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ABSTRACT 

In this research work, a suite of approaches are presented to improve reliability of 

3D heterogeneous processors (3DHP) and to reduce the area overhead of asynchronous 

designs. This work is primarily divided into two parts. In the first part, we present an 

approach for improving reliability in 3DHP. Typically, in 3DHP, thermal hotspots 

introduce spatial and temporal variability that results in wide bit error variation in DRAM 

dies. To address this issue multi- path BCH decoder is introduced. Based on the thermal 

gradient data generated by on-chip temperature sensors, the proposed methodology 

specializes in adaptively estimating the number of errors in the incoming word and also 

selecting the fast decoding path to correct these errors. Thus, provides DRAM error 

protection with minimal decoding latency. In the next part of this work, we focus on 

reducing the area overhead of asynchronous paradigm-driven null convention logic (NCL) 

design using Gate Diffusion Input (GDI). We first develop technique for realizing NCL 

gates. In the process, we demonstrate that there is a voltage swing at the output that may 

introduces errors. To address this limitation, a HYBRID approach is introduced where 

conventional complementary metal oxide semiconductor (CMOS) technology is integrated 

with GDI methodology. With this approach, we demonstrate that we can reduce the 

transistor count (TC) of the NCL designs while addressing the limitations due to voltage 

drop.  To further reduce the TC of the NCL designs, GNCL is developed. This approach 

utilizes the regenerative buffers to overcome the performance degradation and also reduce 

the area overhead. Overall in this dissertation, we demonstrate reductions in area and power 

overheads for asynchronous designs. 
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SECTION 

1. INTRODUCTION 

For the past few decades, scientists have been scaling devices to increasingly 

smaller feature sizes for enhanced performance of complementary metal-oxide 

semiconductor (CMOS) technology, thereby increasing the functionality of integrated 

circuits and systems [1, 2, 3]. However, with the exponential growth of transistor densities, 

power efficiency has become primary determinant of performance in todays’ 

semiconductor industry [4]. In addition to power concerns, off-chip bandwidth trends are 

also expected to have a major impact on the scalability of the future designs [5]. In 

particular, the demand for high computing performance has increased in accordance with 

the requirements for smaller and more energy efficient devices. One way to obtain high 

computation performance is by increasing the robustness of a single processor [7]. This 

can be achieved by increasing its clock frequency and mounting more transistors such that 

more calculations could be executed. However, with the physical limits of such processors 

being fully exploited and an advanced version of computing strategy, heterogeneous 

computing i.e. using heterogeneous or hybrid platform containing more than one type of 

processor was introduced such that different types of tasks can be executed by processors 

that are specialized in them [7].  

Recently, many of highly-ranked Performance computing systems include discrete 

Graphics Processing Unit accelerators (GPU) [8]. Systems where discrete GPUs are 

connected to CPUs over PCI-E bus, however, frequently suffer from a significant data copy 



 

 

2 

overhead between two processors. To address this limitation, researchers in industry and 

academia are trying to seek a solution in a single-chip heterogeneous processors where 

CPU and GPU share a unified memory hierarchy [9]. However, parallelism and scalability 

of such heterogeneous processors are still severely constrained by limited bandwidth, high 

latency, and energy consumption of offchip DRAM [10, 11]. To address these bottlenecks, 

the processor architecture is evolving toward a 3D heterogeneous integration (commonly 

termed as 3DIC) [12]. In 3DIC four heterogeneous dies (i.e., CPU, GPU, analog and 

DRAM) are vertically interconnected by a massive number of through-Silicon Vias 

(TSVs). Compared with the traditional off-chip interconnects, TSVs enable a massive 

number of vertical channels among CPU, GPU and DRAM dies while providing much 

shorter distance of data travel [12, 13]. Therefore, 3DHP technology is anticipated to 

inherently provide much higher bandwidth, low latency and power consumption. Despite 

numerous unprecedented benefits, however, there is a big challenge which is a thermal 

reliability issue [13]. 

 A significantly higher power density, thinned substrate, and low thermal 

conductivity of inter-layer material all make heat dissipation a serious problem that 

threatens circuit reliability and performance in 3DIC [13]. Various design-time solutions 

are available to tackle hotspots in 3DIC designs but the transient nature of thermal hotspots 

cause the design time solutions less effective. The increase in power density of 3D stacking 

causes an elevation in the temperature, which nominally results in an exponential rise in 

charge leakage of DRAM cells [13]. Therefore, requires significant increase in refresh 

frequency to retain data at the expense of additional power and performance overhead. 

Also, the spatial and temporal variability in temperature (i.e., hotspots) further complicates 
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the DRAM reliability issues thereby requiring error detection and correction (EDAC) 

techniques.   

The conventional 2D EDA assume a near constant bit error rate (BER) over time. 

Hence, EDAC engine does not need to be designed to adapt to a varying BER over time. 

For instance, state-of-the-art SECDED (Single Error Correction, Double Error Detection) 

code [14] and buses with CRC (Cyclic Redundancy Check) code [15] cannot be directly 

applied to the proposed 3DHP, since it is anticipated to have a varying BER and TSV 

failure rate over time caused by the thermally-induced reliability issues. Therefore, a novel 

approach to tackle this limitation is presented in the first part i.e. paper I of this dissertation.  

The second and third part of this dissertation discuss about the asynchronous 

paradigm, null convention logic (NCL). The advantages, limitations and a methodology to 

address these challenges have also been part of the dissertation. Conventional synchronous 

logic with clocked structures have been dominating semiconductor industry over the past 

decades [16]. However, the continuous decreasing in the feature size and increasing 

operating frequency of integrated circuits (IC), clock-related issues such as clock skews, 

increased power at the clock edges, extra area, and layout complexity for clock distribution 

networks, and glitches are emerging as the dominant factor hindering increased 

performance [17]. These limitations have caused renewed interest asynchronous digital 

design. Asynchronous, clockless circuits require less power, generate less noise, and 

produce less electro-magnetic interference (EMI), compared to their synchronous 

counterparts, without degrading performance. Furthermore, delay-insensitive (DI) 

asynchronous paradigms have a number of additional advantages, especially when 

designing complex circuits, like Systems-on-a-Chip (SoCs), including substantially 
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reduced crosstalk between analog and digital circuits, ease of integrating multi-rate circuits, 

and facilitation of component reuse [18, 19].  

Null Convention Logic (NCL) is a delay-insensitive (DI) asynchronous. NCL was 

first proposed by Karl Fant and Scott Brandt in 1994 [20, 21], and further developed by 

Dr. Scott Smith’s research group [22]. NCL initially aimed at designing Application 

Specific Integrated Circuit (ASIC) and Very-large-scale Integration (VLSI) circuits with 

lower power, lower noise, and lower electromagnetic interference (EMI). Various NCL 

based circuits have shown these characteristics. An NCL based Motorola STAR08 

processor [23] shows the power and noise reduction up to 40% and 10dB, respectively, 

comparing to its synchronous counterpart. In [24], an 8-operation NCL ALUs was designed 

as a benchmark. The simulation result shows that the dual-rail NCL circuit consumes less 

power and other designs like NCL divider [25] and NCL multiply-and-accumulate unit 

[26] have shown the benefits of speed improvement and reduction in power consumption, 

noise, and EMI. However, the major drawback of NCL designs is that it requires a larger 

area compared with the conventional Boolean logic version. The area overhead is 

approximately 1.5 – 2 times as much as an equivalent synchronous design when using static 

CMOS gates, but less for semi-static CMOS gates [27].  

This dissertation proposes and demonstrates two novel approaches to address this 

limitation of NCL. These approaches when compared with the conventional static CMOS 

methodology show a significant reduction in the transistor count which in turn helps in 

reducing the area overhead. However, power and delay analysis in the first approach was 

not fully studied. Similarly, latency analysis of the second approach will be the part of the 

future work. In additional to these work, additional research has conducted in the area of 
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stochastic computing (SC) which is discussed in the fourth part of the dissertation. 

Traditionally, SC’s accuracy heavily depends on the stochastic bitstream length. Therefore, 

generating acceptable approximate results while minimizing the bitstream length is 

challenging, as energy consumption tends to linearly increase with bitstream length. To 

address this issue, a novel energy-performance scalable approach based on quasi-stochastic 

number generators is proposed and validated in this work.  
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PAPER 

I.  ADAPTIVE MULTI-PATH BCH DECODER TO ALLEVIATE HOTSPOT-

INDUCED DRAM BIT ERROR VARIATION IN 3D HETEROGENEOUS 

PROCESSOR 

ABSTRACT 

A 3D heterogeneous processor (commonly termed as 3DHP) integrates multiple 

processor (such as CPU/GPU) and DRAM dies, interconnected vertically by a massive 

number of Through-Silicon Vias (TSVs). The 3DHP is expected to address the limited 

bandwidth, high latency and energy consumption of off-chip DRAM. However, spatial and 

temporal variability due to hotspots in on-chip thermal gradient may result in wide bit 

error variation in DRAM dies. This work proposes a novel adaptive multi-path BCH 

decoder to efficiently address this issue. Instead of having a static BCH decoder designed 

from the worst-case bit error probability analysis, the proposed adaptive multi-path BCH 

decoder offers multiple decoding paths with varying target number of error bits to 

correct, which is estimated from the thermal gradient data generated by on-chip 

temperature sensors. Thus minimizes the overall decoding latency adaptively. The 

proposed approach has been verified by implementing an adaptive 4-path BCH decoder 

in FPGA hardware. A series of decoding performance evaluation data has been generated 

to demonstrate the efficiency of the proposed design. 
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1. INTRODUCTION 

Processors are evolving toward a 3D heterogeneous integration (3DIC) of CPU, 

GPU and DRAM dies vertically interconnected by TSVs (Through-Silicon Vias) to 

alleviate power, bandwidth and latency bottlenecks. Figure. 1 shows an example where 

four heterogeneous dies (i.e., CPU, GPU, analog and DRAM) are stacked and 

interconnected by TSVs. When compared with the traditional off-chip interconnects, TSVs 

enable a massive number of vertical channels along CPU, GPU and DRAM dies while 

proving a much shorter distance of data travel. Therefore, 3DHP technology is anticipated 

to inherently provide higher bandwidth, low latency and low power consumption. Despite 

the numerous unprecedented benefits, 3DHP face a big challenge which is thermal 

reliability issues. 

The conventional 2D integration/packaging technology is mature enough to assume 

a near constant bit error probability (BEP) over time in DRAM. Hence, the Error 

Detection and Correction (EDAC) engine does not need to be designed to adapt to a 

varying BEP over time. However, the same EDAC strategy cannot be directly applied to 

3DHP, since it is anticipated to have a varying BEP caused by hotspots (i.e., 

spatial/temporal variation in temperature). Various design-time solutions are available to 

tackle hotspots in 3DIC designs but the transient nature of thermal hotspots cause the 

design time solutions to be less effective. It is thus important to monitor the chip 

temperature during runtime using distributed temperature sensors to avoid potential 

temperature-induced failures. The main objective of this work is to propose and validate a 

novel adaptive multi-path BCH error correction decoder that provides just-enough DRAM 
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error protection to minimize the overall decoding latency. The proposed decoder can be 

coupled with on-chip distributed temperature sensor network to analyze the thermal 

gradient to adaptively tolerate spatial/temporal bit error variance in a  3DHP. 

 

 

Figure 1. 3D stacking of CPU, GPU, analog and DRAM dies using TSVs [1] 

 

This article is organized as follows. Preliminaries and review are given in Section 

2. Then, the proposed adaptive multi-path BCH decoder design is extensively discussed in 

Section 3. Design and performance evaluation data including the area and latency are 

included in Section 4. Finally, concluding remarks are made in Section 5. 

2. ARCHITECTURE  

 

 

In 3DHP, the increase in power density of 3D stacking causes an elevation in the 

temperature, which nominally results in an exponential rise in charge leakage of DRAM 

cells. Therefore, requires significant increase in refresh frequency to retain data at the 
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expense of additional power and performance overhead. Also, the spatial and temporal 

variability in temperature (i.e., hotspots) further complicates the DRAM reliability issues. 

The Leakage power of DRAM cell is modeled to exponentially increase with 

temperature, T, as Pleakage =  P0 . exp( −A / A − B)  where P0 is the room-temperature 

leakage power and parameters A and B are  empirical constants [2], [3]. The number of 

discharged cells in DRAM is proportional to the dissipation of the leakage power of cells. 

In [4], the relation between the error rate (i.e., the number of discharged cells divided by 

the total number of cells) and temperature is modeled as 𝐸𝐷𝑅𝐴𝑀  ∝  𝑃𝑙𝑒𝑎𝑘𝑎𝑔𝑒 where EDRAM 

is the error rate and Pleakage is a function of T. The retention time distribution of cells is 

known to be divided into two regions: 1) tail distribution, and 2) main distribution [5]. For 

thermally-stable operation condition, the retention time of almost all the memory cells 

belong to “Main Distribution”. However, there are a few memory cells whose retention 

time does not belong to “Main Distribution.” This shorter retention time distribution is 

defined as “Tail Distribution.” The refresh characteristics of DRAM are dominated by 

“Tail Distribution”. Further, because leakage power is exponentially increased as 

temperature rises, which means more and more cells fail to retain charge and become a part 

of the “Tail distribution”. To compensate this reduction in retention time, refresh period 

should be shorten to refresh more frequently. Yun et al has used the data reported in [6], 

[7] to fit the parameters and the resulting plot is shown in Figure 2. This figure shows how 

DRAM error rate is related to temperature and refresh period. 

In 3DHP, high temperature exponentially increases the charge leakage in DRAM 

memory. High refresh rates can address this issue, but reduces the performance and 

increases power consumption [4] [7]. The temporal and spatial change in temperature, 
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known as hotspots further complicates the reliability issue in 3DHPs [8]. Error Correction 

Code (ECC) is used to address this issue in 3DIC. There are different ways the ECC can 

be employed depending on the number of errors detected and corrected. For example single 

error correction and double error detection [9] (SECDED) method can detect up to two 

errors but can only correct a single error.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2. DRAM error rate as a function of temperature and refresh period reported in [4] 

 

 

For multi-bit burst error correction, strong BCH cyclic codes can be used to provide 

better error correction performance [10, 11]. However, the hardware complexity of ECC 

circuit exponentially increases as the number of error bits to correct increases. Therefore, 

a novel the ECC solution with a lower area-latency product is needed to address the bit 

error variability caused by hotspots in 3DHP. 
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3. ADPATIVE MULTI-PATH DECODER DESIGN 

A DRAM die consists of multiple memory cells, where each data bit is stored as a 

charge in the storage capacitor. The charging and discharging actions of the storage 

capacitor are directly related to temperature. Due to hotspots, leakage current increase 

which thusly discharges the charge stored by the capacitor and increases the probability of 

the memory errors [2]. 

To ensure thermal reliability and better performance of DRAM dies in 3DHP, a 

temperature-based adaptive ECC is proposed. Bose-Chaudhuri-Hocquenghem (BCH) 

codes are strong efficient error-correcting codes used to detect and correct enormous errors 

that have occurred in memory [11]. In 3DHP, hotspots show spatial/temporal localities as 

they are mainly caused by aggressive switching activities in CPU and GPU processor dies. 

To ensure thermal integrity among 3D-stacked dies, on-chip temperature sensors are placed 

to detect hotspots. When the proposed adaptive BCH decoder reads a word to decode, 

temperature measurement data from the distributed on-chip temperature sensor network is 

also read and used to calculate nEEB, which is the estimated number of Error Bits for the 

incoming word. Then, the fastest decoding path which can be used to correct nEEB number 

of error bits gets adaptively selected to decode the incoming codeword with the minimum 

decoding latency. The main advantage of the proposed adaptive multi-stage BCH decoder 

to single stage BCH decoder is the reduced decoding latency with area overhead. 

For any integer m ≥  3 and t <  2m − 1, there exists a binary t-error-correcting (n, 

k) BCH code, which satisfies the following conditions: (1) n = 2m − 1, (2) n − k ≤ mt, 

and (3) 𝑑𝑚𝑖𝑛 ≥ 2𝑡 + 1, where n is the total number of bits per codeword, k is the number 
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of information bits, n − k is the number of check bits, t is the maximum number of error 

bits corrected per codeword, and dmin is the minimum Hamming distance. 

The proposed multi-path BCH decoder has multiple decoding paths with variable 

target t and decoding latency. As a concrete demonstration of the proposed multi-path BCH 

decoding approach, a 7-error correcting (511, 448) BCH decoder (i.e., m = 9) with p = 4 

decoding paths with target t = 1, 3, 5 and 7 has been designed and verified in this work. 

ECC word size is normally chosen to match the size of the last level cache block, which is 

64B for most current processors. Current ECC DRAMs come with 1/8th of the capacity for 

storing ECC check bits, thus a 64B memory block already has 64 bits reserved for ECC. 

Hence, the closest n and k values (i.e., n = 511 and k = 63) are chosen for the proposed 

design. Figure 3 shows a block diagram of the proposed adaptive multi-path BCH decoder 

with p = 4. 

The proposed adaptive multi-path BCH decoder has three main advantages over the 

static BCH decoder designed for a fixed t (e.g., static BCH decoders for t = 1 for faster 

decoding and t = 7 for higher error correction coverage). First, it can reduce the overall 

decoding latency, when compared to a static BCH decoder with higher t (e.g., t = 7). 

Second, it can provide better error correction coverage, when compared to a static BCH 

decoder with lower t (e.g., t = 1). Third, it can be used to decode multiple words depending 

on nEEB for further reduction in decoding latency, as it has multiple independent decoding 

paths. 

The proposed BCH decoder design consists of four decoding paths, each designed 

to correct a specified number errors. The temporal and spatial changes in the temperature 
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are recorded by the distributed onchip temperature sensors, from which Bit Error 

Probability (pBE) is calculated. pBE is used to determine nEEB.  

 

 

 

Figure 3. The proposed multi-path BCH Decoder. The estimated number of error bits 

for the incoming BCH codeword is calculated from the measurement data from 

onchip temperature sensors and is denoted as nEEB [12] 

 

To ensure accuracy, there is a provision for calculating nEEB depending on 

confidence level. The confidence level is interpreted as the likehood that a particular 

confidence interval contains the actual nEEB. For the proposed nEEB estimator, a one-sided 

upper-bounded confidence interval is appropriate since estimation error only happens when 

the actual number of erroneous bits is greater than nEEB. The confidence interval can be 

selected to calculate nEEB depending on the desired accuracy. This calculation is based on 

pBE. There exists a trade-off between nEEB and the confidence level. For the higher 

confidence level, nEEB calculation is more precise, resulting in a higher number of expected 

error bits. As the number of error correcting bits increases the decoding latency increases 

slowing down the decoding. 
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 The first decoding algorithm for binary BCH codes was devised by Peterson in 

1960 [13]. Since then, the Petersons algorithm has been refined by Berlekamp [14], Massey 

[15], Chien [16], Forney [17], and many others. The BCH decoder follows the sequence of 

decoding steps which are Syndrome Calculator [18], Error Locator Polynomial [19] and 

Chien Search [19]. These algorithms are interrelated, i.e. the syndrome calculator 

calculates the syndrome according to the received data. Error locator polynomial is 

generated from syndrome value, and the error location is calculated using Chien search and 

the transmitter can be achieved. 

 

3.1. SYNDROME BLOCK DESIGN FOR MULTI-PATH BCH DECODER 
 

 

BCH code can be implemented in hardware and software. There have been 

numerous efficient decoding algorithms reported in the literature. Two recent examples are 

[18, 20]. For a BCH code with n = 2m − 1 and generator polynomial g(x), a code 

polynomial 𝑐(𝑥) =  𝑐0 +  𝑐1𝑥 +  𝑐2𝑥2 + ⋯ +  𝑐𝑛−1𝑥𝑛−1 is generated from the encoder 

and its binary representation is stored as a word in the DRAM. When this word is read 

from DRAM, a received polynomial (i.e., polynomial representation of the received word) 

is created as 𝑟(𝑥) =  𝑟0 +  𝑟1𝑥 +  𝑟2𝑥2 + ⋯ +  𝑟𝑛−1𝑥𝑛−1. Note this received word is 

expected to contain nEEB number of error bits and should be decoded for error correction, 

if 1 ≤ nEEB ≤ 7. In the BCH code, 𝑟(𝑥) = 𝑐(𝑥) + 𝑒(𝑥), where 𝑒(𝑥) =  𝑒0 +  𝑒1𝑥 +

 𝑒2𝑥2 + ⋯ +  𝑒𝑛−1𝑥𝑛−1 is the error polynomial.  

The initial step in BCH decoder is the syndrome calculator. It provides information 

to later decoding stages for error detection and correction. The received codeword is error 

free when the syndrome outputs are zeros. Consider a t-error-correcting BCH code of 
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length n = 2m − 1 with generator polynomial g(x), where g(x) has α, α2, … . , α2𝑡 roots, as 

g(αi) = 0 for 1 ≤ 𝑖 ≤ 2𝑡. To check whether r(x) is a code polynomial or not, one can 

simply test whether 𝑟(α𝑖) =  0 for 1 ≤ 𝑖 ≤ 2𝑡. If yes, then r(x) is a code polynomial, 

otherwise r(x) is not a code polynomial and error correction decoding is needed. 

Syndrome calculation in BCH decoding directly deals with the errors present. For 

the target t, 2t syndrome components are calculated for 1 ≤ j ≤ 2t, 

 

                                                          𝑆 = ∑ 𝑟𝑖α𝑖𝑗𝑛−1

𝑖=0
                                                          (1)                                                                             

where α is the primitive element. The polynomials which are not factorable (i.e., divisible 

by one and itself) are called irreducible polynomials. The root of this polynomial is called 

primitive polynomial [21] and it generates all non-zero field elements. These non-zero 

fields are used in the generation of 𝐺𝐹 (2𝑚) and α is its primitive element. Thus, sj is 

calculated as   𝑠𝑗 = (((((𝑟𝑛−1α𝑗 + 𝑟𝑛−2)α𝑗 + 𝑟𝑛−3) α𝑗 … . +𝑟1) α𝑗 + 𝑟0). 

Figure 4 shows the procedure followed for syndrome calculation. From the n bit 

received data the (n − 1) bit is first multiplied by the primitive element αj then the resultant 

is XORed with the (n − 2) bit. The obtained result is again multiplied with αj and the 

resultant is XORed with (n − 3) bit. This process is continued untill bit position 0 and the 

final result is sj. The calculation of odd syndrome components from even syndrome 

components leads to area efficient hardware design with reduced latency [18], as the 

relation between them is   

                                          𝑠2𝑡 = 𝑠2
𝑡                                                                        (2) 

 

   For the proposed adaptive BCH decoder with 4 decoding paths (i.e., BCH1, BCH2, 

BCH3 and BCH4), four individual syndrome sets are needed to be calculated. Then, from 
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Equation 2, s2 is easily calculated from s1by squaring it (i.e. s1
2). Similarly, for BCH2 is 

designed to correct upto t = 3 error bits, j ranging from one to six (i.e., 2t = 6). So, the 

numbers of syndrome components calculated are six (i.e. s1 to s6). BCH3 can correct upto 

five error bits, so j varies from one to ten. Hence the syndrome calculations are done from 

s1 to s10. For BCH4 the calculated syndromes are from s1 to s14, since the j ranges from one 

to fourteen. In all cases, odd syndrome components are first calculated. Then, even 

components are found by squaring them and the transmitter can be achieved. 

 

 

 

Figure 4. Syndrome block diagram [22] 

 
 

3.2. ERROR LOCATOR POLYNOMIAL CALCULATOR DESIGN 

 

The secondary stage of the BCH decoder is to determine the error locator 

polynomial. The syndrome calculator outputs are used to generate this polynomial [18]. 

The relation the between syndrome calculator and error locator is expressed as:  

                                                   ∑ 𝑠𝑡+𝑖−𝑗Λ𝑗
𝑡

𝑗=0
= 0                                                (3) 

where s is the syndrome and ᴧis the error locator coefficient. Then, the error locator 

polynomial can be expressed as Λ(𝑥) =  Λ0 +  Λ1𝑥 +  Λ2𝑥2 + ⋯ +  Λ𝑡𝑥𝑡[19]. To 

deduce the error locator polynomial Peterson, Berlekamp and Euclidean are the most 

prominently used decoding algorithms in hardware the BCH decoder [23]. The Peterson 
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algorithm is known to be the best choice, when the error correcting capability is less than 

or equal to three, since its computation is simple and less costly, especially in hardware 

[24]. Euclidean algorithm is advantageous in terms of speed and can be used in design 

where speed is the major objective [19]. Berlekamp algorithm has less hardware 

complexity in calculating the error locator polynomial and is used in the design where area 

is a limiting factor [24]. In designing BCH1 and BCH2 the Peterson error locator 

computation algorithm [19] has been used, since the number of errors to be corrected (i.e., 

target t) for these designs are less than or equal to three. As the Peterson error locator 

polynomial computation is complex for more than three errors Simplified Truncated 

Inverse Berlekamp Massey algorithm (SiBM) [25] is used for designing BCH3 and BCH4 

as it provides better speed with less area overhead for determine error location polynomial 

coefficient. 

According to the Peterson algorithm [19], 𝛬(𝑥) is computed directly and the 

degree of 𝛬(𝑥) is equal to the number of error bits occurred. For 𝑡 =  3 as an example, 𝛬 

(i.e., coefficients of the error locator polynomial) is represented as follows: 

 

                                                  [
1 0 0
𝑠2 𝑠1 1
𝑠4 𝑠3 𝑠2

] * [
Λ1

Λ2

Λ3

] = [

s1

s2

s3

]                                         (4)       

         

For BCH1, Λ0 = 1 and Λ1 = s1. For BCH2, deleting the two rightmost columns and two 

bottom rows of matrix leads to a singular matrix, and solving the corresponding equation 

yields: 𝛬0 =  1, 𝛬1 =  𝑠1, 𝛬2 = (𝑠2𝑠3 +  𝑠5)/(𝑠1
3  +  𝑠3), and 𝛬3 =  (𝑠1

3  +  𝑠3)  +

 (𝑠1𝛬2) [26]. 
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The proposed decoding paths BCH3 and BCH4 have 𝑡 =  5 and𝑡 =  7, 

respectively. Therefore, Peterson algorithm is inappropriate due to its poor hardware 

scalability. Therefore, the Simplified truncated inverse Berlekamp Massey algorithm 

(SiBM) has been used to find the coefficients of the error polynomial. SiBM [25] is known 

to provide higher decoding speed with less area overhead to determine the error locator 

polynomial coefficients. Its efficiency comes from two factors including: 1) for binary 

BCH codes, the Berlekamp-Massey algorithms’ odd iterations can be skipped, and 2) since 

the error value is always binary, one error evaluator polynomial is not required. SIBM 

consists of an error locator polynomial and discrepancy polynomial block. Appending the 

error locator polynomial to the discrepancy polynomial will result in the disappearance of 

the error evaluator polynomial after the iteration is completed. 

 The SiBM processing element (PE) is capable of updating the coefficients of both 

error locator polynomial and discrepancy polynomial simultaneously. The odd coefficient 

of the extended polynomial is not capable to interact with the even coefficients. Therefore, 

PEs is placed as nearly two independent layers. The upper layer affects the lower layer 

through dependency, while the lower layer has no effect on the upper layer. The lower 

layer variables have little effect on the final error locator polynomial and can be simply 

shifted out. This further reduces the computational time and optimize SiBM algorithm. 

 
3.3. CHIEN SEARCH BLOCK DESIGN 

The final step of BCH decoder is to find the error location(s) through the Chien 

search method. Error location is obtained by finding the roots of the error locator 

polynomial [19]. The roots are searched as follows: 
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1. For each power of α (i.e., primitive element) for 𝑖 = 0 𝑡𝑜 𝑛 −  1, 𝛼𝑖  is taken as the test 

root 

2. Calculate the polynomial coefficients of the current root using coefficients of the past 

iteration using αj = 𝛼𝑗−1  ·  𝛼1 during the jth iteration. 

3. Calculate the sum of the polynomial coefficients. 

4. When the sum is zero, an error bit is present at that location. 

The factorization method [27] is used to reduce the complexity of the conventional 

method. It allows designing another form of the circuit of the Chien search that minimizes 

a large number of the used logic gates in the circuit. This block finds the error location 

depending on the error locator polynomial. Figure 5 shows a Chien search block diagram 

for t = 5 case as an example. In this figure, one is multiplied with αt and then the resultant 

is multiplied with the 𝛬𝑡. The obtained result is XORed with 𝛬𝑡−1, again this resultant is 

multiplied αt, and then XORed with 𝛬𝑡−2 and the process repeats until 𝛬0. The above said 

process iterates until 𝛼0. In this way, the roots of the error location determine the error 

location.  

 

 

 

Figure 5. Chien Search block diagram for t = 5 case [19] 

 



 

 

20 

3.4. PARALLEL ADAPTIVE BCH DECODING FOR REDUCED DECODING 

In addition to the serial decoding (i.e., decoding one codeword at a time), the 

proposed adaptive multi-stage BCH decoder can be utilized to correct multiple words in 

parallel provided incoming codewords have different nEEB. Even though one or more 

decoding paths are occupied, if there is an unoccupied path with minimum t ≥ nEEB of the 

incoming codeword, that path can start decoding it in parallel for further reduction in 

decoding latency. If there is no idle decoding path that can be used to decode the incoming 

codeword, it is temporarily stored in the storage buffer until an appropriate vacant decoding 

path becomes available. 

Figure 6 illustrates an example of the proposed parallel decoding process. As seen 

in the first clock cycle (φ = 1), the nEEB of the incoming codeword is 3 and the decoding 

path with the minimum 𝑡 ≥  𝑛𝐸𝐸𝐵 is BCH2 (i.e., t = 3). So, BCH2’s availability is checked 

and it is currently idle. Therefore, the word is given to BCH2 to be decoded. In 𝜑 =  5, 

another word is read from the memory, which is estimated to contain two error bits. It is 

given to BCH3 to be decoded, because BCH2 is currently decoding the first word and the 

next higher error correcting decoder path available is BCH3. Similarly, the next incoming 

codeword is estimated to have five error bits and is read from the memory in 𝜑 =  10.  

This codeword is read from the memory in φ = 10. This codeword is given to BCH4, 

since BCH3 is busy decoding the second word. As seen from the figure for φ = 16 when 

the codeword with nEEB = 7 is coming for decoding, it is stored in the storage buffer instead, 

since BCH4 is currently busy decoding another word. When the respective decoder 

becomes available the word stored in storage buffer is fetched to be decoded.  
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Figure 6. An example of the proposed parallel decoding  
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4. PERFORMANCE EVALUATION 

 

To quantitatively demonstrate and verify the decoding performance of the proposed 

adaptive multi-path BCH decoder approach, the presented 7-error-correcting (511, 448) 

adaptive BCH decoder (i.e., m = 9) with p = 4 decoding paths with target t = 1, 3, 5 and 7 

has been designed in Verilog HDL (Hardware Description Language) and verified. 

Simulation and synthesis have been carried out using Xilinx ISE tool on a Virtex5 FPGA 

(target device: XC5VLX30). Resource utilization and decoding latency results of the 

FPGA prototype are summarized in Table 1. 

In FPGA, reconfigurable resources are grouped into slices which contain a set of 

LUTs (Look-Up Tables), flip-flops and multiplexers. These LUTs represent a group of 

logic gates that are hard-wired on the FPGA and stores the output depending on the input. 

Thus, these LUTs provide the fastest way to retrieve the output when needed. A flip-flop 

circuit is used for change of state and stores a single bit of data. A slice register is the group 

of flip-flops used to store a data word. A register has a clock, enable pin, input and output 

data ports. For every clock cycle depending on the input, the output is updated and stored. 

It should be noticed that as the error correcting capability of the decoder increases the 

hardware resources utilized also increases leading to a large area overhead. As in this Table 

1, hardware implementations of different BCH decoder paths show poor scalability as t 

increased. 

Therefore, a decoding path with minimum t ≥ nEEB should be used to decode. This 

would adaptively minimize the overall decoding time. The area overhead of the proposed 

adaptive 4-path BCH decoder compared to the static BCH decoder designed to tolerate 



 

 

23 

maximum t = 7 is calculated using the number of occupied slices used in both designs. The 

static decoder which has only one decoding path of BCH4 utilizes 1, 776 FPGA slices and 

the proposed adaptive 4-path BCH decoder design utilizes 2, 628 slices. Therefore, the area 

overhead of the proposed adaptive 4-path BCH decoder is only 47.97%, even though it has 

4 physically separate decoding paths. This area overhead is relatively small, since decoding 

paths with smaller t (i.e., BCH1, BCH2 and BCH3) have considerably lower hardware 

complexities and require only 852 (i.e., 47.97% of BCH4’s 1,776) additional slices to be 

realized. 

 

Table 1. FPGA resource utilization and decoding latency of four decoding 

paths in the proposed adaptive multi-path BCH decoder 

 

4.1. SERIAL DECODING PERFORMANCE EVALUTION 

In this section, serial decoding performance of the prototype adaptive error-

correcting (511, 448) BCH decoder (i.e., m = 9) with p = 4 decoding paths with target t = 

1, 3, 5 and 7 (adaptive 4-path BCH decoder, in short) will be evaluated. In the proposed 

adaptive multi-path BCH decoding approach, distributed onchip temperature sensors in 

 
 

BCH1 

(t = 1) 
 

 

BCH2 

(t = 3) 
 

 

BCH3 

(t = 5) 
 

 

BCH4 

(t = 7) 
 

# of Slice Registers 49 93 220 444 

 

# of Slices LUT 
107 586 1817 2536 

 

# of LUT FF used 
44 98 203 397 

 

# of Occupied Slices 
44 220 558 1776 

 

Decoding  Latency 
7.21 ns 12.73 ns 28.59s 39.33s 
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3DHP provide temerature measurement data for DRAM die to the nEEB estimator as shown 

in Figure 3. Then, the nEEB estimator calculates the pBE of the codeword that is being read 

from DRAM with a certain user-provided confidence level as previously discussed in 

Section 3.  

For variable pBE , the probability of having k number of error bits occurred in n-bit 

BCH codeword can be calculated using binomial equation, 𝑝(𝑘) =  𝑛𝑘  𝑘𝐵𝐸  (1 − 𝑝𝐵𝐸)𝑛𝑘. 

For the prototype adaptive 4-path BCH decoder, the distribution of six different error 

probabilities can be calculated as follows: 

1) P(0), where no decoding is necessary, since nEEB= 0; 

2) P(1), where BCH1 decoding path is used to correct single bit error; 

3) P(2 ∧ 3), where BCH2 decoding path is used to correct 2 to 3 error bits; 

4) P (4 ∧ 5), where BCH3 decoding path is used to correct 4 to 5 error bits; 

5) P (6 ∧ 7), where BCH4 decoding path is used to correct 6 to 7 error bits. 

6) P (> 7) = 1 − Pi=1 P (i), which means uncorrectable. 

Figure 7 depicts the distribution of error probabilities for various pBE values, which 

are arbitrarily chosen as 0.04, 0.004, 0.0004 and 0.0004. This graph illustrates implications 

of pBE on the utilization of 4 decoding paths. For example, when pBE = 0.04, the probability 

of codeword having more than seven error bits per codeword is dominant; thereby, almost 

all codewords are uncorrectable. On the other hand, pBE = 0.00004 yields codewords with 

no error bits (i.e., codewords with no decoding is necessary) almost 98% of the time. 

Therefore, no useful error correction decoding happens in both of these extreme cases and 

the utilization of decoding paths is extremely low. The pBE = 0.004 case gives higher 

utilization of 4 decoding paths as P (0) ≈ 13% (i.e., no error - no decoding needed) and P 
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(> 7) ≈ 0% (i.e., almost no uncorrectable codewords). In this case, BCH2 with t = 3 shows 

the highest utilization of 45% among 4 decoding paths. 

4.1.1.  Average Decoding Latency for Various Bit Error Probabilities. Table 2 

shows the average decoding latency of the proposed adaptive 4-path BCH decoder for 

variable pBE. From Figure 7, for pBE = 0.04 case, the excepted number of error bits is mostly 

more than seven. Therefore, codewords containing more than seven errors are not 

correctable by the proposed design. Hence, its average decoding latency is near zero as 

almost no decoding occurs. The other extreme case of pBE = 0.00004 is similar, as the 

decoding paths are under-utilized as the most of codewords are error-free requiring no 

decoding. Notably, the other two intermediate cases (i.e., pBE = 0.004 and 0.0004) can be 

used to represent the error distribution of 3DHP with hotspot induced pBE variation. The 

pBE= 0.004 case has an order of magnitude higher pBE when compared with pBE = 0.0004 

case, so it can be used as an exemplary pBE for hotspots in 3DHP. Also, the other has 10 

times lower pBE, so it can be used an exemplary pBE for the other area not affected by the 

hotspots.  

 

Table 2. Average decoding latency (ADL) for different pBE values. For pBE = 0.04, P (>7) 

≈ 100%, which means almost all codewords are uncorrectable and not decoded. For the 

other extreme, pBE = 0.00004, 98% of codewords are error-free and do not need decoding 

 
 

 

 

 

 

 

pBE 0.04 0.004 0.0004 0.00004 

nEEB Highest Mid-high Mid-low Lowest 

 

max P (t) 

 

P (> 7) 

≈ 100% 

 

P (2 ∧ 3) 

= 46% 

 

P (0) 

= 81.5% 

 

P (0) 

= 98% 

ADL ≈ 0 11.50 ns 1.44 ns 0.15 ns 
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Figure 7. Distribution of error probabilities for variable pBE values 

 
 

 

 

Table 3. Cumulative error coverage for various pBE values 
 

 

 

 

 

 

 

 

As clearly shown in Figure 7, the average decoding latency for codewords read 

from the area not affected by hotspots (i.e., pBE = 0.0004) is 1.14 ns, which is considerably 

lower than 11.50 ns decoding latency of the hotspot-affected codewords. Notably, even 

this slowest 11.50 ns decoding latency is significantly lower than the worst-case (i.e., t = 

7) static BCH decoding latency of 39.33 ns reported in Table 1. 

pBE P (0) P (1) P (2 ∧ 3) P (4 ∧ 5) P (6 ∧ 7) P (> 7) 

0.04 8.7e-10 1.9e-08 1.6e-06 4.01e-05 0.00047 1 

0.004 0.1289 0.3936 0.84945 0.9820 0.99878 1 

0.0004 0.8151 0.9817 0.999938 0.99999 0.99999 1 

0.00004 0.9797 0.9997 0.999997 0.999998 0.99999 1 
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4.1.2. Cumulative Error Coverage. The proposed adaptive 4-path BCH decoder 

can correct up to 7 error bits per word. Table 3 shows the cumulative error coverage for 

variable pBE. As per the results shown in the table maximum error coverage is found near 

more than seven errors for high pBE value. As the pBE value decreases error coverage is 

maximum for small number of errors. 

There is tradeoff between error coverage and latency. The staged BCH decoder for 

any input irrespective of varying pBE offer maximum error coverage with maximum latency 

overhead. Whereas the adaptive multi-stage BCH decoder relies on pBE and offers required 

error coverage with the reduced latency. Therefore the proposed model can provide 

efficient error coverage with less delay for varying temporal and spatial changes. 

4.2. PARALLEL DECODING PERFORMANCE 

  As discussed in Section 3.4, multiple independent decoding paths given in the 

proposed adaptive multi-path BCH decoder can be utilized to decode multiple codewords 

from DRAM in parallel. The performance of the proposed parallel decoding technique will 

be extensively evaluated using the adaptive 4-path BCH decoder design as an example in 

this section. A cycle-accurate simulator has been implemented in Matlab to generate 

simulation results for the proposed parallel decoding technique. Bit error variations caused 

by hotspots are simulated by introducing the following user-provided simulation 

parameters: 

1. pBEH : the increased bit error probability due to hotspots. 

2. pBEC : the baseline bit error probability unaffected by hotspots. 

3. fhot: the relative frequency of codewords subject to pBEH . 
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4. fcold: the relative frequency of codewords subject to pBEC , where fhot + fcold = 100%. 

  sizebuf : the storage buffer size 

 Accordingly, each respective decoder’s status is checked for its availability. If the 

decoder is not available then the next available higher error correcting decoder (i.e., the 

decoder which can correct more number of errors when compared to the required no of 

error correction) is selected for decoding. When there is no available decoder with t ≥ mEEB 

, then the respective word is stored in the storage buffer. If the storage buffer is completely 

occupied then the word is not read from the memory. Table 4 shows the average decoding 

latency for various pBEH /pBEC , fhot/fcold and sizebuf values chosen arbitrarily. It can be 

noticed that decoding latencies differ with sizebuf and fhot/fcold ratio. Decoding latency 

increases with the increases in the number of words read from hotspot region.  

 

Table 4. Parallel decoding simulation results showing the average decoding 

latency by varying pBEH /pBEC , fhot
/fcold and sizebuf 

pBEH /pBEC 
sizeBUF fHOT/fCOLD 

40/60 

fHOT/fCOLD 

60/40 

fHOT/fCOLD 

80/20 

0.003/0.002 4 

8 

16 

15.7 ns 

15.6 ns 

15.8 ns 

15.8 ns 

15.69 ns 

15.8 ns 

16.8 ns 

16.4 ns 

16.2 ns 

0.009/0.002 4 

8 

16 

17.1 ns 

16.8 ns 

16.6 ns 

20 ns 

19.7 ns 

19.63 ns 

23.3 ns 

23.1 ns 

22.8 ns 

0.011/0.005 4 

8 

16 

23.2 ns 

22.9 ns 

22.5 ns 

26.9 ns 

26.7 ns 

26.5 ns 

30.2 ns 

29.8 ns 

29.6 ns 
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 The obtained results also indicate that the average decoding latency for the                   

proposed adaptive multi-path BCH decoder leveraging the parallel decoding technique         

has less decoding latency when compared to the static BCH decoder with fixed t = 7,             

which has a constant 39.33 ns decoding latency. Thus, it can be concluded that the                      

proposed adaptive 4-path BCH decoder can achieve significantly lower decoding latency                                                   

ranging from 15.7 ns to 29.6 ns for pBEH /pBEC , fhot/fcold and sizebuf values chosen with are

a overhead of 47.97%. 

5. CONCLUSION 

 

In this paper, a novel adaptive multi-path BCH decoder design approach is 

proposed and validated to address the bit error variation issue caused by hotspots in 3DHP. 

The proposed design has multiple decoding paths with variable decoding latency and area 

trade-off. For each word read from DRAM, thermal gradient data from the on-chip 

temperature sensors is utilized to estimate the expected number of error bits. Then, the 

fastest possible decoding path which is able to correct the expected number of error bits is 

adaptively selected to reduce the overall decoding time. Also, a parallel decoding approach 

leveraging the multiple independent decoding paths of the proposed decoder design is also 

proposed and validated in this work. To clearly evaluate the latency reduction performance 

and area overhead of the proposed approach, an adaptive 4-path BCH decoder has been 

implemented in FPGA hardware. Then, its serial and parallel decoding performances along 

with area overhead have been extensively evaluated. The proposed adaptive 4-path BCH 

decoder can achieve significantly reduced average decoding latency ranging from 15.7 ns 



 

 

30 

to 29.6 ns for variable pBEH /pBEC , fhot/fcold and sizebuf value sets chosen with area overhead 

of 47.97%.  
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II. NOVEL AREA-EFFICIENT NULL CONVENTION LOGIC ON CMOS AND 

GATE DIFFUSION INPUT (GDI) HYBRID METHODOLOGY 

ABSTRACT 

A Null convention logic (NCL) is a promising delay insensitive paradigm for 

constructing asynchronous circuits. Traditionally, NCL circuits are implemented utilizing 

complementary metal oxide semiconductor (CMOS) technology that has large area 

overhead. To address this issue, a HYBRID methodology is introduced for realizing NCL   

circuits in this paper. The proposed approach utilizes both CMOS and gate diffusion input 

(GDI) techniques to significantly reduce the area. Compared with the conventional static 

CMOS NCL counterpart, the HYBRID implementation of an NCL up counter demonstrate 

an average of 10% reduction in the transistor count.  

 

1. INTRODUCTION 

 

The clocked synchronous paradigm currently dominates the semiconductor design 

industry [1].  However, there are major drawbacks of this synchronous approach, including 

critical timing analysis and clock skew issues [2]. Typically, a precise clock distribution 

network is used to address these limitations, which is a tedious and complex task. 

Moreover, with the decreasing feature size, power consumption of clock distribution 

network is found to be rapidly increasing, which is a major limiting factor for emerging 

low power semiconductor industry [3]. Since asynchronous designs consumes less power, 



 

 

34 

produce less noise and electromagnetic interference (EMI) than their synchronous 

counterparts, there is renewed interest in this field [4]. 

Asynchronous circuits are characterized into two classifications: bounded-delay 

and delay-insensitive (DI) models [3]. Bounded-delay models consider that the both gate 

and wire delays are bounded and therefore, require extensive timing analysis to determine 

the delay [1]. On the other hand, DI circuits assume both interconnects and logic elements 

delay are unbounded and wire forks within the components are isochronic [5]. However, 

wires connecting the components do not adhere to this isochronic fork assumption, 

ensuring the correct    operation regardless on the input availability.  Hence, DI circuits 

require little timing analysis and yield   average case performance rather than the worst-

case performance of bounded-delay and traditional      synchronous paradigms [6]. 

Literature provides several DI paradigms such as Seitz’s, DIMS, Anantharaman’s, 

Singh’s, and David’s Phased Logic and NULL Convention Logic [1]. Most of these DI 

methods (Seitz’s, DIMS, Anantharaman’s, Singh’s, David’s, Phased Logic) either depends 

on    C-element or synchronous design to achieve DI.     More elaborate description of these 

DI methodologies can be found in [7]. Conversely, NCL methodology uses a library of 

hysteresis state holding functionality gates to attain DI. These gates enable transistor level        

optimization, which help in reducing the overall circuit area [8]. Hence, NCL is the best 

alternative for integrating asynchronous digital design into the predominantly synchronous 

semiconductor design industry. 

The NCL paradigm consists of 27 hysteresis    state holding logic gates [2]. These 

gates are traditionally implemented using one of the CMOS techniques:   static, semi-static, 

differential or dynamic methods.  Detailed information regarding these approaches can be 
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found in [8]. Among these methods, the static CMOS method is most commonly used as it 

results in less   leakage and noise compared to other CMOS techniques [9]. However, the 

main drawback of static CMOS   implementation is the area overhead. The results indicate 

that the area occupied by static CMOS NCL implementation is approximately 1.5-2 times 

the   equivalent synchronous design [7]. To address this drawback, this paper proposes a 

HYBRID technique for designing NCL circuits. The proposed approach integrates both 

CMOS and gate diffusion input techniques to realize NCL designs.  

Gate diffusion input methodology is a low power design technique that utilizes only 

two transistors to implement different functions [1]. The input configuration required to 

implement various function can be found in [9-12]. Hence, by applying GDI        

methodology for realizing NCL gates, total transistor count is reduced, which in turn 

reduces switching power. However, the biggest drawback of GDI methodology is the 

voltage drop at the output which results in performance degradation [12-15]. Hence, a new    

HYBRID methodology that can address both of these limitations, voltage drop of GDI and 

area overhead of CMOS is proposed in this work.  

The aim of this work is to utilize both CMOS and GDI techniques to design NCL 

circuits. This approach where in both CMOS and GDI based NCL gates are used to design 

NCL circuits helps in reducing the transistor count when compared to the conventional 

static CMOS approach. To validate the performance of the proposed approach, a variety of 

NCL up-counter increment (NUI) circuits were realized and compared with the static 

CMOS methodology. The proposed approach shows a minimum of 4% reduction in the 

transistor count when compared with the static CMOS approach.                                                    
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The rest of the paper is organized as follows: Section 2 discusses the preliminaries 

and review of NCL and GDI. Section 3 presents the design description of the HYBRID 

methodology. Section 4 illustrates the simulation results, followed by conclusion in Section 

5. 

 

2. PRELIMINARIES AND REVIEW 

2.1. NULL CONVENTION LOGIC 

NCL is a clockless DI model that works correctly regardless of input accessibility. 

It is a self timed logic model where both data and control are integrated to a single signal 

and communication is accomplished through local handshaking [1]. To provide 

synchronization DATA and NULL states are used which are obtained using dual or quad-

rail logic. A dual-rail signal, D utilizes two wires D0 and D1 to represent values DATA0, 

DATA1 and NULL [4] as shown in Figure 1. The NULL state (D0 = 0, D1 = 0) symbolizes 

that D is not available. The DATA0 state (D0 = 1, D1 = 0) and DATA1 state (D0 = 0, D1 

=1) represents Boolean logic 0 and 1 [8]. These two rails are mutually exclusive and cannot 

be asserted at the same time. This means that if both the rails are high, the state is known 

as an invalid/illegal state.  

The framework of NCL system is shown in Figure 2. As observed from the figure, 

combinational logic (CL) is always sandwiched between two DI registers and these 

adjacent DI registers communicate through request and acknowledge signals ki and ko. 

NCL utilizes a special set of logic element known as threshold gates for realizing the 

combinational logic, DI registers and competition detection circuits [3]. 
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Figure 1. Dual-rail representation of NCL AND function: Z = X • Y: initially 

X=DATA1 and Y=DATA0, so Z=DATA0; next X and Y both transition to NULL, 

so Z transitions to NULL; then X and Y both transition to DATA1, so Z transitions 

to DATA1 [7] 

 

There are 27 threshold gates and the primary type of threshold gate depicted in 

Figure 3(a), is known as THmn, where 1 ≤ m ≤ n [2]. Here, n represents the number of 

inputs and m denotes the number of inputs that need to be asserted for the output to be 

asserted. The secondary type of threshold gate illustrated in Figure 3(b) is refered as a 

weighted threshold gate, denoted as THmn Ww1w2…wR. The constant equation is w1, 

w2…wR > 1, where w1, w2…wR are the integer weights of input1, input2 … inputR, 

respectively [5]. These threshold gates have built-in hysteresis behavior to ensure DI. 

Hysteresis in NCL ensures that two DATA wavefront are not   overwritten and are always 

separated by a NULL wavefront. 

 

 

Figure 2. NCL system framework [3] 
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Figure 3. (a) THmn threshold gate (b) TH34w2 threshold gate [3] 

 

The general algebraic expression of an NCL gate is the combination of set and hold 

equations. The set   equation defines the functionality of the gate and the hold equation 

determines till when the gate should be asserted once it is asserted. The set equation i.e. 

the functionality of each NCL gate is presented in [1] whereas; the hold equation remains 

the same for every gate, which is simply OR-ing, all the inputs. Therefore, the general 

equation for an NCL gate is given by Z = set + (Z- • hold), where Z- is the previous output 

value and Z is the current value. Prevailing methodologies utilized for realizing NCL 

circuits are static and semi-static CMOS technology. Figure 4 and Figure 5 depicts the 

static and semi-static CMOS implementation of TH23 gates. 

 

As depicted in Figure 3(b), the semi-static implementation only requires set and 

set’ expressions are utilized to realize TH23 gate. To achieve hysteresis, the semi-static 

implementation uses weak feedback inverters, which slows down the gate operation 

leading to large latency overhead. This limitation is addressed by using static CMOS 

implementation that utilizes pull-up (set) and pull-down networks (reset) as shown in the 

Figure 3(a).  As observed from the figure, the additional circuitry is required to maintain 

the built-in hysteresis property of NCL gates. This leads to an area overhead where NCL 

designs are approximately 1.5 - 2 times larger than the equivalent synchronous designs [7].   
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Figure 4. Transistor level realization of TH23 gate using Static CMOS methodology [7] 

 

 

Figure 5. Transistor level implementation of TH23 gate using semi-static methodology [7] 

 

Therefore, it is crucial to address this limitation so that NCL designs become viable 

alternative for synchronous design. This drawback is be addressed by utilizing a low power 

design methodology called GDI. 
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2.2. GATE DIFFUSION INPUT 

GDI is a low power design technique commonly used in synchronous design to 

reduce area and dynamic power consumption [1]. The structure of basic GDI cell is   

depicted in Figure 6.  It has three inputs G (common gate input of both the nMOS and the 

pMOS), P (input to the source/drain of the pMOS), N (input to the source/drain of the 

nMOS). The bulks of nMOS and pMOS transistors are constantly connected to GND and 

VDD, respectively [6].  

 

 
 

Figure 6. (a) Basic GDI cell structure (b) Different functions input configurations [10] 

 

Various logic functions of GDI cell for different input configurations are illustrated 

in Figure 6(b).  Since, the pull-up and pull-down networks of these functions are not always 

connected to power supply (VDD) and ground (GND), a voltage drop at the output is 

observed. This drawback is the biggest limitation of GDI methodology based 

implementation [9-15]. Similarly, by realizing NCL gates using GDI technique, voltage 

swings prevail in the circuit. Therefore, this work mainly focuses on addressing this issue 

such that GDI technique can be used for realizing NCL circuit. 
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The next section presents the mechanism for realizing the NCL gates using GDI 

methodology. The efficacy of the proposed approach is verified by realizing the several 

NUI circuits and comparing with the static CMOS methodology. 

 

3. THE PROPOSED HYBRID METHODOLOGY 

First, the mechanism to realize NCL gates using GDI methodology, also known as 

FNCL approach is discussed. Since this approach utilizes both F1 and F2 functions unique 

to GDI as shown in Figure 3, it is named as FNCL. The limitation of voltage drop of FNCL   

approach is also presented in this subsection. Finally, the HYBRID methodology, which 

utilizes both CMOS and GDI techniques to address the area overhead limitation of NCL 

designs, is described in detail. 

 

3.1. REALIZATION OF NCL USING FNCL APPROACH (BASED ON F1 AND F2   

FUNCTIONS OF GDI GATE) 

To realize NCL threshold gates using FNCL approach, first the Boolean expression 

of THmn gate is factorized. Then, based on the factorized expression GDI function F1, F2 

and MUX are utilized to implement the gate. As an example, steps for realization of TH22 

gate is shown below: 

Step 1: Factorized expression of TH22 gate is: Z = AB + Z (A+B) 

Where, A, B are the inputs and Z is the output. 

Step 2: The GDI functions are utilized to realize AND (AB) and OR (A+B) expressions. 

Among all the GDI functions, only F1 and F2 are utilized, as they    demonstrate voltage 
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drop for only one input combination compared to the others (AND, OR) functions. Hence, 

F1 and F2 are used to implement AB and A+B as shown in the Figure 7. 

Step 3: The GDI MUX cell is used to determine final output i.e. whether to pass set data 

or hold data based on the previous results. The MUX is configured such that the output F1 

cell (AB) and the O2 output of F2 cell (A+B) are fed to the sources of pMOS and nMOS 

as shown in Figure 7. This will allow to select set equation (AB) when Z=0 and hold data 

(A+B) when the Z is 1. 

 

Figure 7. FNCL implementation of TH22 gate 

 

Therefore, the proposed FNCL approach requires only eight transistors to 

implement TH22 gate. Compared to the static CMOS approach, a 20% reduction in the 

transistor count is observed. However, the main drawback of this approach is the 

performance degradation due to the substantial voltage drop at the final output. The 

mechanism to address this limitation is discussed in next subsection. 
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3.2. PERFORMANCE DEGRADATION OF FNCL APPROACH  

The performance degradation is due to the   different input configuration of the 

nMOS and pMOS transistors. A voltage drop of Vtp (threshold voltage of pMOS) and VDD 

- Vtn (threshold voltage of nMOS) for pMOS and nMOS transistors are observed when 

their sources are not tied to VDD and GND respectively [9]. 

To demonstrate this phenomenon, the simulation results of the proposed TH22 gate 

is illustrated in Figure 8.  It is observed in Figure 8, when either of the inputs or any one of 

the inputs are low (A=0, B=0, Z=0), the outcome is Vtp rather than strong low ‘0’. This 

can be explained as follows: whenever A = 0, the voltage at the pMOS source of MUX cell 

is 0. Since, pMOS passes weak ‘0’, the result would be Vtp. Conversely, when A and B 

are high, the output is VDD without any voltage drop since pMOS passes strong ‘1’. Hence, 

three out of four input combinations result in voltage drop.  

This voltage swing issue further escalates when two FNCL gates are 

interconnected. To validate this conclusion an NCL Full adder (FA) circuit is implemented 

using the FNCL approach. The structure of FA and its simulation results are depicted in 

Figure 9 and Figure 10. From Figure 10 it is observed that TH23 gates generates carryout 

and TH34w2 gates utilizes these results to generate the sum (S0, S1). When the FA circuit 

is simulated, voltage swings (for logic low) at carryout was ~ 0.1V, whereas for sum it was 

~ 0.38V. 

This increased voltage swing at the sum output is due to the voltage drop at TH23 

gate being carried on to TH34w2 gate. Therefore, realizing the whole circuit using FNCL 

gates is not viable option. To address this limitation, novel HYBRIB approach is also 

proposed in this paper. 
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Figure 8. Simulation results demonstrating voltage drop of FNC TH22 gate 

 

 
 

 

Figure 9. Structure of FNCL FA 

 

This voltage swing issue further escalates when two FNCL gates are 

interconnected. To validate this conclusion an NCL Full adder (FA) circuit is implemented 

using the FNCL approach. The structure of FA and its simulation results are depicted in 

Figure 6 and Figure 9. From Figure 10 it is observed that TH23 gates generates carryout 

and TH34w2 gates utilizes these results to generate the sum (S0, S1). When the FA circuit 

is simulated, voltage swings (for logic low) at carryout was ~ 0.1V, whereas for sum it was 

~ 0.38V. This   increased voltage swing at the sum output is due to the voltage drop at 

TH23 gate being carried on to TH34w2 gate. Therefore, realizing the whole circuit using 
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FNCL gates is not viable option. To address this limitation, novel HYBRIB approach is 

also proposed in this paper. 

 

 

 
 

Figure 10. Simulation results of FA validating the volatge  drop at sum is greater 

than carryout 

 

3.3. CMOS-GDI HYBRID APPROACH 
 

 

The design of the HYBRID model is inspired by the observation that in NCL 

system framework the DI combinational logic (CL) is always enclosed between DI 

registers. In other words, inputs or outputs of CL always pass through a DI register to 

ensure synchronization (two DATA wavefronts are not overwriting). The idea of the 

HYBRID methodology is to redesign this NCL structure using both static CMOS and 

FNCL   techniques. Figure 11 depicts the framework of NCL system using HYBRID 

methodology. The difference between the original and the new (HYBRID) structure is the 
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method by which NCL blocks CL, DI register and   completion detection (CD) are realized. 

The FNCL    approach is utilized to realize CL and CD blocks, while static CMOS method 

is used to implement the DI registers (CMOS_DI_reg).  

 

 

Figure 11. The proposed HYBRID framework 

 

 
 
 

 

Figure 12. Simulation results of a 1-bit full adder using HYBRID approach 

 

 

As discussed, the FNCL blocks (CL, CD) yield a voltage drop at their output. This 

limitation can be   addressed by transferring these outputs through the CMOS_DI_reg. The 
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CMOS_DI_reg have strong pull-up and pull-down network which helps to restore signal 

strength and generate an output of either VDD or ground. Thus, the HYBRID approach 

prevents the voltage drop of the GNCL blocks from progressing to the next stage. Figure 

12 shows the application of this idea to a one-bit full adder circuit and the simulation results 

depicts that   HYDRIB approach has no performance degradation. 

In summary, the FNCL approach is proposed to   address the area overhead 

limitation of static CMOS methodology. However, the voltage drop at the output hinders 

this approach for designing NCL system. Therefore, a HYDRID methodology, which 

utilizes both the FNCL and static CMOS techniques to address the drawbacks of both the 

approaches are introduced. To validate the effectiveness of the HYBRID methodology, the 

proposed approach is applied to a case study of different NCL up-counter increment (NUI) 

designs. A comparative study of the NUI circuits when implemented using static CMOS 

and HYBRID methodologies are presented in the next section. 

 

 
 

4. PERFORMANCE EVALUATION 

 
 

This section presents the comparative results of NUI designs when implemented 

using static CMOS and HYBRID methodologies. All the designs are realized in 45nm 

technology using Cadence general-purpose design kit (PDK) which provides the standard 

cell library and associated technology files for circuit realization. The schematics are 

simulated using Specter simulator with VDD = 1V and temperature = 27oc. 

Serval alternative designs for NCL up-counter   increment circuits are realized to 

verify the viability of the proposed approach. The proposed HYBRID   methodology 
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achieves a significant reduction in transistor count compared to the conventional static 

CMOS NCL designs. 

4.1. NCL GATES UTILIZED FOR REALIZING NUI CIRCUITS  
 

The NCL gates used for implementing various NUI designs along with their 

transistor count for CMOS and HYBRID methodologies are depicted in Figure 13.  As 

illustrated in Figure 10, an average of 6% decrement in the number of transistors utilized 

for implementing these NCL gates using FNCL methodology is observed. 

 

 

Figure 13. Number of transistors utilized by CMOS and FNCL 

 

4.2. TRANSISTOR COUNT FOR VARIOUS NUI IMPLEMENTATIONS 

Table 1, presents the transistor count (TC) for   various NUI designs implemented 

via static CMOS and HYBRID methodologies. As observed from the Table 1, HYBRID 

methodology utilizes a smaller number of transistors compared to the CMOS 

implementation. The percentage reduction in transistor count for each model is illustrated 

in the Figure 14. Compared to the conventional static CMOS methodology, an incomplete 

AND NUI shows a 7% reduction in TC when implemented using the proposed approach. 
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Similarly, the Reduced Dual-Rail, Factored Dual-Rail, Complex Dual-Rail NUI circuits 

show a 19.3 %, 12.3% and 4% reduction in TC when realized using HYBRID approach. 

 

Table 1. Comparison of static CMOS and HYBRID methodologies 

 

 

Model Type 

STATIC CMOS HYBRID 

TC of 

only CL 

Total TC 

including 

DI registers 

TC of 

Only CL 

Total TC 

including 

DI registers 

Incomplete AND 216 492 180 456 

Reduced Dual-Rail 460 764 340 616 

Factored Dual-Rail 308 584 236 512 

Complex Dual-Rail 212 488 192 468 

 

 

 
 

Figure 14. Percentage reduction in the transistor count 
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5. CONCLUSION 

In this paper, a novel CMOS-GDI HYBRID methodology is proposed and validated 

to address the area overhead in conventional NCL based on static CMOS implementation. 

It utilizes two types of design techniques, static CMOS and GDI to realize NCL    designs. 

The proposed approach demonstrated an     average of 10% reduction in the transistor count 

when several NUI are realized using the proposed approach. This enhancement provides 

the scope for NCL to be an alternative for synchronous designs. The impact of   HYBRID 

method on power consumption and latency will be the part of the future work. 
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III. A LOW POWER DESIGN TECHNIQUE FOR THE ASYNCHRONOUS 

NULL-CONVENTION LOGIC CIRCUITS 
 

 

 

 

 

 

 

 

ABSTRACT 

 

Null Convention Logic (NCL) is a robust clock-less technique for designing 

asynchronous delay-insensitive circuits. The traditional complementary metal oxide 

semiconductor (CMOS) approach is often used for designing NCL circuits, which tends to 

occupy a large area. To address this issue, a low power design technique Gate Diffusion 

Input (GDI) is introduced for designing the NCL circuits. This GDI design methodology 

is the promising alternative for the static CMOS designs, which allows the reduction in 

area and power consumption while maintaining the low complexity of the logic design. In 

this paper, a novel GDI based NCL designs are proposed and designed. However, the 

voltage swings in the GDI approach leads to the considerable amount of voltage drop at 

the output. This limitation is addressed by using low threshold transistors where a voltage 

drop is expected, and high threshold transistors are used for the regenerative inverters at 

the output. The proposed approach has been verified by designing the NCL Ripple Carry 

Adder (RCA), uunpipelined multiplier, pipelined multiplier and unpipelined ALU by using 

the GDI technique. These models are designed and simulated using Cadence Virtuoso and 

an average of 13.5% reduction in the transistor count is observed for these GDI based NCL 

models when compared to the CMOS models. 
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1. INTRODUCTION 

With the increasing clock rate and decreasing IC feature size, meeting timing 

closure requirement in the presence of clock skew is a major problem [1–3]. To address 

this issue, a high-performance device allocates a large part of its area to clock drivers, 

which increases power dissipation, significantly at clock edges, where switching occurs 

[4–6]. Power dissipation deteriorates the operation of high-performance devices, which is 

a major concern for the emerging low power industry [7, 8]. Since, asynchronous digital 

designs are inherently robust in the sense of power dissipation, exhibits low noise and 

electro-magnetic interference, there is a renewed interest in this area [9–11].  

Asynchronous circuits are classified into two types: bounded-delay and delay 

insensitive (DI) models. Bounded- delay models such as Micropipelines [12] and Huffman 

[13] circuits consider both gate delays and wire delays to be bounded. The delays are added 

according to the worst-case scenarios, therefore require extensive timings to ensure the 

correctness of the circuits [14]. On the other hand, delay-insensitive models assume that 

both the gate and wire delays are unbounded, and wire forks within basic components are 

isochronic. However, the wire connecting the components doesn’t abide with the 

isochronic assumption. Therefore, DI models can operate correctly regardless of input 

availability [15, 16].  

In the literature, several DI paradigms are available for designing asynchronous 

circuits [17]. These paradigms include phasedlogic, null convention logic (NCL), Seitz’s 

[18], Singh’s [19], David’s [20], Anantharaman’s [21] and DIMS [22] approaches. Among 

these approaches, NCL is the most commonly used DI paradigms and it exhibits great 
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optimization potential over other DI methods. NCL designs use special types of gates 

called threshold gates which has built in hysteresis state holding property to achieve DI 

and to ensure that the gate is input complete [23].  

Recent literature reports several CMOS methodologies that are typically utilized to 

implement these gates [24]. These methodologies include dynamic, semi- static, 

differential and static implementation. Detailed information about the dynamic, semi-static 

and differential implementation of NCL gates can be found in [25–27]. These CMOS 

methodologies either rely on parasitic capacitance (dynamic) or feedback mechanism 

(semi-static and differentia) to hold state information. Parasitic capacitance based NCL 

gates are susceptible to noise, leakage and charging problems, while a feedback inverter 

slows down the gate’s operation due to the intrinsic switching contention.  

Typically, these constraints are addressed with the use of static NCL gate 

implementation providing faster and reliable operation. The static NCL gates comprises of 

set and hold blocks which determines whether to perform the gate functionality or hold 

data [28]. However, due to the increase in area overhead observed with NCL 

implementation, their use is limited in the semiconductor industry [29]. To alleviate this 

issue, a novel GNCL methodology is introduced in this paper to reduces the area overhead 

of NCL gates. Furthermore, additional components are introduced within the methodology 

that improves the power robustness of NCL gates.  

To address the issue of area overhead, gate diffusion input technique [30, 31], 

comprising of a basic GDI cell that can implement various complex Boolean circuits is 

utilized. Since, a GDI–based implementation utilizes just two transistors to implement such 

circuits, a reduction in transistor count is observed which in turn reduces switching power 
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[32, 33]. However, due to the application of different inputs to the pMOS and nMOS 

sources, a voltage drop is observed at the output. To address the issue of voltage drop, the 

cascaded inverters methodology is adopted. It is then demonstrated that, voltage swing at 

the output can be observed in GDI-based NCL designs. To overcome this limitation 

regenerative buffer are introduced where multi-threshold transistors are utilized for 

effectiveness. 

The aim of this work is to propose a low power design approach to reduce area 

overhead of NCL circuits. With a comprehensive simulation study, the reduction in 

transistor count and power robustness are demonstrated in this paper. Overall, a 13% - 14% 

reduction in the number of transistors and a 14% - 30% decrement in the dynamic power 

is shown. The contributions of this paper include: 1. Implementation of NCL gates using 

GDI technique (GDI-NCL). 2. Application of regenerative buffers at the output of GDI-

NCL gates to overcome the voltage swing. 3. A generalized (GNCL) approach that uses 

multi-threshold transistor technique to reduce area (transistor count), voltage swing and 

power is presented. 

This article is organized as follows. Section 2 presents the preliminaries and review 

of NCL and GDI. Section 3 describes the limitation of NCL and the technique for 

overcoming it. An extensive discussion of the proposed design is carried out in Section 4. 

Performance evaluation data for various NCL circuits are included in Section 5. Finally, 

the summary and concluding remarks are made in Section 6. 
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2. PRELIMINARIES AND REVIEW 

NCL is a popular delay-insensitive (DI) methodology for designing asynchronous 

circuits where accurate results regardless of input availability are observed. Therefore, 

NCL circuits are clockless, self-timed logic paradigms that can integrate data and control 

into a single signal. To achieve the delay-insensitive behavior, NCL must exhibit two 

primary characteristics; (1) symbolic completeness and (2) input completeness, achieved 

through dual- rail or quad- rail logic [14]. 

Dual rail logic consists of two wires D0 and D1, representing the states DATA0, 

DATA1 and NULL. The DATA 0 (D0 = 1, D1= 0) is equivalent to Boolean logic 0, 

DATA1 state (D0= 0, D1= 1) constitutes Boolean logic 1 whereas D0 = 0, D1= 0 represents 

NULL state. NULL state refers to the scenario when no DATA is available at the input. 

Furthermore, the state of D0 = 1 and D1 = 1, refers to the invalid stage. Similarly, quad-

rail has four wires Q0, Q1, Q2 and Q3, each representing different stages from the set 

DATA0, DATA1, DATA2, DATA3, and NULL. Both rails are mutually exclusive, so that 

no two rails can be asserted simultaneously [21].  

 

 

 

Figure 1. NCL framework [17] 
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Moreover, NCL systems are composed of DI combinational logic blocks that are 

enclosed between DI registers as shown in Figure 1. The structure of NCL is similar to 

synchronous designs, except for the case of completion detection (CD) where data 

synchronization between the logic blocks is enabled. Communication between the adjacent 

DI registers are carried out by local handshaking signals i.e. request signal (Ki) and 

acknowledge signal (Ko). These signals avoid overwriting two DATA wavefront by 

ensuring that the two DATA wavefronts are always separated by a NULL wavefront. These 

acknowledge signals are then combined in the CD circuitry to produce the request signal(s) 

to the previous register stage [23].  

 

 

Figure 2. (a) THmn threshold gate (b) TH34w2 threshold gate [34] 

 

The fundamental building block for the designing any NCL circuits are the 

threshold gates, which are of two types: threshold gate and weighted threshold gate [28]. 

Figure 2(a) depicts the primary type of threshold gate THmn, where 1 ≤ m ≤ n. Here, n 

represents the total number of inputs and m indicates the minimum number of inputs to be 

asserted for the output to be asserted. The weighted threshold gates are represented as 

THmnWw1w2wR, where w1, w2, ....wR, each > 1 signifies the integer weights of input1, 
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input2,..... input R, respectively. Figure 2 (b) illustrate the weighted threshold gate 

TH34W2 gate. 

There are 27 basic NCL gates constituting from two to four variable functions. 

These gates have built- in hysteresis state holding capacity that ensures that the gate is input 

complete, which means that the output remains constant until all inputs are deserted. The 

functionality (set equation) of 27 NCL gates can be found in [34] and the structure of static 

NCL gate implementation is depicted in Figure 3(a).  

Typically, a static NCL gate consists of two pull down (set, hold1) and two pull up 

(reset, hold0) networks as depicted in Figure 3(a). The set block defines the functionality 

of the gate and determines when the output should be asserted. Similarly, hold1 network is 

used to retain data until all inputs are deasserted which is obtained by OR-ing all the inputs. 

Therefore, hold1 is equivalent to n-input OR gate, where n is the total number of inputs 

[24].  

 

 

(a)                                                    (b) 

Figure 3. (a) Structure of static CMOS implementation of NCL gates (b) Static 

CMOS transistor level implementation of TH23 NCL gate [29] 
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The general equation for implementing static NCL gates is given as Z = set + (Z’ • 

hold1), where z is the new output value and z- denotes past output value. Similarly, the 

general form of Z complement is represented as Z’ = reset + (Z’ • hold0), where reset and 

hold0 is the complement of set and hold1 [29]. These equations can be used for 

implementing any NCL gates and Figure 3(b) depicts the transistor level implementation 

of TH23 gate with set and hold1 equations as AB+BC+AC and A+B+C.  

As seen from the Figure 3(a), extra logic is required to implement hold1 and hold0 

increases the area overhead. This drawback is one of the factors limiting the use of NCL 

designs in the semiconductor industry, and the following section discusses this drawback 

in detail. 

 

Figure 4. Conventional Boolean OR gate (a) symbol (b) Static CMOS implementation 

 

3. LIMITATION OF NCL 

 

It is estimated that, for a functionally identical design, NCL will have a substantial 

increase in area relative to the conventional synchronous designs. Moreover, the area 

consumption in static NCL designs approximately 1.5 – 2 times that of an equivalent 
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synchronous design [2]. To clearly demonstrate this idea, a realization of AND function is 

compared with conventional Boolean and NCL design next. A gate and transistor level 

implementation of an AND function through conventional Boolean and NCL design is 

shown in Figure 4 and Figure 5 [28]. 

In Figure 4(b), it can be observed that conventional two input OR function requires 

only six transistors. The NCL AND comprises of TH12 and TH22 threshold gates as 

illustrated in Figure 5(a). Furthermore, as seen in Figure 5(b), TH22 gate require twelve 

transistors and TH12 gate which is equivalent to 2-bit conventional OR gate require six 

transistors for their implementation through static CMOS approach. Overall, NCL logic 

requires twenty transistors to implement NCL OR gate, which is approximately three times 

higher than the conventional synchronous design. Thus, proving that NCL design has a 

higher transistor count and with the International Technology Roadmap for 

Semiconductors (ITRS) anticipates that asynchronous circuits will account for 47% of chip 

area by 2020 [34], it is very important to address this limitation. Furthermore, as 

asynchronous circuits are incredibly useful in low area and power applications such as 

microcontrollers, embedded medical products, encryption engines for smart card 

applications, fault-attack-resistant cryptographic circuits, ternary logic, sensor networks, 

and IOT devices, it is very important to address this limitation [10]. 

The two main causes for the increased area are the use of dual rail logic and the 

requirement of additional circuitry for state holding capacity and this is observed in Figure 

3(a). Since, the dual rail is required to obtain symbolic and input completeness, the internal 

gate logic must be altered to achieve any reduction in area. To manipulate the internal logic 
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for NCL gates, this work introduces a GDI-based approach. The implementation of GDI-

based NCL is discussed in detail in the next section. 

 

 

Figure 5. (a) NCL input-complete OR function: Z = X + Y [28] (b) Static 

CMOS implementation of TH22 NCL gate 

 

4. PROPOSED APPROACH FOR DESIGNING NCL CIRCUITS 

We begin this section by describing a basic implementation of area efficient gate 

diffusion input-based NCL (GDI-NCL) design paradigm. Next it is demonstrated that GDI-

based designs suffer from drop in output voltage. Next, regenerative buffers are introduced 

where multi-threshold gates are utilized to eliminate voltage drops. 

 
 

4.1. BASIC IMPLEMENTATION OF NCL GATES USING GDI TECHNIQUE 

(GDI-NCL TECHNIQUE) 
 

 

To utilize GDI methodology, the Boolean expression of a THmn or weighted NCL 

gates must be factorized into series of AND and OR functionality. Next, based on the 
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resulting expression, GDI-AND, GDI-OR and GDI-MUX configuration as shown in 

Figure 6 can be used for the design of NCL gates [30]. The algebraic representation for 

TH23 gate, which is shown in Figure 7, is given as 

                                              Z= AB + BC + AC + Z’(A+B+C)                                       (1) 

where A, B, C, D are the inputs, Z’ = previous result and Z = current output. Factorizing 

the above equation gives   

                                          Z = A (B + C) + BC + Z’(A+B+C)                                         (2) 

This expression implementation using GDI-NCL technique is as explained as follows.  

Step 1: First the second term in the equation 2 is implemented using GDI-AND.  As shown 

in Figure 6(a), GDI-AND cell has two inputs G and P, and the output is measured at drain 

D. So, to implement BC, B and C are the given as input to G and N and the resultant output 

O1 is taken at D. 

Step 2: Similarly, algebraic expression B +C is implemented using GDI-OR, where B, C 

are applied to nodes G and N and the output O2 is measured at D. 

 

 

Figure 6. Structures of different GDI functionality cells: (a) GDI-AND 

(b) GDI-AND (c) GDI-MUX 
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Step 3: GDI-MUX is used to realize A(B+C) + BC. To implement this expression, input 

A is provided to node G and the output of step1 and step 2 i.e. O1 and O2 are given to input 

P and N of GDI-MUX. The output O3 is taken from node D. 

Step 4: Another GDI OR are used to implement A+B+C, where A and O2 are applied to 

nodes G and P and the output O4 is generated at node D. 

Step 5: Finally, GDI MUX is used to realize the final expression given in equation 2. To 

this MUX, Z’ the previous result is given as the input to node G, O3 is passed to node P 

and O4 is provided to node N. Thus, the result i.e. the current output (Z) is measured at 

node D of this GDI MUX.  Note: If Z’= 0 the output would be [A(B + C) + BC] i.e. the 

gate operators on current data, else, value at node N is selected which is nothing but 

A+B+C i.e. holds the previous results.  

 

 

 Figure 7. GDI implementation of TH23 NCL gate 
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The correctness of this implementation can be evaluated by verifying the output for 

different input combinations and the results are described in Table 1. As observed in Table 

1, the result (Z) of the proposed approach is identical to the actual algebraic expression 

results. As seen from the Figure 7, the total number of transistors (#t) required to implement 

this GDI based TH23 gate is 10, while the CMOS implementation require 18 transistors.  

Thus, a 44.4% reduction in the transistor count can be observed for TH23 gate. 

Similarly, all the NCL gates can be realized using GDI-NCL technique and compared to 

static CMOS implementation, GDI-NCL technique approximately provides 30% - 50% 

reduction in the transistor count as depicted in Figure 8. The algebraic factorization, the 

method of realization and #t used for implementation few NCL gates using proposed GDI-

NCL technique is presented in Figure 9. 

 

 

Figure 8. Number of transistors required for implementing NCL gates using CMOS and 

GDI-NCL methodology 

 

The main disadvantage of GDI-NCL implementation is that the full output voltage 

swing cannot be achieved for all input combinations as shown in the Figure 10. This 

limitation is due to the structure of the inputs applied to the pMOS and nMOS transistors 

of a GDI-OR, GDI-AND, GDI-MUX cells. Since, the pMOS and nMOS transistors are a 
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strong pull- up and pull- down networks, the application of any voltage other than VDD 

and gnd to their sources results in a voltage drop of Vtp (pMOS) and (V DD − Vtn) 

(nMOS), where, Vtp and Vtn represents the threshold voltage for pMOS and nMOS 

transistor. 

 

Table. 1 GDI-NCL TH23 gate results for different input combinations 
 

 

Inputs 

Node Voltages  

Algebraic Expression  

Results 

Z = A(B+C)+BC+Z’(A+B+C)  O1 O2 O3 O4 Z 

A= 1; B = C = Z’ = 0 0 0 0 1 0 0 

A = C = 1; B = Z’ = 0 0 1 1 1 1 1 

A= B = Z’ = 0; C = 1 0 1 0 1 0 0 

 

 

Figure 9. GDI-NCL implementation of few NCL gates 
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Figure 10. Voltage drop at the output of GDI-NCL TH23 gate 

 

 

Figure 11. Voltage drop at the output of GDI-NCL TH23 gate for different input 

combinations 

 

 

To overcome the performance degradation and achieve a full swing output voltage, 

a regenerative buffer can be utilized. Regenerative buffer consists of two back- to- back 

inverters that can restore the signal strength. Therefore, to avoid the voltage drop in GDI-

NCL gates, a regenerative buffer is used before the output of every gate as shown in Figure 

12. The difference in voltage output (Z) levels before and after the use of regenerative 

buffers are shown in Figure 12 and Figure 13 respectively. As depicted in Figure 13, 

regenerative buffer increases the signal strength and allow the final output voltage to 

achieve a strong zero (gnd) or a strong one (VDD). Note that regenerative buffer approach 
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for output voltage swing restoration is quite straightforward and different buffering 

techniques can be found in literature [32]. However, the usage of the regenerative buffer 

increases the transistor count, delay and power. Compared to the basic GDI-NCL 

implementation, regenerative buffers will increase the transistor count by four for each 

gate. The static power consumption is increased due to the direct leakage path. 

 

 

Figure 12. Addition of regnerative buffer at the output of GDI-NCL TH23  

 

 

Figure 13. Output wavefprm of GDI-NCL TH23 gate after the use of renerative buffers 
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This limitation can be addressed by designing the circuit using multi-threshold 

transistors technique. As seen in [35], leakage current, the main contributor towards static 

power exponentially decreases with the increasing threshold voltage. Therefore, high 

threshold transistors can be used to decrease static power, but with overhead latency. So, 

to achieve low power and latency, both low threshold and high threshold transistor are 

utilized for implementing NCL gates. Low threshold transistors are used in the critical 

paths of the circuit, while the rest of the circuit is designed with high threshold transistors. 

The integration of high threshold transistors into non- critical paths is usually practiced to 

maintain high performance (i.e. to reduce leakage power), while low threshold transistors 

are used in critical paths to maintain speed. Thus, the multi-threshold transistor technique 

can be applied to GDI-NCL technique to reduce the static power even when regenerative 

buffers are used.  

 

4.2. GENERALIZED APPROACH (GNCL) FOR REALIZING NCL GATES  
 

 

 To achieve a low power design, low threshold transistors are used specifically in 

path where a voltage drop is to be expected, and the rest of the circuit is designed using 

high threshold transistors. Therefore, GDI-AND, GDI-OR and GDI-MUX are realized 

using low threshold transistors and regenerative buffers are implemented using high 

threshold transistors.  

For example, consider the scenarios when TH23 gate are realized using the GNCL 

approach. As described in Figure 14, GDI based AND, OR and MUX gates, realized using 

low threshold transistors, are utilized for realizing BC, B + C, A A(B + C) + BC and (B + 
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C) + BC + Z’(A+B+C). On the other hand, regenerative buffers are designed using high 

threshold transistor to produce a full swing final output.  

Even the final design that is described in this section exhibits a considerable impact 

on latency which will be discussed as part of the future effort. In the next section, the 

proposed methodology, several combination circuits are implemented and comparative 

results are presented.  

 

Figure 14. GNCL implementation of TH23 gate 

 

5. SIMULATION RESULTS 

This section compares the results for various NCL circuits implemented using static 

CMOS and GNCL approaches. These designs include 4-bit NCL ripple carry adder (RCA), 

4-bit unpipelined NCL multiplier (UMUL), pipelined NCL multiplier (MUL) and 4-bit 

unpipelined NCL arithmetic logic unit (UALU). The internal logic and structures of these 

designs can be found in [23, 28]. To study the impact of proposed approach on dynamic 
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power consumption, three CMOS models are realized using different threshold voltage 

transistors namely; high threshold model (High Vth), low threshold model (Low Vth) and 

nominal threshold model (Std Vth). The High Vth model consists of NCL gates 

implemented through high threshold voltage transistors where low power and high latency 

is observed. Similarly, Low Vth and Std Vth models respectively use low threshold and 

nominal threshold voltage transistors for implementation. These low threshold transistors 

tend to have low latency, but high-power consumption and standard threshold transistors 

provide medium delay and medium power dissipation. The GNCL design performance is 

compared individually with all of these CMOS designs.  

All the designs are realized in 45nm technology using Cadence proprietary general 

process design kit (gpdk45). A process design kit contains the process technology and 

needed information to do device-level design in the Cadence environment. The schematics 

are implemented in Cadence Virtuoso tool with VDD = 1V and temperature = 27ºC. The 

designs are simulated with the Spectre simulator in the Cadence Virtuoso using gpdk45 

high, low and nominal threshold MOSFET transistors with W/L ratio of 2.6. All these 

transistors are minimum size and simulations were carried on all the possible input patterns. 

The performance comparison is based on number of transistors (#t), static power 

consumption (SP) and dynamic power consumption (DP). The average of all patterns is 

computed to determine the dynamic power consumption. To quantitatively demonstrate 

and verify the performance of the proposed approach, a detailed analysis of NCL gates are 

when implemented using GNCL technology is first presented. 
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Figure 15. Transistor counts for 27 NCL gates using CMOS and GNCL techniques 

 

5.1. 27 FUNDAMENTAL NCL GATES 

As discussed in Section 2, NCL gates are the basic building of any NCL circuits. 

Therefore, comparison between CMOS and GNCL implementation of NCL gates in terms 

of transistor count and power is analyzed first.  

5.1.1. Transistor Count. Figure 15 illustrate the #t required by the CMOS [28] and 

GNCL methodologies to implement 27 NCL gates. As shown in the graph, the GNCL 

approach shows a reduction in #t for all gates except for TH1n gates. TH1n gates are 

equivalent to n-input OR gates and require 2(n + 1) #t for their static CMOS 

implementation. Whereas, conventional GDI technique will only require (n−1)∗2 number 

of transistors. But, the conventional GDI approach has a drawback of voltage drop that 

affects the performance of the gate. To overcome this limitation, the proposed approach 

introduces regenerative buffers, hat increases the total #t by four. Therefore in total, the 

GNCL technique require ((n−1)∗2+ 4) #t, which is equal to the CMOS approach. Thus, the 

GNCL based TH1n gates have the same number of transistors as CMOS approach. 

However, GNCL approach reduces the number of transistors in the range of 2-8 for the 
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other NCL gates. Therefore, an average 2.9% reduction in the transistor count for 27 NCL 

gates is observed. 

5.1.2. Power Consumption. Power analysis of 27 NCL gates when implemented 

using different models is analyzed here. The difference in the static power and dynamic 

power consumption of the different implementation is shown below.  

5.1.2.1. Static power. Static power quantifies the power consumed when the circuit 

is not in operation. Static power is largely dependent on the leakage current. The leakage 

mechanisms that dominates the total power dissipation in a transistor are subthreshold 

leakage and gate leakage that increases with reduction in threshold. As a result, higher the 

vth, smaller the static power. Thus, high vth transistors will result in lower static power 

dissipation compared to nominal vth and low vth transistors. Similarly, in comparison with 

low vth transistor, nominal vth transistor results in low static power dissipation. Therefore, 

as depicted in Figure 16, High Vth, and Std Vth models results in low static power than the 

GNCL model. But, the GNCL model provides better results than Low vth model as it 

contains both high and low vth transistors. 

5.1.2.2. Dynamic power. Dynamic power, also known as switching power, 

depends on transient power and load capacitance power consumption. Transient power is 

the amount of power consumed when a device transitions from one state to another. 

Therefore, it is directly tied to the number of transistors in a device that change states. As 

a result, the decrease in the number of transistors can reduce dynamic power. Since, the 

GNCL model requires less #t than CMOS model, it therefore consumes less dynamic ower 

as shown in Figure 17. However, for some of the NCL hates such as T H1n gates, GNCL 
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model has higher dynamic power than High Vth and Std Vth models, because generative 

buffers require higher power to increase the signal strength. 

 

 

Figure. 16. Static power consumption of 27 NCL gates  

 

 

Figure 17. Dynamic power consumption of 27 NCL gates 

 

5.2. COMBINATIONAL CIRCUITS  

 To further analyze the impact of the proposed approach on larger designs, several 

combinatorial circuits such as RCA, UMUL, MUL and UALU were realized using these 
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different models (High Vth, Std Vth, Low Vth and GNCL) of NCL gates. The following 

are the comparative results of these NCL circuits. 

5.2.1. Transistor Count. Table 2 summarize the total number of transistors 

required to implement RCA, UMUL, MUL and UALU circuits using CMOS and GNCL 

approaches. As shown in the table, all CMOS models require the same number of 

transistors, as they differ only in the type of transistor used. Therefore CMOS circuits 

consume more #t relative to GNCL designs for implementing any of these circuits. For an 

example, the CMOS models require 1128 transistors to realize a 4-bit RCA, while the 

GNCL requires only 960 transistors. Therefore, the proposed approach reduces the 

transistor count by 14%. Similarly, for the other circuits, an average reduction of 13.4% in 

the transistor count is observed with the use of GNCL approach. 

Table 2. Total number of transistor used for implemententing various NCL circuit 

MODEL RCA UMUL MUL UALU 

High_Vth/Std_Vth/ 

Low_Vth 

 

1128 

 

2040 

 

2574 

 

4084 

 

GNCL 

 

960 

 

1760 

 

2238 

 

3520 

Reduction in the 

transistor count  

 

14% 

 

13.7% 

 

13% 

 

13.4% 

 

5.2.2. Power Consumption. Power analysis of RCA, UMUL, MUL and UALU 

designs when implemented using different models is analyzed here. The difference in the 

static power and dynamic power consumption of the different implementation is shown 

below. 
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         Table 3. Static power consumption for different NCL circuits 

 

 

 

 

 

 

Table 4. Dynamic power consumption for different NCL circuits 

 

 

 

 

 

5.2.2.1. Static power. As discussed earlier, static power consumption of NCL 

gates, high Vth transistors consumes less static power than nominal Vth and Low vth 

transistors. So, as seen from Table 3, for any circuit (RCA, UMUL, MUL and UALU), 

High Vth model always shows low static power consumption compared to other models. 

Similarly, Std Vth models designed with nominal Vth transistors consume less power than 

the proposed method. However, compared to Low Vth models, the GNCL based circuit’s 

shows an average 80% reduction in static power. 

 

MODEL RCA 

(nW) 

UMUL 

(nW) 

MUL 

(nW) 

UALU 

(nW) 

High_Vth 0.05 0.3 2.17 0.63 

Low_Vth 3.72 5.9 8.5 11.4 

Std_Vth 0.36 0.5 1.23 1.09 

GNCL 1.50 2.3 1.28 3.20 

MODEL RCA 

(nW) 

UMUL 

(nW) 

MUL 

(nW) 

UALU 

(nW) 

High_Vth 13.42 21.06 28.34 17.16 

Std_Vth 16.45 25.93 33.9 24.55 

Low_Vth 22.44 45.83 68.40 30.53 

GNCL 13.79 21.91 29.84 18.42 
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5.2.2.2. Dynamic power. In Table 4, dynamic power consumption for different 

NCL circuits is summarized using CMOS and GNCL approaches. As seen in Table 6, 

GNCL designs reduce dynamic power by an average of 4% for High Vth, 21.7% for High 

Vth and 41% for Low Vth models.  

In summary, among the presented CMOS models, GNCL shows best performance 

in terms of transistor count and dynamic power. Although, the static power of High_Vth 

designs are small, high Vth transistors are rarely used to design a complete device because 

they increase latency. Hence, a complete device is not entirely designed with high Vth 

transistors. It is therefore best to compare the performance of the GNCL approach to the 

Std_Vth and Low_Vth models. Compared to these two models, GNCL shows 13% -14% 

reduction in the transistor count and 30% - 40% reduction in dynamic power. The static 

power consumption of GNCL model can further reduced by replacing low Vth transistors 

by nominal Vth transistors. 

6. CONCLUSION 

   

This paper has proposed a novel GNCL methodology, which achieves low area and 

power consumption by using GDI and multi-threshold technique. The proposed approach 

shows a 13%-14% reduction in the transistor count and a 14%-30% decrement in the power 

consumption when compared to the conventional CMOS NCL counterpart. This 

considerable enhancement in terms of area and power will further increase the use of NCL 

in asynchronous digital designs, competing with conventional synchronous designs. The 
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impact of the GNCL methodology on latency is not discussed and will be part of future 

effort.  
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IV.  ENERGY-PERFORMANCE SCALABILITY ANALYSIS OF A NOVEL 

QUASI-STOCHASTIC COMPUTING APPROACH 

ABSTRACT 

Stochastic computing (SC) is an emerging low-cost computation paradigm for 

efficient approximation. It processes data in forms of probabilities and offers excellent 

progressive accuracy. Since SC’s accuracy heavily depends on the stochastic bitstream 

length, generating acceptable approximate results while minimizing the bitstream length is 

one of the major challenges in SC, as energy consumption tends to linearly increase with 

bitstream length. To address this issue, a novel energy-performance scalable approach 

based on quasi-stochastic number generators is proposed and validated in this work. 

Compared to conventional approaches, the proposed methodology utilizes a novel 

algorithm to estimate the computation time based on the accuracy. The proposed 

methodology is tested and verified on a stochastic edge detection circuit to showcase its 

viability. Results prove that the proposed approach offers a 12% – 60% reduction in 

execution time and a 12% – 78% decrease in the energy consumption relative to the 

conventional counterpart. This excellent scalability between energy and performance could 

be potentially beneficial to certain application domains such as image processing and 

machine learning, where power and time-efficient approximation is desired.  

Index Terms— stochastic computing; energy-performance scalability; low discrepancy 

sequence 
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1. INTRODUCTION 

 

With rapidly advancing technology, energy efficiency has become one of the major 

design challenges in digital circuits and systems. Studies demonstrate that energy 

efficiency can be improved by reducing both the computational time and power 

consumption [1]. However, reducing these factors affects the performance of the system. 

In other words, reducing the power consumption affects the overall performance of the 

system. This challenge intensifies the current demand for low-power high-performance 

systems, and therefore a novel methodology to handle this challenge is required. One such 

promising technique that exploits probability theory “stochastic computation” can address 

these limitations [1]. Stochastic computing (SC), which was invented in the 1960s by 

Gaines [2, 3], recently regained significant attention mainly due to its approximate 

computation method. This computation method offers progressive accuracy scalability [4] 

that can be well exploited in the applications where approximated accuracy is accepted. 

This includes media processing, neural networks, factor graphs, LDPC codes, fault-tree 

analysis, image processing, and filters [5–10]. However, mainstream adoption of SC is 

limited due to the long run-time and inaccuracy [1]. As explained in [11], a random number 

generator (RNG), also known as a stochastic number generator (SNG), plays a significant 

role in determining the area and energy consumption. The commonly used SNG is the 

linear feedback shift register (LFSR), and several optimization techniques to improve the 

output accuracy of the LFSR-based SNGs are presented in the literature [12–18]. As 

presented in [19], increasing the length of stochastic sequences (SS) increases operating 

time and power consumption.  
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To address this issue, [11] introduced a quasi-stochastic bit sequence generation 

(QSNG) that utilizes the distributed memory elements of a field-programmable gate array 

(FPGA) for designing the SNGs. However, no comment on energy reduction has been 

reported in [11]. Therefore, in this work a detailed analysis and methodology for energy 

reduction is presented to improve the overall performance. In this paper, a novel energy-

performance scalable methodology based on quasi-stochastic number generators is 

proposed and validated. Compared to the conventional approaches, the proposed 

methodology utilizes a novel algorithm to estimate the computation time based on the 

accuracy. Finally, a comprehensive simulation-based study is presented in this paper to 

demonstrate the reductions in operating time and energy consumption. Overall, a 12% –

60% reduction in the operating time and a 12% –78% saving in terms of the energy 

consumption relative to the conventional LFSR counterpart are observed. This paper is 

organized as follows. In Section 2, background of Stochastic computing and quasi-

stochastic bit sequence generation are discussed. Section 3 provides a novel energy-

efficient quasi-stochastic computing algorithm to calculate the number of clock cycles 

based on the peak signal-to-noise ratio. The simulation results to validate the proposed 

approach are presented in Section 4. Finally, Section 5 asserts the conclusion. 

 

2. BACKGROUND 

2.1.  STOCHASTIC COMPUTING 

SC is a computation technique that uses finite length binary bitstreams to encode 

stochastic numbers [19]. The length of the bitstream and the number of 1s and 0s in the 
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binary bitstream determine the encoded probability value [1]. The basic circuits used in 

stochastic computation are shown in Figure 1. The operation of these circuits rely on the 

type of number interpretations, namely unipolar (UP), bipolar (BP) or inverted bipolar 

(IBP) formats as presented in [19]. The unipolar format represents the real number x in the 

range of [0, 1], using bipolar x is represented in between [−1, 1] and IBP ranges from [−1, 

1], where the Boolean values 0 and 1 are represented as 1 and −1 in the stochastic number 

(SN) [11]. Detailed explanations of various SN formats are clearly discussed in [14]. 

 

 

Figure 1. Basic circuits used in stochastic computation: (a) AND gate used as a stochastic 

multiplier. (b) Multiplexer used as a scaled stochastic adder. (c) Stochastic circuit for 

realizing the arithmetic function z = x1x2x4 + x3(1 − x4) [19] 
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The probability value in SC is represented by a binary bitstream of 0s and 1s with 

specific length L [19]. For the binary representation of 0.5, in the bitstream of length L, 

half of the bits are represented by 1s and the other half with 0s [11]. For example, one way 

of representing 0.5 with a bitstream of 8 bits is 01010101. Dependency or correlation 

between the inputs also plays an important role in representing a stochastic number 

[19].This inherent feature of SC limits its performance over certain applications compared 

to conventional binary implementations [20]. For example, an AND gate is used as a 

multiplier in SC. If two input SS (x and y, namely) are identical (e.g., x = y = 01012 = 0.5), 

output z will also be 01012 = 0.5, which is not an accurate result because the accurate 

output stochastic bitstream should have three 0’s and one 1 (i.e., 0.25). Another extreme 

case can happen when x = y¯, where output will be 0000 = 0.0. 

As shown in these two examples, stochastic bitstream length should be large 

enough to have the output stream to converge to an accurate value. Therefore, SC is 

considered to be viable for applications such as image processing and machine learning 

where fast and efficient approximate computation is desired. To achieve acceptable 

accuracy, bitstream length L should be large enough to have the final result converged to 

a value with acceptable approximation error. To address this limitation, a new approach 

quasi-stochastic bit sequence generation, leveraging FPGA implementation of low-

discrepancy (LD) bitstreams for faster convergence has been proposed in [11]. 

2.2. QUASI-STOCHASTIC BIT SEQUENCE GENERATION 

In this approach, the LD sequence and distributed memory elements of the FPGAs 

(i.e., the LUTs are used for designing the SNGs) [11]. Compared to conventional hardware 
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pseudo random number generation scheme such as LFSR methodology, LD sequences 

prevent the occurrence of random fluctuation by uniformly spicing the 0s and 1s in the 

stochastic bit streams [21]. They allow a fraction of the points inside any subset of [0, 1) 

to be as close as possible, such that uniformity is maintained between the low-discrepancy 

points [11]. This helps to reduce gaps and clustering points as illustrated in Figure 2. 

 

 

Figure 2. Distribution of pseudo-random points (top) and LD points (bottom) in the unit 

square [22] 

 

In this QSNG methodology, the stochastic sequence is obtained by multiplying the 

pre-computed fixed direction vectors with binary numbers [11]. The general structure for 

generating the binary base two LD sequence consists of bit-wise XOR gates, a 

multiplication circuit, and RAM to store the directional vectors. In the multiplication 

circuit, each bit from the counter output is multiplied by each n-bit direction vector to 

produce n-bit intermediate direction vectors [11].  
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The bit-wise XOR-ing of these n-bit intermediate direction vectors will result in n-

bit LD sequence. At the comparator, these LD sequences are compared with the input 

binary numbers to generate stochastic number [11]. For example, to generate an SS of bit 

length of 256 (2 8 ), eight-bit length direction vectors, which can generate an eight-bit length 

LD sequence every clock cycle, are required. In summary, SNG plays an important role in 

determining the SC properties such as size and computation time. In a LFSR-based SNG, 

L clock cycles are required to fully generate an SS of length L bits [19]. On the other hand, 

the length of the SS in QSNG methodology determines the size of the binary counter, which 

in turn determines the computation time [11]. With energy becoming the predominant 

factor in the current computing systems, novel techniques to address this limitation is 

required. 

 Therefore, the primary focus of this work is to present an energy-efficient SC 

approach for image processing application based on the proposed QSNG methodology. A 

systematic approach called EQSNG (energy-efficient quasi-stochastic number generation) 

is proposed that minimizes the energy consumption by detecting the lowest number of 

clock cycles for a specified accuracy. This methodology is used to assess SC’s accuracy in 

various test images. To the best of our knowledge, this is the only SC design that 

outperforms its conventional LFSR-based SC in terms of energy-performance scalability. 

The energy-performance scalability of SC based on QSNG is discussed in detail in Section 

3. 
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3. ENERGY PERFORMANCE SCALABILITY OF NOVEL QUASI-

STOCHASTIC COMPUTING APPROACH 

 

We begin this section by discussing major factors affecting the accuracy of a 

processed image. Next, the effect of computation time on accuracy and energy 

consumption is demonstrated. Lastly, the proposed energy efficient algorithm that 

introduces energy-performance scalability in SC is discussed in detail. In most of the image 

processing techniques, the quality of the processed image is determined by its accuracy. 

Accuracy can be quantified using several error metrics, such as maximum error, mean 

square error (MSE), and so on [23]. In this work, PSNR is used to quantify the acceptability 

of noisy image. It is measured in the unit of dB and determines the similarities between 

two images (e.g., input image and processed output image). PSNR value can be calculated 

by Equation 1 [23]:  

                                        𝑃𝑆𝑁𝑅 = 10 𝑙𝑜𝑔10
𝑀𝐴𝑋𝐼

2

𝑀𝑆𝐸
                                                (1) 

where  𝑀𝑆𝐸 =  
1

𝑚𝑛
∑ ∑ ⎸I(i, j) − K(i, j) ⎸2𝑛−1

𝑗=0
𝑚−1
𝑖=0  is the mean square error between the 

error-free and the erroneous image, MAXI is the maximum image pixel value (e.g., 255 in 

8-bit grayscale image), m and n represent the width and height of the target image in terms 

of the number of pixels, and I(i, j) and K(i, j) represent the pixel values of the error-free 

image and the erroneous/noisy image, respectively. For the gray scale images, MSE is 

determined based on their brightness values. 

As seen from Equation 1, MAXI plays an important role in determining the 

accuracy of the image and the length of the SS. According to [11, 19], high precision (in 
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terms of accuracy) output can be achieved when an SC circuit operates on a large number 

of stochastic bit streams. Since each bit of an SS takes a clock cycle to be processed, 

computation time linearly increases with the increase in the size of the stochastic bit stream. 

Therefore, with increasing accuracy, computation time tends to increase. Note the 

computation time refers to the total number of clock cycles required to generate output SS. 

In physics, power is how fast energy is used or transmitted and power is calculated as the 

amount of energy divided by the time it took to use the energy. Its unit is the watt, which 

is one joule per second of energy used. Likewise, power is the amount of energy used per 

each unit time (i.e., 126 clock cycles) in a clocked digital circuits. Then, energy can be 

calculated by multiplying power by the total number of clock cycles used. Therefore, the 

number of clock cycles and energy consumption are proportional. In a conventional digital 

circuit designed to process data given in binary radix encoding, energy-performance 

scalable computing is quite limited, as the total number of clock cycles needed to process 

inputs to generate output is solely determined by how the circuit is designed and optimized. 

Also, power consumed per clock cycle is purely dependent upon the complexity of the 

circuit. Besides, stochastic computing has much higher inherent potential for efficient 

utilization of energy-performance scalability. The term energy-performance scalability in 

this paper refers to the fact that when accuracy is high, energy consumption will be high. 

However, for many image processing applications, a desirable accuracy is more than 

enough. Therefore, savings in energy can be achieved for acceptable accuracy. If more 

clock cycles are used, more energy will be needed, but higher quality output will result and 

vice versa. Such an inherent tradeoff can be beneficial in certain application domains such 

as image processing and artificial neural networks where quick low-power approximation 
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is desired. The proposed quasi-stochastic computing approach is to address the slow 

convergence problem of conventional Stochastic computing while offering excellent 

energy-performance scalability. 

To prove that the proposed approach is viable, an edge detection scheme is 

performed on the gray scale image “clock.” The impact of computation time on accuracy 

and energy is depicted in Figure 3. As seen from the graph, the accuracy in terms of PSNR 

of the image and the energy consumption tends to increase linearly with the number of 

clock cycles. Hence, it is practical to choose the minimum number of clock cycles that can 

satisfy the minimum required accuracy for the best possible energy-performance balance. 

To address this energy-accuracy trade-off, we propose an energy-accuracy scalable 

EQSNG design that can determine the number of iterations based on the acceptable PSNR 

threshold for an image. 

 

 

Figure 3. Accuracy and energy consumption during edge detection of clock test image 

 



 

 

91 

Figure 4. Structure of EQSNG 

 

The acceptability of the target image can be achieved by just comparing the 

equivalent error rate with the corresponding acceptable error rate threshold. This 

acceptable error rate threshold is assumed to be a user-defined value in this work. The 

general design of the energy efficient QSNG model (EQSNG) is depicted in Figure 4. The 

optimal number of iterations is calculated based on the user-defined peak signal-to-noise 

ratio (PSNR). The process to estimate optimal number of iterations is shown in Algorithm 

1. The first step is to store the pre-computed direction vectors in the random-access 

memory (e.g., look up tables of the FPGA). Then, each bit of n-bit directional vectors is 

multiplied with the n-bit binary counter output using an AND gate. The resulting binary 

numbers are XORed up to obtain the final LD sequence. This LD sequence is compared to 

the binary input value to generate an SS on which stochastic operations are performed. The 

resultant stochastic output is again converted to binary number at the stochastic binary 

conversion block. This post-processed binary output is processed in MATLAB to 

determine the image quality (i.e., accuracy).  
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To determine the image accuracy, the mean square error (MSE) that accurately 

measures the error in the reference image is calculated first. The resultant MSE value is 

used for calculating PSNR (PSNRCurrent). If the calculated PSNRCurrent is less than the 

user defined target PSNR value (PSNRTarget), the counter is incremented and the whole 

process is carried out till the desired PSNR is achieved. Since the counter is incremented 

by increasing the clock cycles, the total energy consumption is calculated by multiplying 

the power by the number of clock cycles. As the proposed approach can converge at a much 

faster rate, they require few clock cycles to achieve the desired PSNR value, which in turn 

further reduces the energy consumption. 

Algorithm 1: EQSNG Algorithm 

Data: ImageInput, PSNRTarget  

Result: Energy, ClockCycles  

Initialization;  

ClockCycles = 0;  

PSNRCurrent = 0;  

LOOP: if PSNRCurrent < PSNRTarget  then 

if ClockCycles == 0 then  

Calculate Power;  

end  

ClockCycles += 1;  

Generate ImageOutput;  

Calculate PSNRCurrent;  

Go to Loop 

else  

Energy = Power × ClockCycles;  

end 
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Hence, the proposed approach provides acceptable image quality with fewer clock 

cycles and less energy consumption. Compared to the conventional SC approach based on 

LFSR, the EQSNG methodology can generate an acceptable quality edge detection image 

with excellent energy efficiency. To demonstrate and verify the energy-performance 

scalability of the EQSNG approach, the proposed methodology is implemented on a 

stochastic edge detection circuit for 8-bit grayscale image processing. In the next section, 

the proposed methodology is applied to several test images and comparative results are 

presented and analyzed. 

 

4. SIMULATION-BASED ENERGY-PERFORMANCE SCALABILITY 

ANALYSIS 

 

This section compares the results for various test images implemented using 

conventional LFSR and EQSNG approaches. These test images on which edge detection 

is performed are shown in Figure 5, which are called clock, crowd, and aerial. The edge 

detection circuit based on Robert’s cross algorithm [5] was used for the proposed energy-

performance scalability analysis. To study the impact of the proposed approach on energy 

consumption, target PSNR values are arbitrarily selected. Next, the computation time (i.e., 

number of clock cycles) required to achieve the specified accuracy is determined and 

corresponding energy consumption is calculated. 

The circuits have been realized on a Xilinx Virtex 4 SF FPGA (XC4VLX15) device 

and synthesized using Xilinx ISE 12.1 design suite. The QSNG uses the LD sequence and 

distributed memory elements (LUTS) of the FPGAs for designing the SNGs. Therefore, an 

FPGA is used. The performance of the proposed technique has been extensively evaluated 
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using a 8-bit grayscale images (i.e., each pixel value is represented using a stochastic bit-

length of 28 = 256 bits) as an example in this section. A cycle-accurate simulator has been 

implemented in MATLAB to generate simulation results for the proposed technique. The 

pixel values of the images were extracted using MATLAB and were given as the 8-bit 

binary input to the stochastic edge detection circuit. Then, the output extracted from the 

post-synthesis simulation results was processed in MATLAB to determine the accuracy.  

 

 

Figure 5. Open source test images used for edge detection: (a) clock (b) crowd (c) aerial 

 

The circuits have been realized on a Xilinx Virtex 4 SF FPGA (XC4VLX15) device 

and synthesized using Xilinx ISE 12.1 design suite. The QSNG uses the LD sequence and 

distributed memory elements (LUTS) of the FPGAs for designing the SNGs. Therefore, an 

FPGA is used. The performance of the proposed technique has been extensively evaluated 

using a 8-bit grayscale images (i.e., each pixel value is represented using a stochastic bit-

length of 28 = 256 bits) as an example in this section. A cycle-accurate simulator has been 

implemented in MATLAB to generate simulation results for the proposed technique. The 

pixel values of the images were extracted using MATLAB and were given as the 8-bit 
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binary input to the stochastic edge detection circuit. Then, the output extracted from the 

post-synthesis simulation results was processed in MATLAB to determine the accuracy.  

To quantitatively demonstrate and verify the performance of the proposed 

approach, energy consumption is determined by using the following simulation 

parameters: 8-bit grayscale images and its desired PSNR value. Table 1 shows the number 

of clock cycles and energy consumed for achieving the desired quality of image. As per 

the results shown in the table, energy consumption for the proposed EQSNG methodology 

is significantly lower than the traditional approach (LFSR) for the same target PSNR. As 

seen from the Table 1, the number of clock cycles for EQSNG to achieve the desired quality 

of the image is considerably less than LFSRs. The proposed EQSNG implementation of 

the edge detection circuit reduces the computation time by a factor of 3.5 times on average 

when compared to LFSR based approach. For instance, to achieve a PSNR of 31.53 dB for 

the Aerial test image, the energy consumed by the EQSNG and LFSR approach are 0.14 

µJ and 0.63 µJ, which is a substantial saving. 

To quantitatively demonstrate and verify the performance of the proposed 

approach, energy consumption is determined by using the following simulation 

parameters: 8-bit grayscale images and their desired PSNR value. Table 1 shows the 

number of clock cycles and amount of energy consumed for achieving the desired quality 

of image. As per the results shown in the table, energy consumption for the proposed 

EQSNG methodology is significantly lower than the traditional approach (LFSR) for the 

same target PSNR. As seen from Table 1, the number of clock cycles for EQSNG to 

achieve the desired quality of the image is considerably less than LFSRs. The values in 
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Table 1, are obtained by designing both the LFSR and EQSNG models and verified via 

simulation studies. 

The proposed EQSNG implementation of the edge detection circuit reduces the 

computation time by a factor of 3.5 times on average when compared to the LFSR based 

approach. For instance, to achieve a PSNR of 31.53 dB for the aerial test image, the energy 

consumed by the EQSNG and LFSR approach are 0.14 µJ and 0.63 µJ, which is a 

substantial saving. Therefore, the energy consumption reduces by 77.7%. Similarly, the 

energy consumed by LFSR and EQSNG methodologies to achieve a PSNR of 28 dB for 

the clock test image is 0.054 µJ and 0.05 µJ energy. Thus, the proposed approach reduces 

energy consumption by 12.2% as presented. Compared to the LFSR approach, for the 

Crowd test image with a PSNR of 40.30 dB, the EQSNG approach saves about 18.6% of 

energy. The, reduction in energy consumption for various PSNR values by using the 

proposed approach is depicted in Figure 6.  

 

 

Figure 6. Reduction in energy consumption for various PSNR values using EQSNG 

methodology compared to LFSR approach 
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Table 1. Table showing the no of clock cycles and energy consumption for various PNSR  

 

Test 

Image 

 

Approach 

 Target PSNR (dB) 

22.6 25.13 28.13 31.53 35.34 40.30 

 

 

 

Aerial 

EQSNG 
# of clk cycles 7 10 14 26 47 77 

Energy (µJ) 0.038 0.054 0.0076 0.14 0.25 0.419 

LFSR 
# of clk cycles 17 23 100 198 225 240 

Energy (µJ) 
 

0.054 0.073 0.32 0.63 0.72 0.768 

 

 

 

 

Clock 

EQSNG 
# of clk cycles 4 7 10 19 30 53 

Energy (µJ) 0.022 0.038 0.05 0.1 0.16 0.29 

LFSR # of clk cycles 4 10 18 37 95 151 

Energy (µJ) 0.013 0.032 0.057 0.11 0.3 0.48 

 

 

 

Crowd 

EQSNG 
# of clk cycles 8 13 18 28 45 80 

Energy (µJ) 0.043 0.07 0.098 0.15 0.24 0.43 

LFSR 
# of clk cycles 14 22 50 70 112 165 

Energy (µJ) 0.044 0.07 0.16 0.224 0.36 0.53 

 

The proposed EQSNG implementation of the edge detection circuit reduces the 

computation time by a factor of 3.5 times on average when compared to the LFSR based 

approach. For instance, to achieve a PSNR of 31.53 dB for the aerial test image, the energy 

consumed by the EQSNG and LFSR approach are 0.14 µJ and 0.63 µJ, which is a 

substantial saving. Therefore, the energy consumption reduces by 77.7%. Similarly, the 

energy consumed by LFSR and EQSNG methodologies to achieve a PSNR of 28 dB for 

the clock test image is 0.054 µJ and 0.05 µJ energy. Thus, the proposed approach reduces 

energy consumption by 12.2% as presented. Compared to the LFSR approach, for the 

Crowd test image with a PSNR of 40.30 dB, the EQSNG approach saves about 18.6% of 

energy. The, reduction in energy consumption for various PSNR values by using the 

proposed approach is depicted in Figure 6.  
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Figure 7. Edge detection on the clock test image using the proposed EQSNG SC 

apporach: (a) PSNR = 22.2 dB; 4 clock cycles. (b) PSNR = 25.13 dB; 7 clock cycles. (c) 

PSNR = 28.12 dB; 10 clock cycles. (d) PSNR = 31.53 dB; 18 clock cycles. (e) PSNR = 

35.34 dB; 35 clock cycles. (f) PSNR = 40.30 dB; 55 clock cycles 

 

 

 

Figure 8. Edge detection on the clock test image using conventional LFSR-based SC 

apporach: (a) PSNR = 22.2 dB; 4 clock cycles. (b) PSNR = 25.13 dB; 10 clock cycles. (c) 

PSNR = 28.12 dB; 18 clock cycles. (d) PSNR = 31.53 dB; 37 clock cycles. (e) PSNR = 

35.34 dB; 95 clock cycles. (f) PSNR = 40.30 dB; 151 clock cycles 
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Figure 9. Edge detection on the crowd test image using the proposed EQSNG SC 

apporach: (a) PSNR = 22.2 dB; 8 clock cycle. (b) PSNR = 25.13 dB; 13 clock cycles. (c) 

PSNR = 28.12 dB; 18 clock cycles. (d) PSNR = 31.53 dB; 28 clock cycles. (e) PSNR = 

35.34 dB; 45 clock cycles. (f) PSNR = 40.30 dB; 80 clock cycles 

 

 

Figure 10. Edge detection on the crowd test image using conventional LSFR-based SC 

apporach: (a) PSNR = 22.2 dB; 14 clock cycles. (b) PSNR = 25.13 dB; 22 clock cycles. 

(c) PSNR = 28.12 dB; 50 clock cycles. (d) PSNR = 31.53 dB; 70 clock cycles. (e) PSNR 

= 35.34 dB; 112 clock cycles. (f) PSNR = 40.30 dB; 165 clock cycles 
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Figure 11. Edge detection on the aerial test image using the proposed EQSNG SC 

apporach: (a) PSNR = 22.2 dB; 7 clock cycles. (b) PSNR = 25.13 dB; 10 clock cycles. (c) 

PSNR = 28.12 dB; 15 clock cycles. (d) PSNR = 31.53 dB; 26 clock cycles. (e) PSNR = 

35.34 dB; 47 clock cycles. (f) PSNR = 40.30 dB; 77 clock cycles 

 

 

Figure 12. Edge detection on the aerial test image using conventional LSFR-based SC 

apporach: (a) PSNR = 22.2 dB; 17 clock cycles. (b) PSNR = 25.13 dB; 23 clock cycles. 

(c) PSNR = 28.12 dB; 100 clock cycles. (d) PSNR = 31.53 dB; 198 clock cycles. (e) 

PSNR = 35.34 dB; 225 clock cycles. (f) PSNR = 40.30 dB; 248 clock cycles 
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From Table 1, it should be noticed that as the PSNR (i.e., accuracy) increases the 

number (#) of clock cycles utilized also increases. Therefore, the higher the computation 

time, the better the quality of the image as illustrated in Figures 7–12. These figures show 

that the proposed approach utilizes a smaller number of clock cycles to achieve the same 

accuracy as the LFSR approach due to faster stochastic value convergence. Therefore, 

using the proposed EQSNG methodology, execution time and energy consumed can be 

reduced while achieving an acceptable level of accuracy. 

In summary, 12%–78% reduction in the energy consumption is observed. 

Moreover, compared to LFSR based approach, the proposed EQSNG implementation on 

average reduces the computation time by a factor of 2.5 times. This excellent energy-

quality scalability of the proposed approach may also be beneficial to the other application 

domains (e.g., signal processing, machine vision, and deep learning) where efficient 

reduced-precision computation is desired. 

 

5. CONCLUSION 

In this paper, a novel EQSNG is introduced and verified via extensive simulation-

based analysis where low computation time and energy consumption are achieved. The 

proposed approach is efficient enough to offer 12–60% reduction in execution time and a 

12–78% decrease in energy consumption relative to the conventional LFSR counterpart. 

This considerable enhancement in terms of time and energy will further promote the 

viability of SC over conventional approaches in application domains such as image 

processing and machine learning where low-power approximation fast is desired. 
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SECTION 

2. CONCLUSION 

 

In this research work methodologies to to improve reliability of 3D heterogeneous 

processors (3DHP) and to reduce the area overhead of asynchronous designs have been 

presented. In the first work, a novel adaptive multi-path BCH decoder design approach is 

proposed and validated to address the bit error variation issue caused by hotspots in 3DHP. 

The proposed design has multiple decoding paths with variable decoding latency and area 

trade-off. For each word read from DRAM, thermal gradient data from the on-chip 

temperature sensors is utilized to estimate the expected number of error bits. Then, the 

fastest possible decoding path which is able to correct the expected number of error bits is 

adaptively selected to reduce the overall decoding time. Also, a parallel decoding approach 

leveraging the multiple independent decoding paths of the proposed decoder design is also 

proposed and validated in this work.  

The next part of this work summarizes how NCL designs realized using convention 

static CMOS technique causes a large area overhead compared to its synchronous 

counterparts. To address this limitations, two novel approaches, HYBRID and GNCL were 

proposed. Both approaches shows a 7% - 14% reduction in the transistor count. 

Furthermore, GNCL methodology shows a 14% - 30% decrement in the dynamic power 

consumption when compared to the conventional CMOS NCL counterpart. This 

considerable enhancement in terms of area and power will further increase the use of NCL 

in asynchronous digital designs, competing with conventional synchronous designs. 
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