2002.

[34] S. C. Smith, “Design of an FPGA logic element for implementing asynchronous null

convention logic circuits,” IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, vol. 15, no. 6, pp. 672–683, Jun. 2007.

80

[35] K. Roy, S. Mukhopadhyay, and H. Mahmoodi-Meimand, “Leakage current

mechanisms and leakage reduction techniques in deep-submicrometer CMOS

circuits,” Proceedings of the IEEE, vol. 91, no. 2, pp. 305–327, Feb. 2003.

81

IV. ENERGY-PERFORMANCE SCALABILITY ANALYSIS OF A NOVEL

QUASI-STOCHASTIC COMPUTING APPROACH

ABSTRACT

Stochastic computing (SC) is an emerging low-cost computation paradigm for

efficient approximation. It processes data in forms of probabilities and offers excellent

progressive accuracy. Since SC’s accuracy heavily depends on the stochastic bitstream

length, generating acceptable approximate results while minimizing the bitstream length is

one of the major challenges in SC, as energy consumption tends to linearly increase with

bitstream length. To address this issue, a novel energy-performance scalable approach

based on quasi-stochastic number generators is proposed and validated in this work.

Compared to conventional approaches, the proposed methodology utilizes a novel

algorithm to estimate the computation time based on the accuracy. The proposed

methodology is tested and verified on a stochastic edge detection circuit to showcase its

viability. Results prove that the proposed approach offers a 12% – 60% reduction in

execution time and a 12% – 78% decrease in the energy consumption relative to the

conventional counterpart. This excellent scalability between energy and performance could

be potentially beneficial to certain application domains such as image processing and

machine learning, where power and time-efficient approximation is desired.

Index Terms— stochastic computing; energy-performance scalability; low discrepancy

sequence

82

1. INTRODUCTION

With rapidly advancing technology, energy efficiency has become one of the major

design challenges in digital circuits and systems. Studies demonstrate that energy

efficiency can be improved by reducing both the computational time and power

consumption [1]. However, reducing these factors affects the performance of the system.

In other words, reducing the power consumption affects the overall performance of the

system. This challenge intensifies the current demand for low-power high-performance

systems, and therefore a novel methodology to handle this challenge is required. One such

promising technique that exploits probability theory “stochastic computation” can address

these limitations [1]. Stochastic computing (SC), which was invented in the 1960s by

Gaines [2, 3], recently regained significant attention mainly due to its approximate

computation method. This computation method offers progressive accuracy scalability [4]

that can be well exploited in the applications where approximated accuracy is accepted.

This includes media processing, neural networks, factor graphs, LDPC codes, fault-tree

analysis, image processing, and filters [5–10]. However, mainstream adoption of SC is

limited due to the long run-time and inaccuracy [1]. As explained in [11], a random number

generator (RNG), also known as a stochastic number generator (SNG), plays a significant

role in determining the area and energy consumption. The commonly used SNG is the

linear feedback shift register (LFSR), and several optimization techniques to improve the

output accuracy of the LFSR-based SNGs are presented in the literature [12–18]. As

presented in [19], increasing the length of stochastic sequences (SS) increases operating

time and power consumption.

83

To address this issue, [11] introduced a quasi-stochastic bit sequence generation

(QSNG) that utilizes the distributed memory elements of a field-programmable gate array

(FPGA) for designing the SNGs. However, no comment on energy reduction has been

reported in [11]. Therefore, in this work a detailed analysis and methodology for energy

reduction is presented to improve the overall performance. In this paper, a novel energy-

performance scalable methodology based on quasi-stochastic number generators is

proposed and validated. Compared to the conventional approaches, the proposed

methodology utilizes a novel algorithm to estimate the computation time based on the

accuracy. Finally, a comprehensive simulation-based study is presented in this paper to

demonstrate the reductions in operating time and energy consumption. Overall, a 12% –

60% reduction in the operating time and a 12% –78% saving in terms of the energy

consumption relative to the conventional LFSR counterpart are observed. This paper is

organized as follows. In Section 2, background of Stochastic computing and quasi-

stochastic bit sequence generation are discussed. Section 3 provides a novel energy-

efficient quasi-stochastic computing algorithm to calculate the number of clock cycles

based on the peak signal-to-noise ratio. The simulation results to validate the proposed

approach are presented in Section 4. Finally, Section 5 asserts the conclusion.

2. BACKGROUND

2.1. STOCHASTIC COMPUTING

SC is a computation technique that uses finite length binary bitstreams to encode

stochastic numbers [19]. The length of the bitstream and the number of 1s and 0s in the

84

binary bitstream determine the encoded probability value [1]. The basic circuits used in

stochastic computation are shown in Figure 1. The operation of these circuits rely on the

type of number interpretations, namely unipolar (UP), bipolar (BP) or inverted bipolar

(IBP) formats as presented in [19]. The unipolar format represents the real number x in the

range of [0, 1], using bipolar x is represented in between [−1, 1] and IBP ranges from [−1,

1], where the Boolean values 0 and 1 are represented as 1 and −1 in the stochastic number

(SN) [11]. Detailed explanations of various SN formats are clearly discussed in [14].

Figure 1. Basic circuits used in stochastic computation: (a) AND gate used as a stochastic

multiplier. (b) Multiplexer used as a scaled stochastic adder. (c) Stochastic circuit for

realizing the arithmetic function z = x1x2x4 + x3(1 − x4) [19]

85

The probability value in SC is represented by a binary bitstream of 0s and 1s with

specific length L [19]. For the binary representation of 0.5, in the bitstream of length L,

half of the bits are represented by 1s and the other half with 0s [11]. For example, one way

of representing 0.5 with a bitstream of 8 bits is 01010101. Dependency or correlation

between the inputs also plays an important role in representing a stochastic number

[19].This inherent feature of SC limits its performance over certain applications compared

to conventional binary implementations [20]. For example, an AND gate is used as a

multiplier in SC. If two input SS (x and y, namely) are identical (e.g., x = y = 01012 = 0.5),

output z will also be 01012 = 0.5, which is not an accurate result because the accurate

output stochastic bitstream should have three 0’s and one 1 (i.e., 0.25). Another extreme

case can happen when x = y¯, where output will be 0000 = 0.0.

As shown in these two examples, stochastic bitstream length should be large

enough to have the output stream to converge to an accurate value. Therefore, SC is

considered to be viable for applications such as image processing and machine learning

where fast and efficient approximate computation is desired. To achieve acceptable

accuracy, bitstream length L should be large enough to have the final result converged to

a value with acceptable approximation error. To address this limitation, a new approach

quasi-stochastic bit sequence generation, leveraging FPGA implementation of low-

discrepancy (LD) bitstreams for faster convergence has been proposed in [11].

2.2. QUASI-STOCHASTIC BIT SEQUENCE GENERATION

In this approach, the LD sequence and distributed memory elements of the FPGAs

(i.e., the LUTs are used for designing the SNGs) [11]. Compared to conventional hardware

86

pseudo random number generation scheme such as LFSR methodology, LD sequences

prevent the occurrence of random fluctuation by uniformly spicing the 0s and 1s in the

stochastic bit streams [21]. They allow a fraction of the points inside any subset of [0, 1)

to be as close as possible, such that uniformity is maintained between the low-discrepancy

points [11]. This helps to reduce gaps and clustering points as illustrated in Figure 2.

Figure 2. Distribution of pseudo-random points (top) and LD points (bottom) in the unit

square [22]

In this QSNG methodology, the stochastic sequence is obtained by multiplying the

pre-computed fixed direction vectors with binary numbers [11]. The general structure for

generating the binary base two LD sequence consists of bit-wise XOR gates, a

multiplication circuit, and RAM to store the directional vectors. In the multiplication

circuit, each bit from the counter output is multiplied by each n-bit direction vector to

produce n-bit intermediate direction vectors [11].

87

The bit-wise XOR-ing of these n-bit intermediate direction vectors will result in n-

bit LD sequence. At the comparator, these LD sequences are compared with the input

binary numbers to generate stochastic number [11]. For example, to generate an SS of bit

length of 256 (2 8), eight-bit length direction vectors, which can generate an eight-bit length

LD sequence every clock cycle, are required. In summary, SNG plays an important role in

determining the SC properties such as size and computation time. In a LFSR-based SNG,

L clock cycles are required to fully generate an SS of length L bits [19]. On the other hand,

the length of the SS in QSNG methodology determines the size of the binary counter, which

in turn determines the computation time [11]. With energy becoming the predominant

factor in the current computing systems, novel techniques to address this limitation is

required.

 Therefore, the primary focus of this work is to present an energy-efficient SC

approach for image processing application based on the proposed QSNG methodology. A

systematic approach called EQSNG (energy-efficient quasi-stochastic number generation)

is proposed that minimizes the energy consumption by detecting the lowest number of

clock cycles for a specified accuracy. This methodology is used to assess SC’s accuracy in

various test images. To the best of our knowledge, this is the only SC design that

outperforms its conventional LFSR-based SC in terms of energy-performance scalability.

The energy-performance scalability of SC based on QSNG is discussed in detail in Section

3.

88

3. ENERGY PERFORMANCE SCALABILITY OF NOVEL QUASI-

STOCHASTIC COMPUTING APPROACH

We begin this section by discussing major factors affecting the accuracy of a

processed image. Next, the effect of computation time on accuracy and energy

consumption is demonstrated. Lastly, the proposed energy efficient algorithm that

introduces energy-performance scalability in SC is discussed in detail. In most of the image

processing techniques, the quality of the processed image is determined by its accuracy.

Accuracy can be quantified using several error metrics, such as maximum error, mean

square error (MSE), and so on [23]. In this work, PSNR is used to quantify the acceptability

of noisy image. It is measured in the unit of dB and determines the similarities between

two images (e.g., input image and processed output image). PSNR value can be calculated

by Equation 1 [23]:

 𝑃𝑆𝑁𝑅 = 10 𝑙𝑜𝑔10
𝑀𝐴𝑋𝐼

2

𝑀𝑆𝐸
 (1)

where 𝑀𝑆𝐸 =
1

𝑚𝑛
∑ ∑ ⎸I(i, j) − K(i, j) ⎸2𝑛−1

𝑗=0
𝑚−1
𝑖=0 is the mean square error between the

error-free and the erroneous image, MAXI is the maximum image pixel value (e.g., 255 in

8-bit grayscale image), m and n represent the width and height of the target image in terms

of the number of pixels, and I(i, j) and K(i, j) represent the pixel values of the error-free

image and the erroneous/noisy image, respectively. For the gray scale images, MSE is

determined based on their brightness values.

As seen from Equation 1, MAXI plays an important role in determining the

accuracy of the image and the length of the SS. According to [11, 19], high precision (in

89

terms of accuracy) output can be achieved when an SC circuit operates on a large number

of stochastic bit streams. Since each bit of an SS takes a clock cycle to be processed,

computation time linearly increases with the increase in the size of the stochastic bit stream.

Therefore, with increasing accuracy, computation time tends to increase. Note the

computation time refers to the total number of clock cycles required to generate output SS.

In physics, power is how fast energy is used or transmitted and power is calculated as the

amount of energy divided by the time it took to use the energy. Its unit is the watt, which

is one joule per second of energy used. Likewise, power is the amount of energy used per

each unit time (i.e., 126 clock cycles) in a clocked digital circuits. Then, energy can be

calculated by multiplying power by the total number of clock cycles used. Therefore, the

number of clock cycles and energy consumption are proportional. In a conventional digital

circuit designed to process data given in binary radix encoding, energy-performance

scalable computing is quite limited, as the total number of clock cycles needed to process

inputs to generate output is solely determined by how the circuit is designed and optimized.

Also, power consumed per clock cycle is purely dependent upon the complexity of the

circuit. Besides, stochastic computing has much higher inherent potential for efficient

utilization of energy-performance scalability. The term energy-performance scalability in

this paper refers to the fact that when accuracy is high, energy consumption will be high.

However, for many image processing applications, a desirable accuracy is more than

enough. Therefore, savings in energy can be achieved for acceptable accuracy. If more

clock cycles are used, more energy will be needed, but higher quality output will result and

vice versa. Such an inherent tradeoff can be beneficial in certain application domains such

as image processing and artificial neural networks where quick low-power approximation

90

is desired. The proposed quasi-stochastic computing approach is to address the slow

convergence problem of conventional Stochastic computing while offering excellent

energy-performance scalability.

To prove that the proposed approach is viable, an edge detection scheme is

performed on the gray scale image “clock.” The impact of computation time on accuracy

and energy is depicted in Figure 3. As seen from the graph, the accuracy in terms of PSNR

of the image and the energy consumption tends to increase linearly with the number of

clock cycles. Hence, it is practical to choose the minimum number of clock cycles that can

satisfy the minimum required accuracy for the best possible energy-performance balance.

To address this energy-accuracy trade-off, we propose an energy-accuracy scalable

EQSNG design that can determine the number of iterations based on the acceptable PSNR

threshold for an image.

Figure 3. Accuracy and energy consumption during edge detection of clock test image

91

Figure 4. Structure of EQSNG

The acceptability of the target image can be achieved by just comparing the

equivalent error rate with the corresponding acceptable error rate threshold. This

acceptable error rate threshold is assumed to be a user-defined value in this work. The

general design of the energy efficient QSNG model (EQSNG) is depicted in Figure 4. The

optimal number of iterations is calculated based on the user-defined peak signal-to-noise

ratio (PSNR). The process to estimate optimal number of iterations is shown in Algorithm

1. The first step is to store the pre-computed direction vectors in the random-access

memory (e.g., look up tables of the FPGA). Then, each bit of n-bit directional vectors is

multiplied with the n-bit binary counter output using an AND gate. The resulting binary

numbers are XORed up to obtain the final LD sequence. This LD sequence is compared to

the binary input value to generate an SS on which stochastic operations are performed. The

resultant stochastic output is again converted to binary number at the stochastic binary

conversion block. This post-processed binary output is processed in MATLAB to

determine the image quality (i.e., accuracy).

92

To determine the image accuracy, the mean square error (MSE) that accurately

measures the error in the reference image is calculated first. The resultant MSE value is

used for calculating PSNR (PSNRCurrent). If the calculated PSNRCurrent is less than the

user defined target PSNR value (PSNRTarget), the counter is incremented and the whole

process is carried out till the desired PSNR is achieved. Since the counter is incremented

by increasing the clock cycles, the total energy consumption is calculated by multiplying

the power by the number of clock cycles. As the proposed approach can converge at a much

faster rate, they require few clock cycles to achieve the desired PSNR value, which in turn

further reduces the energy consumption.

Algorithm 1: EQSNG Algorithm

Data: ImageInput, PSNRTarget

Result: Energy, ClockCycles

Initialization;

ClockCycles = 0;

PSNRCurrent = 0;

LOOP: if PSNRCurrent < PSNRTarget then

if ClockCycles == 0 then

Calculate Power;

end

ClockCycles += 1;

Generate ImageOutput;

Calculate PSNRCurrent;

Go to Loop

else

Energy = Power × ClockCycles;

end

93

Hence, the proposed approach provides acceptable image quality with fewer clock

cycles and less energy consumption. Compared to the conventional SC approach based on

LFSR, the EQSNG methodology can generate an acceptable quality edge detection image

with excellent energy efficiency. To demonstrate and verify the energy-performance

scalability of the EQSNG approach, the proposed methodology is implemented on a

stochastic edge detection circuit for 8-bit grayscale image processing. In the next section,

the proposed methodology is applied to several test images and comparative results are

presented and analyzed.

4. SIMULATION-BASED ENERGY-PERFORMANCE SCALABILITY

ANALYSIS

This section compares the results for various test images implemented using

conventional LFSR and EQSNG approaches. These test images on which edge detection

is performed are shown in Figure 5, which are called clock, crowd, and aerial. The edge

detection circuit based on Robert’s cross algorithm [5] was used for the proposed energy-

performance scalability analysis. To study the impact of the proposed approach on energy

consumption, target PSNR values are arbitrarily selected. Next, the computation time (i.e.,

number of clock cycles) required to achieve the specified accuracy is determined and

corresponding energy consumption is calculated.

The circuits have been realized on a Xilinx Virtex 4 SF FPGA (XC4VLX15) device

and synthesized using Xilinx ISE 12.1 design suite. The QSNG uses the LD sequence and

distributed memory elements (LUTS) of the FPGAs for designing the SNGs. Therefore, an

FPGA is used. The performance of the proposed technique has been extensively evaluated

94

using a 8-bit grayscale images (i.e., each pixel value is represented using a stochastic bit-

length of 28 = 256 bits) as an example in this section. A cycle-accurate simulator has been

implemented in MATLAB to generate simulation results for the proposed technique. The

pixel values of the images were extracted using MATLAB and were given as the 8-bit

binary input to the stochastic edge detection circuit. Then, the output extracted from the

post-synthesis simulation results was processed in MATLAB to determine the accuracy.

Figure 5. Open source test images used for edge detection: (a) clock (b) crowd (c) aerial

The circuits have been realized on a Xilinx Virtex 4 SF FPGA (XC4VLX15) device

and synthesized using Xilinx ISE 12.1 design suite. The QSNG uses the LD sequence and

distributed memory elements (LUTS) of the FPGAs for designing the SNGs. Therefore, an

FPGA is used. The performance of the proposed technique has been extensively evaluated

using a 8-bit grayscale images (i.e., each pixel value is represented using a stochastic bit-

length of 28 = 256 bits) as an example in this section. A cycle-accurate simulator has been

implemented in MATLAB to generate simulation results for the proposed technique. The

pixel values of the images were extracted using MATLAB and were given as the 8-bit

95

binary input to the stochastic edge detection circuit. Then, the output extracted from the

post-synthesis simulation results was processed in MATLAB to determine the accuracy.

To quantitatively demonstrate and verify the performance of the proposed

approach, energy consumption is determined by using the following simulation

parameters: 8-bit grayscale images and its desired PSNR value. Table 1 shows the number

of clock cycles and energy consumed for achieving the desired quality of image. As per

the results shown in the table, energy consumption for the proposed EQSNG methodology

is significantly lower than the traditional approach (LFSR) for the same target PSNR. As

seen from the Table 1, the number of clock cycles for EQSNG to achieve the desired quality

of the image is considerably less than LFSRs. The proposed EQSNG implementation of

the edge detection circuit reduces the computation time by a factor of 3.5 times on average

when compared to LFSR based approach. For instance, to achieve a PSNR of 31.53 dB for

the Aerial test image, the energy consumed by the EQSNG and LFSR approach are 0.14

µJ and 0.63 µJ, which is a substantial saving.

To quantitatively demonstrate and verify the performance of the proposed

approach, energy consumption is determined by using the following simulation

parameters: 8-bit grayscale images and their desired PSNR value. Table 1 shows the

number of clock cycles and amount of energy consumed for achieving the desired quality

of image. As per the results shown in the table, energy consumption for the proposed

EQSNG methodology is significantly lower than the traditional approach (LFSR) for the

same target PSNR. As seen from Table 1, the number of clock cycles for EQSNG to

achieve the desired quality of the image is considerably less than LFSRs. The values in

96

Table 1, are obtained by designing both the LFSR and EQSNG models and verified via

simulation studies.

The proposed EQSNG implementation of the edge detection circuit reduces the

computation time by a factor of 3.5 times on average when compared to the LFSR based

approach. For instance, to achieve a PSNR of 31.53 dB for the aerial test image, the energy

consumed by the EQSNG and LFSR approach are 0.14 µJ and 0.63 µJ, which is a

substantial saving. Therefore, the energy consumption reduces by 77.7%. Similarly, the

energy consumed by LFSR and EQSNG methodologies to achieve a PSNR of 28 dB for

the clock test image is 0.054 µJ and 0.05 µJ energy. Thus, the proposed approach reduces

energy consumption by 12.2% as presented. Compared to the LFSR approach, for the

Crowd test image with a PSNR of 40.30 dB, the EQSNG approach saves about 18.6% of

energy. The, reduction in energy consumption for various PSNR values by using the

proposed approach is depicted in Figure 6.

Figure 6. Reduction in energy consumption for various PSNR values using EQSNG

methodology compared to LFSR approach

97

Table 1. Table showing the no of clock cycles and energy consumption for various PNSR

Test

Image

Approach

 Target PSNR (dB)

22.6 25.13 28.13 31.53 35.34 40.30

Aerial

EQSNG
of clk cycles 7 10 14 26 47 77

Energy (µJ) 0.038 0.054 0.0076 0.14 0.25 0.419

LFSR
of clk cycles 17 23 100 198 225 240

Energy (µJ)

0.054 0.073 0.32 0.63 0.72 0.768

Clock

EQSNG
of clk cycles 4 7 10 19 30 53

Energy (µJ) 0.022 0.038 0.05 0.1 0.16 0.29

LFSR # of clk cycles 4 10 18 37 95 151

Energy (µJ) 0.013 0.032 0.057 0.11 0.3 0.48

Crowd

EQSNG
of clk cycles 8 13 18 28 45 80

Energy (µJ) 0.043 0.07 0.098 0.15 0.24 0.43

LFSR
of clk cycles 14 22 50 70 112 165

Energy (µJ) 0.044 0.07 0.16 0.224 0.36 0.53

The proposed EQSNG implementation of the edge detection circuit reduces the

computation time by a factor of 3.5 times on average when compared to the LFSR based

approach. For instance, to achieve a PSNR of 31.53 dB for the aerial test image, the energy

consumed by the EQSNG and LFSR approach are 0.14 µJ and 0.63 µJ, which is a

substantial saving. Therefore, the energy consumption reduces by 77.7%. Similarly, the

energy consumed by LFSR and EQSNG methodologies to achieve a PSNR of 28 dB for

the clock test image is 0.054 µJ and 0.05 µJ energy. Thus, the proposed approach reduces

energy consumption by 12.2% as presented. Compared to the LFSR approach, for the

Crowd test image with a PSNR of 40.30 dB, the EQSNG approach saves about 18.6% of

energy. The, reduction in energy consumption for various PSNR values by using the

proposed approach is depicted in Figure 6.

98

Figure 7. Edge detection on the clock test image using the proposed EQSNG SC

apporach: (a) PSNR = 22.2 dB; 4 clock cycles. (b) PSNR = 25.13 dB; 7 clock cycles. (c)

PSNR = 28.12 dB; 10 clock cycles. (d) PSNR = 31.53 dB; 18 clock cycles. (e) PSNR =

35.34 dB; 35 clock cycles. (f) PSNR = 40.30 dB; 55 clock cycles

Figure 8. Edge detection on the clock test image using conventional LFSR-based SC

apporach: (a) PSNR = 22.2 dB; 4 clock cycles. (b) PSNR = 25.13 dB; 10 clock cycles. (c)

PSNR = 28.12 dB; 18 clock cycles. (d) PSNR = 31.53 dB; 37 clock cycles. (e) PSNR =

35.34 dB; 95 clock cycles. (f) PSNR = 40.30 dB; 151 clock cycles

99

Figure 9. Edge detection on the crowd test image using the proposed EQSNG SC

apporach: (a) PSNR = 22.2 dB; 8 clock cycle. (b) PSNR = 25.13 dB; 13 clock cycles. (c)

PSNR = 28.12 dB; 18 clock cycles. (d) PSNR = 31.53 dB; 28 clock cycles. (e) PSNR =

35.34 dB; 45 clock cycles. (f) PSNR = 40.30 dB; 80 clock cycles

Figure 10. Edge detection on the crowd test image using conventional LSFR-based SC

apporach: (a) PSNR = 22.2 dB; 14 clock cycles. (b) PSNR = 25.13 dB; 22 clock cycles.

(c) PSNR = 28.12 dB; 50 clock cycles. (d) PSNR = 31.53 dB; 70 clock cycles. (e) PSNR

= 35.34 dB; 112 clock cycles. (f) PSNR = 40.30 dB; 165 clock cycles

100

Figure 11. Edge detection on the aerial test image using the proposed EQSNG SC

apporach: (a) PSNR = 22.2 dB; 7 clock cycles. (b) PSNR = 25.13 dB; 10 clock cycles. (c)

PSNR = 28.12 dB; 15 clock cycles. (d) PSNR = 31.53 dB; 26 clock cycles. (e) PSNR =

35.34 dB; 47 clock cycles. (f) PSNR = 40.30 dB; 77 clock cycles

Figure 12. Edge detection on the aerial test image using conventional LSFR-based SC

apporach: (a) PSNR = 22.2 dB; 17 clock cycles. (b) PSNR = 25.13 dB; 23 clock cycles.

(c) PSNR = 28.12 dB; 100 clock cycles. (d) PSNR = 31.53 dB; 198 clock cycles. (e)

PSNR = 35.34 dB; 225 clock cycles. (f) PSNR = 40.30 dB; 248 clock cycles

101

From Table 1, it should be noticed that as the PSNR (i.e., accuracy) increases the

number (#) of clock cycles utilized also increases. Therefore, the higher the computation

time, the better the quality of the image as illustrated in Figures 7–12. These figures show

that the proposed approach utilizes a smaller number of clock cycles to achieve the same

accuracy as the LFSR approach due to faster stochastic value convergence. Therefore,

using the proposed EQSNG methodology, execution time and energy consumed can be

reduced while achieving an acceptable level of accuracy.

In summary, 12%–78% reduction in the energy consumption is observed.

Moreover, compared to LFSR based approach, the proposed EQSNG implementation on

average reduces the computation time by a factor of 2.5 times. This excellent energy-

quality scalability of the proposed approach may also be beneficial to the other application

domains (e.g., signal processing, machine vision, and deep learning) where efficient

reduced-precision computation is desired.

5. CONCLUSION

In this paper, a novel EQSNG is introduced and verified via extensive simulation-

based analysis where low computation time and energy consumption are achieved. The

proposed approach is efficient enough to offer 12–60% reduction in execution time and a

12–78% decrease in energy consumption relative to the conventional LFSR counterpart.

This considerable enhancement in terms of time and energy will further promote the

viability of SC over conventional approaches in application domains such as image

processing and machine learning where low-power approximation fast is desired.

102

BIBLOGRAPHY

[1] Alaghi, A.; Qian, W.; Hayes, J.P. The promise and challenge of stochastic

computing. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2017, 37, 1515–

1531.

[2] Gaines, B.R. Stochastic computing. In Proceedings of the Spring Joint Computer

Conference, Atlantic City, NY, USA, 18–20 April 1967; ACM: New York, NY,

USA, 1967; pp. 149–156.

[3] Gaines, B. Stochastic computing systems. In Advances in Information Systems

Science; Springer: Berlin, Germany, 1969; pp. 37–172.

[4] Moons, B.; Verhelst, M. Energy-Efficiency and Accuracy of Stochastic Computing

Circuits in Emerging Technologies. Emerg. Sel. Top. Circuits Syst. IEEE J. 2014, 4,

475–486.

[5] Alaghi, A.; Li, C.; Hayes, J.P. Stochastic circuits for real-time image-processing

applications. In Proceedings of the 50th Annual Design Automation Conference,

Austin, TX, USA, 29 May–7 June 2013; ACM: New York, NY, USA, 2013, p. 136.

[6] Naderi, A.; Mannor, S.; Sawan, M.; Gross, W.J. Delayed stochastic decoding of

LDPC codes. IEEE Trans. Signal Process. 2011, 59, 5617–5626.

[7] Aliee, H.; Zarandi, H.R. Fault tree analysis using stochastic logic: A reliable and high

speed computing. In Proceedings of the IEEE 2011 Proceedings-Annual Reliability

and Maintainability Symposium (RAMS), Lake Buena Vista, FL, USA, 24–27

January 2011; pp. 1–6.

[8] Li, P.; Lilja, D.J. Using stochastic computing to implement digital image processing

algorithms. In Proceedings of the 2011 IEEE 29th International Conference on

Computer Design (ICCD), Amherst, MA, USA, 9–12 October 2011; pp. 154–161.

[9] Chang, Y.N.; Parhi, K. Architectures for digital filters using stochastic computing.

In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), Vancouver, BC, Canada, 26–31 May 2013; pp. 2697–

2701.

[10] Saraf, N.; Bazargan, K.; Lilja, D.J.; Riedel, M.D. IIR filters using stochastic

arithmetic. In Proceedings of the 2014 IEEE Design, Automation and Test in Europe

Conference and Exhibition (DATE), Dresden, Germany, 24–28 March 2014; pp. 1–

6.

[11] Seva, R.; Metku, P.; Choi, M. Energy-Efficient FPGA-Based Parallel Quasi-

Stochastic Computing. J. Low Power Electron. Appl. 2017, 7, 29.

103

[12] Li, P.; Lilja, D.J. Accelerating the performance of stochastic encoding-based

computations by sharing bits in consecutive bit streams. In Proceedings of the 2013

IEEE 24th International Conference on Application-Specific Systems, Architectures

and Processors (ASAP), Washington, DC, USA, 5–7 June 2013; pp. 257–260.

[13] Ichihara, H.; Ishii, S.; Sunamori, D.; Iwagaki, T.; Inoue, T. Compact and accurate

stochastic circuits with shared random number sources. In Proceedings of the 2014

32nd IEEE International Conference on Computer Design (ICCD), Seoul, Korea, 19–

22 October 2014; pp. 361–366.

[14] Alaghi, A.; Hayes, J.P. A spectral transform approach to stochastic circuits. In

Proceedings of the 2012 IEEE 30th International Conference on Computer Design

(ICCD), Montreal, QC, Canada, 30 September–3 October 2012; pp. 315–321.

[15] Alaghi, A.; Hayes, J. STRAUSS: Spectral Transform Use in Stochastic Circuit

Synthesis. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst. 2012, 34, 1770–1783.

[16] Chen, T.H.; Hayes, J.P. Equivalence among Stochastic Logic Circuits and its

Application to Synthesis. IEEE Trans. Emerg. Top. Comput. 2016, 7, 67–79.

[17] Kwok, S.H.; Lam, E.Y. FPGA-based high-speed true random number generator for

cryptographic applications. In Proceedings of the TENCON 2006—2006 IEEE

Region 10 Conference, Hong Kong, China, 14–17 November 2006; pp. 1–4.

[18] Majzoobi, M.; Koushanfar, F.; Devadas, S. FPGA-Based True Random Number

Generation Using Circuit Metastability with Adaptive Feedback Control; CHES;

Springer: Berlin, Germany, 2011; pp. 17–32.

[19] 9. Alaghi, A.; Hayes, J.P. Survey of stochastic computing. ACM Trans. Embed.

Comput. Syst. (TECS) 2013, 12, 92.

[20] Manohar, R. Comparing Stochastic and Deterministic Computing (accessed on 15

November 2019).

[21] Alaghi, A.; Hayes, J.P. Fast and accurate computation using stochastic circuits. In

Proceedings of the Conference on Design, Automation & Test in European Design

and Automation Association, Dresden, Germany, 24–28 March 2014; p. 76.

[22] Wikipedia. Low-Discrepancy Sequence. Available online: (accessed on 15

November 2019).

[23] Hsieh, T.Y.; Peng, Y.H.; Ku, C.C. An Efficient Test Methodology for Image

Processing Applications Based on Error-Tolerance. In Proceedings of the 2013 22nd

Asian Test Symposium, Jiaosi Township, Taiwan, 18–21 November 2013; pp. 289–

294.

104

SECTION

2. CONCLUSION

In this research work methodologies to to improve reliability of 3D heterogeneous

processors (3DHP) and to reduce the area overhead of asynchronous designs have been

presented. In the first work, a novel adaptive multi-path BCH decoder design approach is

proposed and validated to address the bit error variation issue caused by hotspots in 3DHP.

The proposed design has multiple decoding paths with variable decoding latency and area

trade-off. For each word read from DRAM, thermal gradient data from the on-chip

temperature sensors is utilized to estimate the expected number of error bits. Then, the

fastest possible decoding path which is able to correct the expected number of error bits is

adaptively selected to reduce the overall decoding time. Also, a parallel decoding approach

leveraging the multiple independent decoding paths of the proposed decoder design is also

proposed and validated in this work.

The next part of this work summarizes how NCL designs realized using convention

static CMOS technique causes a large area overhead compared to its synchronous

counterparts. To address this limitations, two novel approaches, HYBRID and GNCL were

proposed. Both approaches shows a 7% - 14% reduction in the transistor count.

Furthermore, GNCL methodology shows a 14% - 30% decrement in the dynamic power

consumption when compared to the conventional CMOS NCL counterpart. This

considerable enhancement in terms of area and power will further increase the use of NCL

in asynchronous digital designs, competing with conventional synchronous designs.

105

BIBLOGRAPHY

[1] Andrade, Hugo, and Ivica Crnkovic. "A review on software architectures for

heterogeneous platforms." In 2018 25th Asia-Pacific Software Engineering

Conference (APSEC), pp. 209-218. IEEE, 2018.

[2] S. Borkar, “Getting Gigascale Chips: Challenges and Opportunities in Continuing

Moore’s Law,” Queue, vol. 1, no. 7, pp. 26–33, 2003.

[3] M. Horowitz, “Scaling, Power and the Future of CMOS,” in Proceedings of the 20th

International Conference on VLSI Design held jointly with 6th International

Conference: Embedded Systems. Washington, DC, USA: IEEE Computer Society,

2007, p. 23.

[4] Lee, Seok-Hee. "Technology scaling challenges and opportunities of memory

devices." In 2016 IEEE International Electron Devices Meeting (IEDM), pp. 1-1.

IEEE, 2016.

[5] B. M. Rogers et al., “Scaling the Bandwidth Wall: Challenges in and Avenues for

CMP Scaling,” in ISCA’09: Proceedings of the 36th Annual International

Symposium on Computer Architecture. New York, NY, USA: ACM, 2009, pp. 371–

382.

[6] S. Mittal and J. S. Vetter, “A survey of cpu-gpu heterogeneous computing

techniques,” ACM Comput. Surv. vol. 47, no. 4, pp. 69:1–69:35, Jul. 2015.

[7] R. Brodtkorb, C. Dyken, T. R. Hagen, J. M. Hjelmervik, and O. O. Storaasli, “State-

of-the-art in heterogeneous computing,” Sci. Program., vol. 18, no. 1, pp. 1–33, Jan.

2010.

[8] S. Damaraju, V. George, S. Jahagirdar, T. Khondker, R. Milstrey, S. Sarkar, S. Siers,

I. Stolero, and A. Subbiah, “A 22nm IA multi-CPU and GPU System-on-Chip,” in

Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2012 IEEE

International. IEEE, 2012, pp. 56–57.

[9] K. Bent, “AMD Touts Trinity APU,” CRN, no. 1321, p. 36, 2012.

[10] J. Kim, S. Seo, J. Lee, J. Nah, G. Jo, and J. Lee, “OpenCL as a unified programming

model for heterogeneous CPU/GPU clusters,” in Proceedings of the 17th ACM

SIGPLAN symposium on Principles and Practice of Parallel Programming. ACM,

2012, pp. 299–300.

106

[11] J. Lee, J. Kim, S. Seo, S. Kim, J. Park, H. Kim, T. Dao, Y. Cho, S. Seo, S. Lee et al.,

“An OpenCL framework for heterogeneous multicores with local memory,” in

Proceedings of the 19th international conference on Parallel architectures and

compilation techniques. ACM, 2010, pp. 193–204.

[12] S. Naffziger, “Invited plenary talk: Technology impacts from the new wave of

architectures for media-rich workloads,” in IEEE VLSI Technology Symposium,

2011.

[13] P. Wilkerson, M.Furmanczyk, and M. Turowski, “Compact Thermal Modeling

Analysis for 3D Intergrated Circuits,” International Conference Mixed Design of

Integrated Circuits and Systems, 2004.

[14] M. Hsiao, “A class of optimal minimum odd-weight-column SEC-DED codes,” IBM

Journal of Research and Development, vol. 14, no. 4, pp. 395–401, 1970.

[15] R. Bose and D. Ray-Chaudhuri, “On a class of error correcting binary group codes,”

Information and control, vol. 3, no. 1, pp. 68–79, 1960.

[16] S. M. T. Moreira, M. Arendt, F. G. Moraes, and N. L. V. Calazans, “Static differential

ncl gates: Toward low power,” IEEE Transactions on Circuits and Systems II:

Express Briefs, vol. 62, no. 6, pp. 563–567, Jun. 2015.

[17] N. Nemati, P. Beckett, M. C. Reed, and K. Fant, “Clock-less DFT-less test strategy

for null convention logic,” IEEE Transactions on Emerging Topics in Computing,

vol. 6, no. 4, pp. 460–473, Oct. 2018.

[18] J. Sudhakar, Y. Alekhya, and K. S. Syamala, “A dual-rail delay-insensitive ieee-754

single-precision null convention floating point multiplier for low-power

applications,” in Innovations in Electronics and Communication Engineering.

Springer, Jan. 2018.

[19] M. Chang, P. Yang, and Z. Pan, “Register-less null convention logic,” IEEE

Transactions on Circuits and Systems II: Express Briefs, vol. 64, no. 3, pp. 314–318,

Mar. 2017.

[20] K. Fant and S. Brandt, “Null convention logicTM: a complete and consistent logic

for asynchronous digital circuit synthesis,” International Conference on Application

Specific Systems, Architectures and Processors, pp. 261–273, 1996.

[21] K. M. Fant and S. A. Brandt, “Null convention logic: A complete and consistent logic

for asynchronous digital circuit synthesis,” in Proceedings of the IEEE International

Conference on Application-Specific Systems, Architectures, and Processors, p. 261,

1996.

[22] S. C. Smith, “Speedup of null convention digital circuits using null cycle reduction,”

Journal of System Architecture, vol. 52, no. 7, pp. 411–422, 2006.

107

[23] J. McCardle and D. Chester, “Measuring an asynchronous processor’s power and

noise,” Proceedings of the Synopsys User Group Conference, 2001.

[24] S. K. Bandapati and S. C. Smith, “Design and characterization of null convention

arithmetic logic units,” Microelectron. Eng., vol. 84, pp. 280–287, Feb. 2007.

[25] S. C. Smith, “Design of a null convention self-timed divider,” in The International

Conference on VLSI, vol. 1, pp. 447–453, 2004.

[26] L. Zhou and S. Smith, “Speedup of a large word-width high-speed asynchronous

multiply and accumulate unit,” in 52nd IEEE International Midwest Symposium on

Circuits and Systems, pp. 499 –502, Aug. 2009.

[27] P. A. Beerel, R. O. Ozdag, and M. Ferretti, A designer’s guide to asynchronous VLSI.

Cambridge University Press, 2010.

108

VITA

Prashanthi Metku received her Bachelors Degree in Electronics and

Communication Engineering from JNTUH, Hyderabad, India, in 2011. She earned her

Masters of Technology Degree in Electronics Engineering from Pondicherry University,

Pondicherry, India, in 2014. She recieved her Doctor of Philosophy in Computer

Engineering from Missouri University of Science and Technology in May 2020. Her

research interests included computer architecture, error correction codes, ASIC design,

embedded design and stochastic computing.

	Novel approaches for reliable and efficient circuit design
	Recommended Citation

	II

