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ABSTRACT

Cyber security is one of the primary concerns persistent across any computing

platform. While addressing the apprehensions about security risks, an infinite amount of

resources cannot be invested in mitigation measures since organizations operate under bud-

getary constraints. Therefore the task of performing security risk assessment is imperative

to designing optimal mitigation measures, as it provides insight about the strengths and

weaknesses of different assets affiliated to a computing platform.

The objective of the research presented in this dissertation is to improve upon existing

risk assessment frameworks and guidelines associated to different key assets of Cloud

computing domains - infrastructure, applications, and users. The dissertation presents

various informal approaches of performing security risk assessment which will help to

identify the security risks confronted by the aforementioned assets, and utilize the results to

carry out the required cost-benefit tradeoff analyses. This will be beneficial to organizations

by aiding them in better comprehending the security risks their assets are exposed to and

thereafter secure them by designing cost-optimal mitigation measures.
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SECTION

1. INTRODUCTION

Cybersecurity is one of the primary concerns in any computing platform. Given

the interconnectivity of billions of devices and their networks, the risks of attacks by

unscrupulous minds have also been continuously going up. Such exploitations of any

network end up with a huge adverse/devastating effect. This is evident in the fact that Cyber

crime damage costs is estimated to reach $6 trillion annually by 2021 1 which will prompt

a cybersecurity spending increase of more than $1 trillion from 2017 to 20212. This trend

will only intensify with the notable rise in paradigms like Internet of Things, industrial IoT,

vehicular security, and so forth. However, in terms of addressing cybersecurity incidents

it is not sufficient to merely identify and analyze attacks and implement numerous security

measures with the hopes that a network will remain secure. This is because, from a socio-

economic perspective security is a non-functional requirement and given the budgetary

constraints of organizations or clients, they are skeptical to invest in security measures.

Nonetheless, even in the absence of budgetary constraints it is not effective to

simply implement numerous random security measures. Since, without an understanding

of the risks associated to the platforms which hosts a client’s or organization’s application,

developing and implementing security measures are futile leading to inefficient utilization

of limited security resources. Therefore, addressing Cyber security threats by formulating

efficient and effective security measures is a multi-step process which requires performing

security requirements analysis, risk assessment, risk management and mitigation. These

processes will also help clients understand the benefits of their investment in Cyber security.

1goo.gl/Ph76dh
2goo.gl/j7VLMF
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Risk assessment lies in the crux of the multi-step process, enabling the incorporation of

organization-wide assessment to determine the security threats, vulnerabilities and their

impact on network security parameters like confidentiality, integrity, and availability. It

also helps in prioritizing the risks that needs to be addressed thereby playing an important

role aiding the allocation of security measures constrained by an organization’s budget.

However, performing idealistic risk assessments for a large scale organization can still

be very expensive and may produce results which might require considerable domain

knowledge in order to comprehend and generate useful insights. Therefore, the task of risk

assessment is not trivial and requires careful consideration.

1.1. RISK ASSESSMENT METHODOLOGIES

The process of security risk assessment is guided by identifying security require-

ments and thereafter performing extensive evaluations of an organization’s Cyber security

prospects. These tasks involve assessing the network infrastructure for security threats due

to vulnerabilities that are present and the attacks that can exploit them. Risk assessment

also enables the evaluation of another important organization asset - the people. Users of an

application and an organization’s employees are also susceptible to different threats which

can result in the Cyber security incidents. These threats cannot be detected by running a

vulnerability scanner tool on the network, further necessitating the need of performing risk

assessment. At the end, risk assessment provides a detailed report on the threats confronted

by an organization in different domains (network, people, security policies, etc.) which

can be used in the risk management and mitigation process to either patch security vulner-

abilities and prevent certain attacks or to pro-actively develop prioritized security incident

response plans to minimize the effect of an exploit. Therefore, risk assessment acts as an

estimation and validation tool for an organization by shedding light into security return on
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investment, get feedback on implemented security measures, and help to understand their

cohesion with respect to best security practices, compliance and standards as laid down by

regulatory bodies like NIST [77] or ENISA [78].

1.1.1. Security Risk Assessment Process. The security risk assessment process is

used to determine the strengths andweaknesses of an organization’s systems, identifying and

minimizing threats below a threshold which is acceptable as per the security requirements of

the organization. An example of an organization’s security requirements could be ensuring

a certain level of assurance in confidentiality, integrity, and availability of their application

and the data it processes. Risk assessment generally focuses on evaluating the likelihood

of an undesired event (for e.g. a data breach, or an unauthorized access) and the impact it

will have on the exploitation of the system and the organization as a whole. Once this is

evaluated, risk mitigation measures are designed and developed to minimize the likelihood

and impact of the risks. In broader terms, risk assessment can be used to identify risks

in different areas of an organization and not just related to Cyber security. For example,

traditional risk assessment in the domain of information security and IT security can be used

to evaluate systems and applications that support the functional services of an organization,

its network and servers, physical security of the devices and premise, risks present (due)

to employees of the organization. The process of risk assessment is normally (and must

be) utilized during the conception of an IT service. Other than this, addition of new

functionalities to an application/service; changes in the networking environment; change in

technology (Software or Hardware updates) should also prompt the utilization of the risk

assessment process.

Prior to performing any risk assessment process, organizations must follow through

with the creation of risk assessment policies which outlines a blueprint to guide the risk

assessment process to be carried out by an organization. Such a blueprint consists of

guidelines establishing factors such as:

• When does an organization need to perform risk assessment
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• How often should it be repeated

• What will be the scope of risk assessment (how comprehensive it is going to be)

• Who will be in charge of carrying out the task (internal or third party)

• What is expected from it (actionable insights)

• Prioritizing risk levels (what sort of risks will be acceptable and which ones will be

deemed critical)

• What methods will be used to perform risk assessment (qualitative, quantitative or

hybrid)

The risk assessment process is an exhaustive task and is initiated with the risk

assessment policies document. It helps in defining the scope of the task and appointing

personnelswhowill be responsible to carrying it out. Thereafter, risk assessment procedures

are chosen (or developed) and a list of threats are identified which is followed up with

identifying vulnerabilities. In this context, a threat is defined as an unwanted event that may

cause harm; Vulnerability is defined as a weakness which may provide a way for a threat

to materialize; Impact is defined as the consequence(s) of a threat that has materialized.

After vulnerability identification, security measures are determined and evaluated which

might either help to mitigate, transfer (getting insurance policies), or avoid the threat and

its impact. Thereafter, all the aforementioned information are used to estimate probability

values which will depict the likelihood of occurrence of the threat in the presence of

evaluated security measures. This is generally done either by using experts with domain

knowledge, historical logs of threats, or statistical analysis. For prioritizing, the estimated

probability can be further categorized as Very likely, Isolated incidents, Rare, Very unlikely,

and Almost impossible. These categorizations are subjective and typically depends on the

organization and their risk assessment policies outline and followed up with sensitivity

analyses like Monte-Carlo analyses.
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Once probabilities are estimated, the damage is quantified in terms of the impact of

the identified threats when they exploit the vulnerabilities. This followed up with risk level

estimations which is defined by threat multiplied by its likelihood and impact probabilities.

Although, organizations like NIST have a scale for categorizing risk levels (for e.g. 1.0:

High, 0.5: Medium, 0.1: Low), it is a challenging task to be able to quantify and categorize

risk levels based on monetary loss or loss of reputation. After risk level estimations,

security measures are re-evaluated and suggested for implementation which are presented

in the reports generated from the risk assessment process.

For traditional risk assessment many tools are available [13] [25] however any tool

developed for carrying out risk assessment should have the some of the following features:

• Structured report generation to show the risk probabilities and their impacts

• Questionnaires and checklist to assess concerns related to compliance, policies, and

best practices

• List of threats and Security measures that can be used to suppress them

• Software automation

1.1.2. Qualitative vs. Quantitative Risk Assessment. Risk assessment involves

the comprehensive identification of different threats an organization will face and evaluate

their likelihood and impact. There are two primary methods of doing this: qualitative

and quantitative. Qualitative risk assessment involves subjectively evaluating the identified

risk’s impact or likelihood using metrics like High, Medium, or Low. The categorization of

the identified risks is usually done based on organizational policies and their understanding

of decisions like what constitutes of a high impact risk on the organization. This process

is simplistic in nature and allows for organizations to develop a ball-park estimation of the

overall threats faced by an organization.
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Quantitative risk assessment in contrast involves numerical estimations and mathe-

matical equations. This is done by using estimation techniques like Bayesian networks or

Monte-Carlo analysis to determine the probability of success for the likelihood or impact of

different threats. Although, an inherent challenge in this technique is to able to accurately

obtain the initial probability or risk values of the assets which are exposed to the identified

threats. However, tools and techniques are available like Common Vulnerability Scoring

System (CVSS) [17] which can be used a foundation to customize the empirical estimation

according to the needs of an organization. In doing so, quantitative risk assessment will

allow for quantification based on different categories like inherent difficulty of exploiting

the threat, priority given to different network security parameters, impact of initial security

measures and so on. Nonetheless the goal of this method is to develop a framework that can

lead to some actionable insights and not just provide an understanding of the threat level

of the organization. The actionable insights may involve computing the security return on

investment by performing cost-benefit tradeoff analysis, or evaluating the effectiveness of

different security measures.

However, performing accurate and comprehensive quantitative risk assessment is

ideally complex and costly, and therefore cannot be universally incorporated by small

or medium scale organizations. A more pragmatic approach lies in using hybrid risk

assessment methods that involves qualitative and quantitative techniques. Such a hybrid

approach will involve initially estimating and prioritizing identified threats using qualitative

assessment measures and then apply quantitative measures to design and develop actionable

insights.

1.2. RISK ASSESSMENT IN CLOUD COMPUTING DOMAINS

The traditional IT services were hosted on organization’s private networks. This

bounded the extent of the risks that their applications were exposed to like traditional threats

due to poor router controls, poorly configured firewall policies, and web browser security
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concerns like phising, script injection and so forth. All the vulnerability categories like

personnels, system hosting facilities, network communications, and software vulnerabilities

were within the trust boundaries of the organization. Although in terms of Cyber security

this gave the organizations more control over their systems, they had to own and maintain

all the commodities and facilities required to host their application. This prospect was quite

expensive, especially when there was a seasonal need to scale up resulting in hardware

investments and facilities upgrade which might remain underutilized after the demands go

down.

The Cloud computing paradigm was designed to address this challenge of having to

own and maintain your own hardware and facilities wherein it pooled computing resources

and provided it to clients based on a pay-as-you-use model. This was achieved through

three different delivery models - Infrastructure-as-a-service (IaaS), Platform-as-a-service

(PaaS), and Software-as-a-service (SaaS). IaaS rents out computing infrastructures onwhich

clients can deploy and develop their applications, for e.g. Amazon Web Services3. In PaaS

development platforms are rented which maybe required to develop certain applications,

for e.g. Apprenda4. SaaS delivers ready made applications to clients which have been

developed by cloud service providers, for e.g. Google Apps5. Even though such a paradigm

was cost efficient, it resulted in an increase in security concerns since applications, data,

physical facilities were no longer within the trusted boundaries of the client and their

organization. This further made the aspects of risk assessment challenging because it

was not straightforward for the clients to evaluate the cloud service provider’s network,

personnels, or physical facilities. Additionally, cloud computing introduced new paradigms

like multi-tenancy and resource sharing which required risk assessment methodologies to

evolve in order to adapt with the changes.

3aws.amazon.com/
4apprenda.com
5gsuite.google.com/products/
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Along this direction, the scope of our dissertation is captured through the scenario

summarized in Figure 1.1.

 

Figure 1.1. Key Assets related to the Sensor Cloud Computing Domain

In this context, there can be two set of users:

• owners - who possess infrastructure consisting of various sensing devices like wire-

less sensor networks, cellphones, wearable body sensors, etc. These sensory devices

are capable of sensing environmental phenomena like temperature, humidity, atmo-

spheric pressure, user’s physiological attributes (heart rate, skin temperature), and so

forth.

• clients - who possess different applications which require some kind of sensing

attributes for their functionality for example applications related to the domain of

remote health care, smart assisted living, industry, and so forth.
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Traditionally, owners can use their infrastructure to run or support their applications

in a dedicated fashion. Ideally, sensory infrastructure may be operational all the time,

however this is seldom done in practical scenarios. This is because, applications requiring

sensing capabilities utilize the devices based on certain sensing frequency and duration,

which in turn might leave the infrastructure underutilized. Whereas, clients may have the

infrastructure to host their applications, however they might not have the capabilities to own

ormaintain their sensory infrastructure. Therefore, to connect these two set of users - owners

and clients, the Missouri S&T Sensor Cloud platform was designed and implemented [79].

Sensor Cloud facilitates infrastructure-as-a-service by allowing different owners to register

their wireless sensor networks (WSNs) with its middleware. Further, clients can subscribe

to the data originating from the Sensor Cloud infrastructure as a service thereby facilitating

the concept of sensing-as-a-service, similar to software-as-a-service in the traditional cloud

computing domains. In addition to renting the sensing infrastructure and subscribing to the

data generated by them, clients may also opt to migrate their applications from their private

networks to the middleware of a Sensor Cloud service provider hosted on a public cloud

domain.

In such a scenario, the three key assets that will be vulnerable to different security

exploits are the - infrastructure, applications, and clients. Therefore, in order to develop

optimal security measures to protect these assets it is necessary to understand their strengths

and weaknesses, thereby necessitating the need to perform security risk assessments. This

is addressed via. this dissertation in the form of three security risk assessment frameworks

(Figure 1.1):

1. Risk Assessment framework for wireless sensor networks in a Sensor Cloud.

2. Off-line risk assessment framework for cloud service providers.

3. A secure user-centric framework for service provisioning.
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In the following sections, we discuss the challenges that necessitates the need for more

efficient risk assessment frameworks with respect to the aforementioned assets.

1.2.1. Risk Assessment in Sensor Cloud. A Sensor Cloud framework consists of

a collection of wireless sensor networks (WSNs) which is used to provide sensing-as-a-

service to users via the cloud platform. These WSNs have different ownership entities and

maybe heterogeneous in nature. Therefore, different WSNs may have different routing and

security protocols, the way in which they connect with the cloud platform might also vary.

In addition to understanding the standalone risks that are present in these WSNs, one must

also be able to understand the logical co-relation between stand alone risks. Successful

execution of an attack may leave a network vulnerable to further degenerate attacks. For

example in a WSN, execution of a malware attack propagated from the cloud platform

may lead to node subversion, which can be further exploited to execute Sinkhole or Sybil

attack. Current risk assessment frameworks for WSNs do not take into account such kind

of logical co-relationship between attacks. This requires the design of a risk assessment

framework for these WSNs in a Sensor Cloud that takes into consideration such logical co-

relation between the feasible set of attacks on a WSN. This can be done by using techniques

such as attack graphs to depict cause-consequence relationship between the attacks and

model it as Bayesian networks for quantification purposes. A quantitative risk assessment

approach will help in determining the net threat level to WSN’s security parameters like

confidentiality, integrity and availability and in turn efficiently allocate security resources

as well as schedule maintenance activities to check the largely unattendedWSNs in a Sensor

Cloud.

Attack graphs has been extensively studied in the literature for wired networks [80]

[81] [82]. However, it cannot be applied as is to perform risk assessment for WSNs in a

Sensor Cloud. This is because when an attack graph for a wired network is generated, the

network is scanned using a vulnerability scanner tool such as Nessus [13]. These scanners
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detect the list of vulnerabilities present on each system in a wired network which is then

parsed into an attack graph generating tool [83]. However, no comparable vulnerability

scanning tool currently exists for WSNs.

Even if such vulnerability scanning tool existed for WSNs, generating a list of

vulnerabilities would be insufficient for the purpose of performing risk assessment. Since,

sensor nodes in WSNs collaborate to achieve a common goal and suffer from inherent

resource limitations which is the primary cause of WSNs vulnerabilities as they do not

allow the implementation of desired security measures to safeguard the network. Hence

the vulnerability list will be identical for all nodes and no concrete conclusions could be

formulated from it. Thus, rather than focusing on vulnerabilities in a sensor node or network,

an alternative will be to perform risk assessment by considering the feasibility of attacks on

a particular WSN in a sensor cloud. The successful execution of different attacks will vary

according to security measures used, tasks being carried out, and deployed environment

of a WSN. Due to the above factors, risk assessment in WSNs under a sensor cloud is

challenging task. However, these existing works can be adopted and applied to this domain

which will help understand the cause-consequence relationship between WSN attacks and

identify ways in which a particular WSN security parameter may be exploited.

1.2.2. Risk Assessment in Traditional Cloud Computing Domains. Traditional

Cloud computing is a viable solution for applications which depend on scalability and

reliability for an uninterrupted service. Cloud services in the form of Software-as-a-

Service (SaaS), Platform-as-a-Service (PaaS) and Infrastructure-as-a-Service (IaaS) cuts

down application maintenance and development costs dramatically. However migration of

applications to the cloud platform gives rise to security issues as applications are no longer

within the secure domains of its organization. The security threats present varies from one

application to another and as such the promise of generalized security measures provided

by cloud service providers (CSPs) may not be sufficient to alleviate the security concerns.

Hence, the security solutions provided by a CSP is like a big black box to its clients.
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Currently the means to assess security of a CSP is by going through their security white

papers, SLA agreement, or tendor notes. An organization can also employ the services of

a third party to do the same.

However, frequent external security audits on a cloud service provider may expose

the infrastructure and security details and if acted upon maliciously may result in adverse

effects. Alternatively, organizations can internally undertake the risk assessment procedure

by referring to guidelines established by the authorities like ENISA [78] or CSA [84] to

assess the security provided by a cloud service provider. Additionally, standards such

as PCI-DSS [85], HIPAA [86] lays down guidelines for cloud service providers hosting

application related to specific fields like health care, applications comprising of financial

transactions. However, accuracy of internal security audits requires considerable domain

expertise. Further, risk assessment results either performed externally or internally, will

also be impacted by the keenness of the evaluator. Additionally, the cloud platform is quite

dynamic and security and/or service policies are subject to change on a short notice. Thus,

personnels responsible for performing risk assessment need to keep themselves up-to-date

with these changes which might not be pragmatic in the presence of multiple possible cloud

service providers to host an organization’s application. In addition to these challenges,

risk assessment evaluations for cloud service providers need to account for the security

requirements of an application to be migrated to the cloud platform. A security measure

present in a cloud service provider may be applicable to one application, but it may not be

sufficient for another application.

A more effective way to assess a cloud service provider’s security will be to do it

in contrast to the security threats present in an application. To do so, one must be able

to identify the vulnerabilities that are present in an application and determine if a cloud

service provider addresses it using their available security measures. One way of identifying

application vulnerabilities is to use vulnerability scanner tools like Tenable [13], but this

can be done once the application has been fully conceived and is operational. As such any
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repairs/patching at this point could be an expensive task. Therefore, security vulnerabilities

in an application should ideally be evaluated during the system design phase. In this

regard, tools like EMC’s Developer Driven Threat Modeling [26] and Microsoft’s STRIDE

[22] are present. Application threat modeling as discussed by Open Web Application

Security Project (OWASP) [24] gives useful guidance in vulnerability detection and secure

application development. It helps to identify, quantify and address the security risks

associated with an application. Although these methods are quite suitable in terms of

identifying vulnerabilities in an application, they are not sufficient. Since these applications

will eventually be considered for cloud migration, design phase application risk assessment

cannot be simply performed using traditional methods which consider applications to be

hosted in an organization’s private in-house hosting facilities. For example, if a client

application uses amalicious virtual machine instance from the cloud repository it might lead

to undesirable outcomes like data breach or unauthorized access. Therefore, application risk

assessmentmethodology needs to adapt by including cloud security domains like encryption

and key management, infrastructure and virtualization security, data center security and so

on [87].

Additionally, security measures, cloud platform infrastructure and safeguards differs

from one cloud service provider to another. The techniques used by a cloud service provider

to address and mitigate threats on their cloud platform changes with time and without prior

knowledge of consumers. If an application is hosted by a federation of cloud service

providers, there could be every possibility of certain incompatibility issues amongst the

different cloud service providers. Hence, the presence or absence of security solutions on

the cloud platform is no longer sufficient to assess the security of an application on the

cloud.

1.2.3. A Secure User-centric Framework for Service Provisioning. The services

of the sensing infrastructure subscribed by the clients and their applications is facilitated by

encapsulating their way of life with the Big data sensed by surrounding wireless devices. In
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this context, service provisioning will involve developing frameworks which will identify a

subset of wireless devices from the available infrastructure, tasked to serve different users

based on their service requests. Generally, such frameworks consist of two primary layers

- perception layer, comprising of sensory devices, and management layer like the Cloud or

Edge platforms to process the sensed data.

Existing frameworks extend these two layers according to their client’s or appli-

cation’s need, in different domains like industry [88], or health care [89]. Therein, they

address specific issues either arising due to resource constrained wireless devices or in-

teroperability challenges as a result of device heterogeneity [90], or discuss about making

the management layer more efficient [91]. Although novel in their own regards, these

frameworks lack the inclusion of user-centric behavior to dispense services accounting for a

user’s variable Quality of Service (QoS) and security preferences. The aspect of addressing

user QoS during service discovery and selection has been presented in [92]. The primary

focus there is to outline the process of dynamic identification of wireless sensory devices

for service selection. However, they do not consider the satisfaction or variability of a user’s

QoS/seurity preferences.

In addition to QoS, users’ security requirements from the participating devices

serving their application, plays an important role. However, addressing security in this

domain is a challenging task since the wireless devices are resource constrained (mainly

in terms of memory, energy, and bandwidth) and thus, cannot support the well established

resource intensive security protocols. Rullo et al. [93] address this challenge by leveraging

concepts of optimization and game theory. However, the allocation of security resources is

done from the infrastructure’s perspective and do not include users in the loop. For the task

of service provisioning composed of sensory wireless devices, the aspect of security cannot

be treated as a constant parameter. This is because security attacks on a network (e.g denial

of service) has an impact on the QoS parameters (e.g. response time). Therefore, similar
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to network QoS, a user may have variable security preferences which must be taken into

consideration, in addition to their QoS and functional preferences (e.g. region of interest,

service duration) during service provisioning.

To address this requirement, a service provisioning framework such as the Sensor

Cloud should be modeled in a secure user-centric fashion allowing its clients to specify their

functional, variable QoS, and security preferences. This paradigmwill include clients/users

in the service provisioning loop instead of solely relying on the innate networking and

security capabilities of the middleware/infrastructure. In turn, this will alleviate some

of users’ apprehension about the security provided by their subscribed services, thereby

improving the overall user experience; something that existing frameworks do not address.

1.3. DISSERTATION OBJECTIVES

In the following sections, the outlines of the research objectives and contributions

are discussed for the proposed security risk assessment frameworks designed for the afore-

mentioned assets of a Sensor Cloud computing platform as shown in Figure 1.1.

1.3.1. Risk Assessment in a Sensor Cloud Using Attack Graphs. The primary

objective in this research domain is to design and develop a risk assessment framework for

wireless sensor networks (WSNs) in a Sensor Cloud environment by adapting the techniques

of attack graphs from the domain of wired networks. This will help in elucidating the

logical relationships between the feasible set of attacks that can exploit WSNs. Further,

these attack graphs will be modeled using the concepts of Bayesian networks in order

to apply to quantitative risk assessment such that we are able to compute the net threat

level to different wireless sensor networks security parameters like confidentiality, integrity,

availability. These results will be used along with continuous-time Markov modeling such

that we are able to estimate different time frames estimating the probable degradation of the

aforementioned network security parameters and scheduled maintenance activities for the

largely unattended wireless sensor networks.
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We outline our contributions to the proposed risk assessment framework in a Sensor

Cloud as follows:

1. Design and develop attacks graphs for wireless sensor networks in a Sensor Cloud to

depict the logical relationship between attacks on a wireless sensor network.

• Develop attack patterns and attack module database for attacks in the domain of

wireless sensor networks.

• Create attack graphs for each network security parameter (confidentiality, in-

tegrity, and availability) by using the attack module.

2. Depict attack graphs as a Bayesian network quantifying the likelihood and impact

of attacks on a wireless sensor network and the net threat level to network security

parameters.

• Design and develop severity ratings for attacks captured in its likelihood and

impact estimations by adopting the guidelines established by Common Vulner-

ability Scoring System (CVSS) [17].

• Compute probability of success of an attack using its frequency and impact

estimations in order to evaluate the net threat level to network security parameters

of confidentiality, integrity, and availability.

3. Compute time frames predicting the degradation of network security parameters by

modeling the risk level estimations as a continuous-time Markov process.

• Utilize impact estimations of attacks to design and develop service levels de-

picting the degradation level of a wireless sensor network’s security parameter.

• Utilize likelihood estimations of attacks to compute the transition probability

from one service level to another.

• Evaluate time frames to schedulemaintenance by using the transition probability

of the most degraded service level.
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1.3.2. Offline Risk Assessment of Cloud Service Providers. The primary objec-

tive in this research domain is to develop a risk assessment framework which is able to

assess the security provided by different cloud service providers by evaluating the security

requirements of an application which will be migrated to their platform. To do so in a cost

efficient fashion, we develop the risk assessment framework such that it can be applied dur-

ing the design phase of the software development lifecycle (SDLC) of the application. The

application risk assessment during design phase also incorporates various cloud security

domains which was identified by analyzing Cloud Security Alliance’s Security, Trust, &

Assurance Registry (STAR) [87]. These evaluations produced the risk level estimations of

an organization’s application (client’s security requirements) which will be migrated to the

cloud platform of cloud service providers. The security provided by a cloud service provider

was measured by contrasting their security policies gathered from publicly available docu-

ments with the client’s security requirements. Finally, a cost-benefit tradeoff analysis was

performed, designed as multi-objective optimization problem, in order to develop optimal

cloud migration plans with a balance between security achieved and cost incurred, account-

ing for constraints arising due to factors such as budget, technical and legal issues, and

legacy systems.

We outline our contributions to the proposed risk assessment framework for cloud

service providers as follows:

1. Design and develop mission oriented risk assessment methodology for design phase

application risk assessment.

• Perform project assessment through system design represented using data flow

diagrams.

• Analyze system design for security threats arising due to traditional web appli-

cation paradigm.
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• Design and develop risk assessment methods to increase the client’s certainty

about cloud service provider’s security policies by introducing cloud security

metrics during an application’s design phase risk assessment.

2. Design and develop cloud service provider risk assessment methodology in order to

evaluate the security provided by various cloud vendors with respect to the client’s

security requirements.

• Aggregate security measures provided by various cloud vendors through pub-

licly available documents and other third party reviews, especially from Cloud

Security Alliance’s (CSA) Security, Trust, & Assurance Registry (STAR).

• Perform descriptive and exploratory analysis of CSA STAR to better understand

the context of answers from different cloud service provider for different cloud

security domains.

• Improve the STAR registry structure and develop a comprehensive knowledge

base incorporating the aggregated security evaluations from STAR with the

proposed risk assessment framework.

3. Design and develop methodologies to generate optimal cloud migration strategies.

• Perform cost-benefit tradeoff analysis by modeling it as a multi-objective opti-

mization problem.

• Formulate different cloud migration scenarios accounting for hybrid cloud mi-

gration in a federated and non-federated cloud hosting.

• Performance evaluation of different evolutionary algorithms to model our pro-

posed cost-benefit tradeoff analysis.
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1.3.3. A Secure User-centric Framework for Service Provisioning. The primary

objective in this research is to develop a user-centric service provisioning framework for

the clients/users of a Sensor Cloud service provider, designed to achieve variable security,

QoS preferences and evaluate users’ satisfaction, addressing the following challenges:

• incorporate user security preferences during service provisioning,

• allow users to linguistically express their preferences on different objectives of service

provisioning, and

• evaluate a user’s subjective satisfaction feedback from the provisioned service by

analyzing the quality of experience information gathered from user’s physiological

data.

In doing so, the contributions to this research are as follows:

1. Introduce the concept of variable security composition paradigm to capture a user’s

variable preferences on their desired security protocols.

2. Model service provisioning by integrating concepts of multi-objective optimization

and user elastic preference specification.

3. Design a multilayer perceptron to accurately validate users subjective satisfaction

feedback by incorporating physiological sensor data and deep learning emotion clas-

sification methodologies.
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2. LITERATURE REVIEW

The scope of this dissertation deals with three primary related work fields: (1) Risk

assessment in wireless sensor networks (WSNs), (2) Risk assessment of a traditional web

application, and (3) Risk assessment of Cloud computing platforms. In the first field, we

discuss the various attacks that can be executed onWSNs, the different ways in which attack

graphs are designed and developed for wired networks, the concept computing probabilistic

likelihood and impact of attacks using Common Vulnerability Scoring System (CVSS), and

representing attack graphs using Bayesian networks. In the second field, we outline the

different methods which are used to perform application risk assessment during its design

phase. Finally, we discuss some of the existing frameworks for carrying out risk assessment

of Cloud computing platforms as well as some of the works that address Cloud migration

techniques.

2.1. RISK ASSESSMENT IN WIRELESS SENSOR NETWORKS

The scope of attacks sustained by a WSN has been surveyed and discussed in [1]

[2] [3]. The authors have assessed well-known sets of WSN attacks along with their

countermeasures. They discuss various security issues related to the fields of secure data

transfer, denial of service attacks and its counter measures by using techniques such spread

spectrum frequency hopping. They also outline the limitations that sensor nodes have

due to their inherent resource constraints resulting in limited energy and processing power

which makes the application of traditional security measures like public key cryptography

a very challenging, near impossible task. This gives rise to the need for efficient and secure

techniques to manage key distribution. Additionally, WSNs also requires secure routing

protocols enabling authentication of the messages that are broadcast between the sensor

nodes and that to the base station.
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Finally, challenges also exist in performing secure data aggregation which is es-

sential to preserve the limited energy of sensor nodes. These works also give directions

into the various threat models for WSNs, considering the aspects of insider and outsider

attacks; active and passive attacks, helping to categorize the known attacks on WSNs like

eavesdropping, jamming attacks, Sybil attack into these categories. They also present the

different security requirements which is desired in a sensor network like secrecy, graceful

degradation, efficient key management techniques, etc. However, these works did not dis-

cuss the inherent characteristics of an attack like how difficult is it to execute the attacks,

how resourceful an attacker needs to be in order to execute the attack and so forth.

Walter [4] in his survey provides a more in-depth insight on security issues of

a WSN establishing the parameters based on which security of a WSN is characterized.

These parameters were confidentiality, integrity and availability. We are able to design

the attack patterns and attack module from this information for our work and analyze the

attacks on a broader perspective. Analysis of various attacks adopted by the adversary to

exploit security parameters and ways in which they could be averted were also discussed

in [4]. Although, it did not address the likelihood of exploitation of an attack. Wood [5] and

Xu [6] gives exposition on the omnipresent denial of service (DoS) attack. DoS are not only

hard to predict but also to counter. This helped us in understanding the nature of jamming

attacks in WSNs. The absence of predictability and correlation with other attacks in case of

DoS attack, is a drawback on the security administrator’s part. Karlof [7], Kannhavong [8]

and Newsome [9] gives an in depth analysis on routing layer attacks and the Sybil attack

respectively. However, these attacks can be exploited by successful execution of attacks in

different network layers. For this purpose we should identify the interdependencies between

different feasible attacks. Mauw [10] and Phillips [11] demonstrated this kind of logical

relationship via attack graphs or trees. Using the principles from the work of Lee [12], we

were able to assess the risks to a network. But the drawback was that they were for a wired

network scenario. Sheyner [14] discussed the various types of attack graph and models.



22

This contributed immensely towards the development of the attack graph model

for WSN. In this context, the generation of traditional attack graphs whose nodes depict

different wired network vulnerabilities, is amulti-step process in which the first step involves

the generation of the attack patterns which outlines the definition of an attack/vulnerabilities

and network security parameter that it intends to exploit/compromise. For traditional wired

networks this can be identified by running vulnerability scanner tools like Nessus [13] which

will output the list of vulnerabilities a particular system in the wired network is exposed to.

This task is followed up with designing the data structure called the attack module which

forms the basis for the generation of an attack graph. It consists of information related

to an attack pattern such as pre and post conditions of the attack pattern. Pre-conditions

illustrates the set of the network conditions/resources that need to be satisfied in order to

successfully execute the attack or exploit the vulnerability. Whereas, post-condition are the

set of network conditions/resources that becomes vulnerable due to the successful execution

of an attack. Additionally, an attack module also holds the information about the join type

of a particular attack pattern in the attack graph which can be one of two types - OR join,

AND join. An OR join type in the attack graphs depicts that if any one of the child nodes of

an attack pattern is successfully exploited, the parent node becomes exploitable. In contrast,

an AND join illustrates that all of the child nodes of an attack pattern need to be successfully

exploited in order to compromise the parent node.

Gallon [15] devised the methods to quantitatively assess the attack nodes in the

attack graph; although they were not meant for a WSN. National vulnerability database

[16] established the vectors to calculate the severity ratings of vulnerabilities in a wired

network. Using the same principles, we calculated the severity ratings for the attacks on

WSN. The CVSS metrics are used to quantitatively compute two specific characteristics

of an attack/vulnerability: (1) misuse frequency (how likely is it to execute/exploit the

attack/vulnerability), and (2) misuse impact (what will be the extent of the damage if the

attack is executed or the vulnerability is exploited).
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In order to compute misuse frequency, CVSS provides two core metrics known as

Base metric and Temporal metric, whereas misuse impact is computed using Base metric

and Environmental metric. Base metric is used to express the level of difficulty to exploit

a vulnerability. Temporal and environmental metrics are used to express the effect of the

network’s deployment environment and surroundings in the exploitation of the vulnerability.

This metrics are further made up of sub-categories like attack complexity, available tools

and techniques for exploitation, security requirement, and so on. A detailed description of

the CVSS scoring system is available in the CVSS scoring guide [17].

Thereafter, the work of Frigault [18] gave insight on implementing attack graphs as

a Bayesian network. This gave us a better understanding about the adversary’s capability,

likelihood and impact of attacks for various attack scenarios. Dantu [19] and Liu [20] ana-

lyzed attacks by assigning probability values to the attack graph nodes. Furthermore, using

the concepts of Bayesian networks on these probability values, they calculated potential

attack paths and modeled network vulnerabilities. Nevertheless, these computations were

not for an attack scenario of a WSN and as such could not be applied to the proposed attack

graphs for a WSN. Houmb [21] proposed the methodologies of risk level estimations using

the exploitation frequency and impact of vulnerabilities in a wired network. We adopted

these concepts to identify the metrics necessary to compute net threat level to the root

node of our attack graph when it is represented as a Bayesian network. This gave a degree

of diversification and uniqueness to the WSNs with respect to quantitatively analyzing our

attack graphs and using the results to estimate maintenance period for the largely unattended

WSNs in a Sensor Cloud.

2.2. RISK ASSESSMENT OF TRADITIONALWEB APPLICATIONS

The task of risk assessment for traditional web application is essential in order to

identify the vulnerabilities and threats to the application. However, this process cannot be

undertaken when an application is fully developed.



24

This is because the process of addressing the identified risk in a fully developed

application can increase the costs incurred by clients. Therefore, in order to efficiently

perform risk assessment on traditional one should consider doing it during the application

design phase. This allows us to not only assess different architecture/outline for our appli-

cation, but also assess the risks that will be associated with them. Thereby, helping to come

up with security application architecture in which risks can addressed by optimal allocation

of security resources.

With respect to performing design phase application risk assessment, some notable

works are Microsoft’s STRIDE [22] [23], and EMC’s Developer Driven Threat Modeling

(DDTM) [26]. Application threat modeling as discussed byOpenWebApplication Security

Project (OWASP) [24] also gives some useful guidance in vulnerability detection and secure

application development during its design phase. These methods help to identify, quantify

and address the security risks associated with an application. STRIDE is an acronym for

the different categories of vulnerabilities that may be present in an application. It stands for:

Spoofing, Tampering, Repudiation, Information disclosure, Denial of service, Elevation

of privilege. It operates by taking as input the application design in the form its data

flow diagram (DFD). Data flow diagrams gives an overview of system functionalities; the

data flow among the different system components by showing entry and exit data points

as well as where data gets processed. This is passed onto Security Development Lifecycle

(SDL) and Threat Modeling tool [25] which conceptualizes STRIDE to identify the set of

vulnerabilities related to the elements of an application’s DFD. This set however, is not

application dependent but rather element dependent. To elaborate this notion, consider the

various elements of a DFD - external entities, for e.g. users interacting with the application;

process, for e.g. a particular functionality of the application; data store, for e.g. a database

storing the data generated and processed by the application; data flow, for e.g. the flow

of data between processes and to external entities. STRIDE produces a generic set of

vulnerabilities for each element type.
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For example, given a data store element, it will generate four possible set of vulner-

abilities: {T,R,I,D}. Depending on the type of application and the protocols it uses all the

four vulnerability category may not be applicable to its data store. For example, repudiation

will not be feasible if all activities in and out of the data store is authenticated and logged

by another element of the application. This action can be carried out by using the set

of questionnaire provided in the SDL tool to narrow down the vulnerabilities. However

it still requires domain knowledge of the application architecture and security expertise.

For a professional application design with a DFD consisting of many levels and numerous

elements this process can become very tedious. EMC’s DDTM improves STRIDE by only

considering the data flow elements of the DFD which considerably reduces the amount of

elements which needs to be analyzed; the reasoning behind doing this is the the data at flow

will only lead to vulnerabilities, otherwise it will be secure behind the boundaries of the

application. The rest of assessment technique is the same as that of STRIDE.

Along these lines, the works in [27] [28] also supports the fact that risk analysis

has become an integral part in the various stages of the software development process and

not just the design phase. Building in security from the design to the testing phase of a

software results inmore secure software andmakes the overall process cost-efficient. Several

works present in the literature builds upon STRIDE to improve the risk assessment process

like [29], [30], [31], [32]. Furthermore, authors in [33] have addressed the automation

of the risk assessment models during the software design phases. The works like [34]

have also presented techniques for inclusion of security mechanisms in the various stages

of the agile software development process which is now one of popular models in the

software development process. In addition to inclusion of security mechanisms in the

software design and development stages, several works like [35], [36], [37] have addressed

the security aspects in the software testing stages. Their primary focus in this domain being

the automated generation of security aware software test cases.
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2.3. RISK ASSESSMENT OF CLOUD COMPUTING PLATFORMS

Risk assessment of cloud computing platforms and the services offered by different

cloud vendors has been one of the prominent fields of work related to the cloud computing

domain. This is because of several factors like migrating the client’s application from

their private domain to the public domain of the cloud providers, partially losing control

over their data, and uncertainty regarding the cloud provider’s security policies and their

assurance. Several works related to this field can be found in the literature, however, there

are still numerous open and emerging security challenges and threats to the domain of cloud

computing as identified in [38]. Further, the advent of Internet of Things (IoT) paradigm

supported by cloud computing platforms will also introduce new security challenges [39].

This notion is further corroborated from the author’s work presented in [40] which

surveys risk assessments methodologies related to cloud computing platform. Some of

the earlier works in this domain discusses the security impacts uniquely arising due to the

cloud infrastructure like in [41], which investigates the threats occurring due to the setup

and distribution of cloud services, outlining the threats in terms confidentiality, integrity,

and availability of cloud infrastructure. Whereas, other risk assessment works discuss

security concerns related to very specific domains such as network based attacks [42], and

security concerns related to the data residing on the cloud platform [43]. The authors

in [44] have also explored into the possibilities of providing risk assessment as a service to

clients contemplating hosting their application on the cloud platform. Other works like [45],

introduces security metrics to service level agreement (SLA) documents such that clients

can not only assess the quality of service related to a cloud service they want to rent but also

the security risks associated to it. Further with respect to assessing the security of cloud

platforms a challenging aspect is to keep up with the dynamic environment of the cloud

platform as well as the evolving needs of the clients. In this regard, authors in [46] have

proposed a tool for dynamic and flexible service provisioning of cloud services to clients

which can account for estimation of parameters such as trust, associated risks, and cost.
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Such tools will help clients in predicting and efficiently adapting to unanticipated

changes in resource requirements on the cloud platform. In more recent trends, authors

in [47] propose a risk assessment framework for cloud computing platforms by assessing

the SLA as presented by clients and evaluating from the cloud vendor’s perspective to check

the number of SLA violations that might take place in accordance to the demands presented

by the clients in their SLA. Other recent works in risk assessment of cloud service provider

as presented in [48], utilizes information gathered from clients and cloud vendors to assess

different risk scenarios. They do so by proposing a machine learning framework which

leverages the security evaluation documents of various cloud vendors publicly available on

Cloud Security Alliance’s (CSA) Security, Trust andAssurance Registry or STAR to present

a quantitative rating output to describe the risk associated with different cloud services.

Furthermore, other instances of works that utilizes CSA STAR repository and its

CAIQs can be found in [49]. In [50], authors discuss another quantitative model to evaluate

and compare the security dispensed by CSPs which is based on the concept of developing

security service level agreements (SecLAs). The authorsmake use of theAnalytic Hierarchy

Process (AHP) for its decision making purpose and evaluate the SecLAs qualitatively and

quantitatively. Additionally, authors in [51] present the concepts of automatically enforcing

SecLAs in the cloud platforms. The authors propose a model in this regard which engages

the software life cycle of the components that is covered in the SecLAs to determine

the associated constraints of the security components, the security requirements of the

clients and follows it with automatic provisioning and configuration of the selected security

resources. However, evaluating and addressing security concerns on the cloud platform

is not the end game. Given the dynamic nature of the cloud, architecture and policies

are susceptible to change on a short notice. Therefore, clients need assurance that the

identified security policies are still in place. The context of security assurance has been

discussed extensively in [52]. Along these lines, authors in [53] have proposed the concept

of continuous auditing.
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This will help to keep up with the dynamic cloud environments and evaluate the

change in security policies and their assurances. Furthermore, authors in [54] propose

techniques to dispense real-time cloud security assessment. Their approach, called the

Moving Interval Process can help clients compare their security assessments with the

security offerings of the CSPs and also help CSPs compare their services with other CSPs

by understanding the needs of their clients with high accuracy and computational efficiency.

Additionally, other works focus solely on evaluating particular types of delivery models

like software-as-a-service [55], infrastructure-as-a-service [56], or a specific domain of the

cloud security like data security [57].

Nevertheless, performing risk assessment requires an actionable output which its

users can make use of. In this regard, quantitative estimates have leverage over qualitative

analysis. Therefore, several works can be found across the literature both in terms quantita-

tive risk assessment for software applications [58] and for cloud security [59], [60]. Finally,

a pre-requisite to performing risk assessment is to be able to understand and estimate the

types of security threat an application (or platform) might be exposed to. In this regards,

security attack patterns coupled with misuse cases is good way to elicit the mechanisms

in which an application might be attacked. Security attack patterns for software applica-

tions have been studied rigorously by the community [62] and its coupling with application

abuse [64] and misuse cases [65], [66], [67] have well-found acceptance and feasibility. But

in contrast to the well-studied attack and misuse patterns of software applications, cloud

misuse patterns [61] are still in its dormant stages and requires further analysis to be able to

create a comprehensive knowledge base which can be used in a modular fashion to analyze

the risks associated to software applications which will be migrated to the cloud platform.

There have been several researches in the recent past in the direction of cloud migra-

tion. Most of which primarily aimed at cost reduction with identification of other critical

factors such as organizational policies and some introductory identification of security

issues which did not fully address the security concerns from the application’s perspective.
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The authors in [68] describe a hybrid cloud migration process with the primary

goal of reducing total cost of ownership for large scale organizations. They present a

comprehensive study, identifying numerous cost factors that govern cloud migration poli-

cies. In [69], authors present a case study showing the cost implications of migrating an

application to the IaaS platform of Amazon EC2. They have also identified that cost is not

the sole criteria affecting cloud migration as other non-financial aspects like reputability of

CSPs, technical unfamiliarity play an important role in the decision making process. They

extended their case study presenting a comprehensive modeling tool [69] that provides cost

estimates of migrating to public IaaS cloud platform. The benefits are in its capability to

compare and contrast the services provided by different CSPs. Authors in [70] present the

challenges of migrating existing applications to the cloud platform like changes made to the

software environment, programming models such that it can operate on the cloud platform.

They present a model identifying the tasks involved in the cloud migration process and

analyzed them according to the cost involved in performing them. This work helped in the

formulation of our migration feasibility model. In [71], authors discuss the technical and

non-technical challenges of migrating a web server to the cloud platform. They discuss the

nontrivial aspects in cloudmigration which involves taking into considerationmany criteria,

addressing all of whichmanually is challenging. As such, they propose an automated frame-

work, CloudGenius, for helping clients in the decision making process for cloud migration.

Authors in [72] present an overview of the challenges in performing cloud migration like

financial aspects, security concerns arising due to cloud migration such as multi-tenancy

and data confidentiality. The authors in [73] present a detailed cloud migration decision

making framework. It takes into account the architecture of an application to be migrated

along with its service requirements in terms QoS factors, security risks involved, and the

financial aspects of the process. In [74] [75], the authors discuss some challenges of

migrating preexisting and legacy application to the cloud platform. They propose some

well-formulated and in-depth approaches to address the underlying challenges.
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Authors in [75] perform an in-depth review of existing cloud migration techniques

related to hosting legacy systems on the cloud platforms. Their literature review discusses

the similarities between Service Oriented Architecture (SOA) and Cloud platforms. In [74],

authors present an evolutionary, iterative approach to help small-medium enterprises (SME)

is able to migrate their legacy applications to the cloud platform. The outlined solution

aims in making the process less dependent on any particular kind of technology support

or CSP. Through these works, we were able to identify and acknowledge the impact and

challenges of migrating legacy applications to the cloud platform. The work in [76] briefs

about the concept of fault tolerance to help high performance computing applications, which

are allocated large number of virtual instances to address their computation intensive tasks.
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ABSTRACT

A sensor cloud consists of various heterogeneous wireless sensor networks. These

wireless sensor networks may have different owners and run a wide variety of user appli-

cations on demand in a wireless communication medium. Hence, they are susceptible to

various security attacks. Thus, a need exists to formulate effective and efficient security

measures that safeguard these applications impacted from attack in the sensor cloud. How-

ever, analyzing the impact of different attacks and their cause-consequence relationship is

a prerequisite before security measures can be either developed or deployed. In this paper,

we propose a risk assessment framework for wireless sensor networks in a sensor cloud that

utilizes attack graphs. We use Bayesian networks to assess and analyze attacks on wireless

sensor networks. The risk assessment framework will first review the impact of attacks on a

wireless sensor network and estimate reasonable time frames that predict the degradation of

wireless sensor network security parameters like confidentiality, integrity and availability.
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Using our proposed risk assessment framework allows the security administrator

to better understand the threats present and take necessary actions against them. The

framework is validated by comparing the assessment results with that of the results obtained

from different simulated attack scenarios.

Keywords: Attack graphs, security, risk assessment, sensor clouds, wireless sensor net-

works, bayesian networks

1. INTRODUCTION

Sensor cloud [14] consists of several different wireless sensor networks (WSNs).

These WSNs are provided, as a service, to users through the sensor cloud platform. WSNs

are comprised of low-cost nodes deployed in an ad-hoc fashion over a large area [22] [10]

to collect temperature, humidity and other sensitive data, as requested by user applications.

These deployments maybe done in hostile environments wherein they are not physically

monitored for long time intervals. Additionally, with the integration ofWSNs with different

ownerships under a sensor cloud platform running a variety of user applications, possibility

of attacks are more likely. As such, there is a need for a risk assessment mechanism to

estimate the likelihood and impact of attacks on these WSNs in a sensor cloud. We should

be able to answer questions like - how can we better secure these networks, what are the

possible attacks on our network and their risk level in the presence or absence of various

security measures. This will help in strengthening the network security before we integrate

a WSN in a sensor cloud. Further, understanding the cause-consequence relationship

between different attacks is also necessary. For example, a malware attack can lead to node

subversion [8] and an adversary can use the compromised node to break the authentication

scheme. This will prompt the execution of other degenerate attacks like sinkhole [18] or

Sybil [17].
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Although the complete safety of a network in sensor cloud is an idealistic scenario,

being able to predict the degradation of WSN security parameters such as confidentiality,

integrity and availability [27], and taking appropriate precautions such as redeploying the

WSN using improved security measures is always a better alternative.

We studied the works in attack graph for wired networks [23] [4] [21] and research

these ideas to adapt in WSNs within a sensor cloud framework. This will help understand

the cause-consequence relationship between attacks and identify ways in which a particu-

lar WSN security parameter may be exploited. But establishing such relationships alone

however, is not sufficient. Empirical evidence [26] suggests that risk evaluation requires

a quantitative perspective. Instead of saying that a sensor network is secure, we are more

interested in knowing the extent of this security vulnerability and should be able to numer-

ically assess the likelihood and impact of an attack. The National Institute of Standards

and Technology’s (NIST) Common Vulnerability Scoring System (CVSS) 1 equips us with

the means to calculate severity ratings of vulnerabilities in only wired networks. We adapt

these mechanisms to quantify the attack nodes in our attack graph, merging them with the

concepts of Bayesian networks [5]. Hence, we can numerically evaluate the risk of security

parameters within a WSN. In addition to quantitative perspectives, time frames with respect

to WSN uptime is another useful estimate that help us reason better. For this purpose,

we adapt risk level estimations modeled as a continuous-time Markov process in Houmb’s

Misuse frequency model [7] for WSNs. This help in predicting the degradation of security

parameters within a WSN.

Risk assessment for wired networks using attack graphs has been studied [23] [4]

[21], but a sensor cloud consisting of WSNs is inherently different and the existing works

on attack graphs cannot be applied. This is because when an attack graph for a wired

network is generated, the network is scanned using a vulnerability scanner tool such as

Nessus [1]. These scanners detect the list of vulnerabilities (Figure 1) present on each

1nvd.nist.gov
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Figure 1. List of Vulnerabilities - Nessus Network Scan

system in a wired network which is then parsed into an attack graph generating tool [24].

However, no comparable vulnerability scanning tool currently exists for WSNs. Even if

such vulnerability scanning tool existed for WSNs, generating such a list (Figure 1) would

be insufficient. This is because sensor nodes in a WSN collaborate to achieve a common

goal and suffer from inherent resource limitations. These limitations are the primary cause

of WSN vulnerabilities as they do not permit the application of desired security protocols

to safeguard the network. Hence the vulnerability list will be identical for all nodes and no

concrete conclusions could be formulated. Thus, rather than focusing on vulnerabilities in

a sensor node or network, we focus on the feasibility of attacks on a particular WSN in a

sensor cloud. The successful execution of different attacks will vary according to security

measures used, tasks being carried out, and deployed environment of a WSN.

Due to the above factors, risk assessment in WSNs under a sensor cloud is challeng-

ing and hence, we propose the following methodologies:

• We formulate attack graphs to depict the logical correlation between the attacks on

WSNs [20] (Section 2.2). These attack graphs will then used to analyze how the

attacks can exploit the WSN security parameters [27].

• We depict the attack graphs as a Bayesian network (Section 2.3), quantifying the

likelihood and impact of the attacks in a WSN and the net threat level to WSN

security parameters.
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• We compute time frames predicting the degradation of WSN security parameters

by modeling our risk level estimations as a continuous-time Markov process (Sec-

tion 2.4). Given these time frames we can take precautionary measures and perform

maintenance in an unattended WSNs before they reach an irreparable state.

2. PROPOSED METHOD

The proposed risk assessment framework will determine the likelihood and the

impact of the attacks on a WSN. The likelihood of attacks is influenced by factors such

as sensor node configuration, topology and routing measures. Additionally, execution of

an attack increases the possibilities of other attacks [8]. These types of interdependencies

between the attacks can be modeled using attack graphs. Quantifying these attacks based

on CVSS parameters helps us to determine the feasibility of various attacks. When we

merge these attack graphs with the principles of Bayesian networks, we can estimate the net

impact of the feasible attacks on the WSN security parameters. A flow chart summarizing

the risk assessment framework is illustrated in Figure 2.

 

Attack Graph 
Develop attack pattern 

 & attack module 
Create attack graph from 

attack module 

Threat level estimations – Bayesian network 

Severity ratings of attacks as 

per CVSS guidelines 

Attack’s probability of 

success from severity ratings 

Time frame estimations 
Determine misuse frequency & 

misuse impact of attacks 

Model problem as a continuous-

time Markov process 

Figure 2. Proposed Risk Assessment Framework
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2.1. The Sensor Cloud Network Architecture. A sensor cloud, composed of

WSNs owned by different entities, provides sensing services to users. Sensor cloud separates

network ownership from users, allowing multiple users to access the available WSNs

simultaneously. This paradigm has been realized by the use of virtual sensors present on

the cloud platform which are incorporated as an image of the actual physical sensors. The

users deal with these virtual sensors which contains information about the actual physical

sensors working for a user’s application.

Sensor cloud consists of three layers, namely - client centric layer, middleware

layer, and sensor-centric layer. The client centric layer deals with users and acts as an user

interface for the sensor cloud. Themiddleware layer, is responsible for tasks such as - service

negotiation management, integrating the communication between client centric layer and

sensor centric layer, and managing the virtual sensors. Sensor centric layers deals with

the actual physical sensors. Since risk assessment using attack graphs for wired networks

are already present, we will not delve deep into this sphere. We would deal with the risk

assessment for the physical WSN of a sensor cloud network. A WSN in a sensor cloud is

considered as an undirected graph G = (V, E), where V is the set of vertices containing

the sensor nodes and E is set of edges denoting connectivity between these nodes. For

simplicity, we have assumed these WSNs to be static.

2.2. Attack Graphs for Wireless Sensor Networks. Attack pattern generation is

a prerequisite in developing attack graphs. It gives insight about the goal of an attacker

and allows us to avert the attack. An attack on a WSN will tend to exploit one or more of

the WSNs security parameters viz. confidentiality, integrity, and availability. Thus, we can

group the attacks according to the security parameter they tend to exploit. This will help in

developing the attack pattern for attacks on a WSN [2].
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Definition 2.1. Attack Pattern: An attack pattern is a tuple Pi = (si, φ). Where, si, is

the attack and, φ ∈ [Confidentiality, Integrity, Availability], is one of the exploited WSN

security parameters.

Attacks on a WSN can be categorized as active or passive attacks [19]. Active

attacks, such as sinkhole, are executed to alter the network resources or operations such as

routing protocol. Passive attacks, such as eavesdropping, are executed to gather information

about the network which can then be used to execute Active attacks. The set of attacks

along with their definition and attack pattern [27] [28] [2] is given in Table 1.

Table 1. Attack Definition and Attack Pattern

Attack Definition Target Security Parameter
Eavesdropping Listening to communication between the nodes C
Jamming & DoS Disrupting network communication by jamming communication frequency or sending ad-

ditional garbage packets the network cannot handle
A

Node Subversion Adversary taking over a legitimate sensor node C; I
Sybil Adversary node creating false virtual node identities and making them seem like legitimate

sensor nodes
C; I

Spoofing Adversary node pretending to be a legitimate node of a WSN C; I
Altering; Replay Continuously changing the route of packets; Sending the same packets over and over again I; A
Wormhole; Sinkhole; Blackhole Adversary falsely advertising efficient route paths and rerouting traffic from actual paths -

All traffic can now pass through the adversary & (s)he may choose to drop all the packets
C; I; A

Selective Forwarding Once packet traffic gets rerouted through the adversary (s)he may decide to selectively drop
some of the packets

C; I; A

Acknowledgment Spoofing Falsifying acknowledgment during authentication procedure or when legitimate sensor
nodes are trying to identify its neighbors

C; I

Node Malfunction A legitimate sensor node functionally abnormally due to scare resources or a malware
running on them

I; A

Node Replication An adversary creating a rogue sensor node which is based on a legitimate sensor node C; I
False Data Injection Adversary introducing garbage packets within the actual packet transmission I
Node Outage When a legitimate sensor node is no longer able to function A
Directed Physical Attack Physical damage brought unto the sensor nodes A
Hello Floods Continuous Hello messages sent to sensor node, which makes them unable to handle any

other messages and drains their resources as a result of constantly having to deal with these
Hello messages

A

Desynchronization Sensor nodes constantly trying to re-establish broken communication and not being able to
do so

A

Malware Attack Execution of a malicious code on a legitimate sensor node C; I; A

Further, to understand the cause-consequence relationships between attacks on a

WSN, we should be aware of the conditions required to execute a particular attack (pre-

conditions of an attack) and the consequences of successful execution of an attack (post-

conditions of an attack). If the post-conditions of an attack satisfies the pre-conditions of

another attack then these two attacks will have a cause-consequence relationship (an edge

in the attack graph). We develop an attack module that will capture the cause-consequence

relationship between the attacks (Table 2).
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Attack Scenario 3 Attack Scenario 4 

Attack Scenario 1 Attack Scenario 2 

OR 
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Figure 3. An Illustration of an Attack Graph

In some cases, pre-conditions of an attack may be satisfied by the post-conditions

of a single attack, these kinds of attacks will be connected by an OR type join in the

attack graph (Figure 3). Whereas, if post-conditions of two or more attacks are required

simultaneously to satisfy the pre-conditions of an attack, they are connected by AND type

joins.

Definition 2.2. Attack Module: An attack module is defined as a tuple, (Pi, Spre, Spost , ε),

where Pi is the attack pattern, spre is the pre-conditions required to execute the attack, spost

are the post-conditions after the execution of the attack, and ε is the join type, ε ∈ [OR,

AND].

Once the attack module has been developed, we can use it to implement attack

graphs for each of the WSN security parameters. By doing so, we can visualize the ways in

which an attacker might exploit the WSN security parameters. Additionally, the root node

of an attack graph is considered to be an attacker’s ultimate goal. Hence, exploitation of one

of the WSN security parameters - confidentiality, integrity or availability, will be the root

node of an attack graph for a WSN. All other nodes in the attack graph will be intermediate

states an attacker can take during the course of their attack. We assume that an attack state

cannot be undone once it has been exploited, preventing any form of backtracking.
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Table 2. Attack Module

Attack Pre-condition Post-condition Join Type
Eavesdropping Adversary node within physical reach of WSN & un-

encrypted communication
Acquire unencrypted data AND

Jamming & DoS Adversary within the reach of WSN Disrupt network communication OR
Node Subversion Inability to authenticate; running malicious codes Attacks that require bypassing authentication OR
Sybil Node Subversion; Inability to authenticate Bypass authentication; breaking of key distribution AND
Spoofing Sybil; Node Subversion Further degradation of authentication OR
Altering; Replay Sybil; Spoofing Loss of energy; Loss of integrity OR
Wormhole; Sinkhole; Blackhole (Node Subversion)Sybil; Spoofing Route control; Packet drop - partial or complete; com-

munication disruption
AND-OR

Selective Forwarding Wormhole; Sinkhole Network more vulnerable to replay and rerouting AND
Acknowledgment Spoofing Node Subversion; Sybil spoofing; wormhole; sinkhole AND
Node Malfunction Low Energy of the sensor nodes; Execution of Mali-

cious codes on the sensor
Erroneous data in the network OR

Node Replication Physical Tampering Adversary node legitimate part of WSN AND
False Data Injection Adversary node; In communication range of WSN Presence of garbage data in the WSN; jamming due to

more traffic
AND

Node Outage Severe Energy drain; Directed Physical Attack ; Black-
hole

Network disruption OR

Directed Physical Attack Topology discovery Node Outage OR
Hello Floods Spoofing; Sybil Energy drain; breaking route table due to continuous

Hello Packet transmissions
OR

Desynchronization NodeOutage; Hello Floods; Replay; Reactive Jamming Communication disruption OR
Malware Attack architecture of the sensor nodes; user can execute

his/her code
Node Subversion AND

Definition 2.3. Attack Graph: An attack graph is a tuple containing the attributes (sroot , S,

τ, ε), where sroot is the goal of the attacker - one of the WSN security parameters. S denotes

the complete set of attacks (Table 1). τ denotes the set of pre- and post-conditions of all

attacks in S. ε is the join type, ε ∈ [OR, AND].

2.3. Risk Assessment Using Bayesian Networks. An attack graph’s nodes maybe

assigned with either true or false values implying that an attack state is either successfully

executed or not executed at all. To better analyze an attack scenario, we can assign numerical

values, like the probability of success of executing an attack si, Pr(si). The probability

of success of attacks can be derived from their severity ratings and can be computed by

adopting the scoring metric established by CVSS for wired networks.

CVSS scores are based on three criteria; base metrics, temporal metrics and en-

vironmental metrics. Base metric is used to express the level of difficulty to exploit a

vulnerability. Temporal and environmental metrics are used to express the effect of the net-

work’s deployment environment and surroundings in the exploitation of the vulnerability.

A brief description about their sub-categories and attributes is given in Table 3.
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Table 3. CVSS Metric Description
CVSS metrics Sub-categories Attributes Description

Access Vector Vulnerability exploitation from within network domain or remotely
Exploitability sub-score Access Complexity Difficulty in exploiting vulnerability

Base Authentication Instances Number of authentication measure that needs to be bypassed
Confidentiality Impact on confidentiality

Impact sub-score Integrity Impact on integrity
Availability Impact on availability

Exploitability tools &
techniques (T_{E})

Current state of available exploitation techniques

Temporal Remediation level
(T_{RL})

Type of solutions available to fix the vulnerability

Report Confidence
(T_{RC})

Evidences available about existence of vulnerability

Envnmnt Collateral Damage Impact of exploited vulnerability on organization’s economy
Security required Amount of security required for organizational assets like confidentiality, integrity

and availability

A detailed description of the CVSS scoring system is available in the CVSS scoring

guide [16]. WSN attacks have not yet been corroborated by CVSS and the base metrics will

be evaluated subjectively. We assumed that, although preventive measures for the attacks

are available, they are the solutions that individual researchers have reported. Hence, based

on the definition of remediation level, we have considered these solutions as workaround

fixes. Environmental metrics are context specific varying for different organizations and

being constant for any given organization. Houmb’s misuse frequency model [7] performs

risk level estimations as a conditional probability over the Misuse frequency (MF) and

Misuse Impact (MI) estimates of an attack. MF and MI of an attack helps in depicting the

likelihood and impact of an attack respectively taking into account the intrinsic attributes of

the attack, network architecture, and security measures used. It is useful in estimating time

frames predicting the degradation of organizational assets like confidentiality, integrity and

availability. Hence, to compute the probability of success of attack nodes in our attack

graph, we have adopted Houmb’s misuse frequency model. MF of an attack is calculated

using (1) - (3) and CVSS parameters specified in Table 4. A detailed depiction of the rating

values in Table 4 can be found in [16]. Initial misuse frequency, MFinit , in (1) is calculated

using exploitability sub-score under the base metrics (Table 3 and 4). We normalize the

values of B_{AR}, B_{AC}, B_{AU} for the attack considered, to keep the final score

between 0→1 (MF is a probability and cannot be over 1).
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The MF of an attack however, may change over time according to the availability

of security solutions and techniques for executing the attacks. These factors are reflected

using temporal metrics, computed as MFuFac (2).

MFinit = (
1
3
)
∑
si∈S

(B_{AR}, B_{AC}, B_{AU}) (1)

MFuFac = (
1
3
)
∑
si∈S

(T_{E},T_{RL},T_{RC}) (2)

MF = (
1
2
)
∑
si∈S

(MFinit, MFuFac) (3)

Table 4. CVSS vectors to calculate MF

CVSS metrics
group

CVSS Attributes Rating Rating
value

Base Metrics

Local (L) 0.395
Access vector (B_{AR}) Adjacent network (A) 0.646

Network (N) 1.00
High (H) 0.35

Attack complexity (B_{AC}) Medium (M) 0.61
Low (L) 0.71

Multiple (M) 0.45
Authentication instances (B_{AU}) Single (S) 0.56

None (N) 0.704

Temporal Metrics

Unproved (U) 0.85
Exploitability tools & techniques (T_{E}) Proof-of-Concept (POC) 0.90

Functional (F) 0.95
High (H) 1.00

Official Fix (OF) 0.87
Remediation level (T_{RL}) Temporary Fix (TF) 0.90

Workaround (W) 0.95
Unavailable (U) 1.00

Unconfirmed (UC) 0.90
Report Confidence (T_{RC}) Uncorroborative (UR) 0.95

Confirmed (C) 1.00

MFuFac is then added to (MFinit) and the final misuse frequency (MF) is computed

in (3). Similar computations are done to calculate MI using the impact sub-score under

base metrics and environmental metrics (Table 5) [16] and (4) - (7). Initial MI estimate,

MIinit , was estimated using impact sub-score of the base metrics in (4). This estimate is

a vector depicting the effect of an attack on confidentiality, integrity, and availability of a

network. MIinit was then updated on the basis of the collateral damage potential (E_CDP)

in (5). The MI estimates were further updated as per the security requirements information

in (6). Finally, the resulting MI estimate, MI, is obtained in (7).
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Table 5. CVSS vectors to calculate MI
CVSS metrics group CVSS Attributes Rating Rating value

Base Metrics

None (N) 0.00
Confidentiality Impact (B_{C}) Partial (P) 0.275

Complete (C) 0.660
None (N) 0.00

Integrity Impact (B_{I}) Partial (P) 0.275
Complete (C) 0.660
None (N) 0.00

Availability Impact (B_{A}) Partial (P) 0.275
Complete (C) 0.660

Environmental Metrics

Low (L) 0.50
Confidentiality Requirement (E_{CR}) Medium (M) 1.00

High (H) 1.51
Low (L) 0.50

Integrity Requirement (E_{IR}) Medium (M) 1.00
High (H) 1.51
Low (L) 0.50

Availability Requirement (E_{AR}) Medium (M) 1.00
High (H) 1.51
None (N) 0.00
Low (L) 0.10

Collateral Damage Potential (E_CDP) LowMedium (LM) 0.30
MediumHigh (MH) 0.40
High (H) 0.50

MIinit = [B_{C}, B_{I}, B_{A}] (4)

MICDP = E_CDP[MIinit] (5)

MIEnv = [B_{CR}, B_{IR}, B_{AR}] (6)

MI = MICDP × MIEnv (7)

Once we compute the MF, we can estimate an attack’s probability of success, Pr(si),

using (8):

Pr(si) = (1 − µ)MFinit + µ(MFuFac) (8)

where, µ is a constant and is defined as the security administrator’s belief of the impact of

the security measures on an attack’s MF (base metrics) and temporal metrics. It can vary

from [0,0.5]. If a security administrator is uncertain about the impact of security measures

of an attack (like in cases of new or unknown attacks), then the probability of success is

based on the base metrics, by taking µ as 0. After assigning attack graph’s nodes with

their probability of success, we depict it as a Bayesian network. This will help us ascertain

the non-deterministic nature of the attacks for different network scenario with a reasonable

amount of accuracy.
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A Bayesian attack graph in our framework can be defined as:

Definition 2.4. Bayesian Attack Graph: A Bayesian attack graph is a tuple containing the

attributes (S, τ, ε , Pr), where, S, is the complete set of possible attacks on a WSN (Table 1),

τ, is the set of the pre- and post-condition of all the attacks in S, ε is the join type, ε ∈ [OR,

AND], for the attacks in S, and Pr, is the set of probability values specifying the success

rate of an attack node in a Bayesian attack graph.

For an attack si ∈ S, Pa[si] denotes the parent set of attack si i.e. if an attack

s j ∈ Pa[si], post condition of attack s j will lead to pre-condition of attack si. As such,

attack s j will be the parent of attack si in the attack graph. The probability of each attack’s

success is captured in a Local Conditional Probability Distribution (LCPD) table. These

values are assigned as per the subjective belief of the security administrator regarding their

network. LCPD can be defined as:

Definition 2.5. Local Conditional Probability Distribution: For a Bayesian attack graph

containing the tuples (S, τ, ε , Pr), the local conditional probability distribution function of

any si ∈ S is given as Pr(si |Pa[si]) and is defined as,

1. ε = AND

Pr(si | Pa[si]) =


0, ∃s j ∈ Pa[si] | si = 0

Pr(
⋂

si=1 si), otherwise
(9)

2. ε = OR

Pr(si | Pa[si]) =


0, ∀s j ∈ Pa[si], si = 0

Pr(
⋃

si=1 si), otherwise
(10)

2.3.1. Static risk assessment. The difficulty of executing an attack is given by

its probability of success, Pr(si) ∀ si ∈ S, also known as the prior probability. With this

set of prior probabilities captured in a node’s LCPD, we can compute the unconditional

probabilities. Consider the attack scenario described in Figure 4.
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Figure 4. An Attack Graph Represented as a Bayesian Network

The probability of attack 1’s success is assigned based on the subjective belief of a

security administrator. Using the concepts Bayesian networks, we estimate the probability

of success of the remaining nodes in the attack graph. Once we have the probability of

success of every node, we calculate the joint probabilities of all the variables in a Bayesian

network using the chain rule in (11). The unconditional probability of the goal state is then

computed as the joint probability of all of the nodes effecting the goal state’s outcome. Thus,

in Figure 4, Pr(Goal) will be computed as shown in eq. 12. The unconditional probability

of each node is computed similarly by considering the sub-tree rooted at that node.

Pr(s1, ..., sn) =

n∏
i=1

Pr(si | Pa[si]) (11)

Pr(Goal) = Pr(Goal, A3, A2, A1)

= Pr(Goal | A3, A2) × Pr(A2 | A1) × Pr(A3 | A1)

=
∑

A3,A2,A1∈{T,F }
[Pr(Goal | A3, A2) × Pr(A2 | A1) × Pr(A3 | A1) × Pr(A1)]

= (1.0 × 0.75 × 0.70 × 0.60)TTT+

(0.65 × 0.75 × 0.30 × 0.60)TFT+

(0.80 × 0.25 × 0.70 × 0.60)FTT

Pr(Goal) ≈ 0.49

(12)
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2.3.2. Dynamic risk assessment. Static risk assessment is done by assuming non-

zero prior probabilities of the attacks. However, once WSNs in a sensor cloud has been

deployed, we may observe evidence of certain attacks. The probability of success of those

attack node will become one, leading to re-evaluation of risk level estimations. We did this

using the Bayesian inference techniques of forward and backward propagation. Successor

of the attack node with probability 1 will be updated by forward propagation. The initial

assumptions on all prior probabilities during static risk assessment will be corrected with

backward propagation. The updated unconditional probabilities are known as posterior

probabilities. Given a set of attacks s′i for which we have evidence of exploit, the probability

of success for those attack nodes is now 1. Thus, we need to determine the probability of

success for the attack nodes that are affected by s′i , i.e. the set of s j ∈ {S - s′i}. We compute

the posterior probability, Pr(s j | s
′

i) using Bayes theorem:

Pr(s j | s
′

i ) =
[Pr(s

′

i | s j) × Pr(s j)]

Pr(s′i )
(13)

where Pr(s j) and Pr(s
′

i) are the prior unconditional probabilities of the corresponding nodes.

The conditional probability of joint occurrence of s′i given the states of s j is denoted by

Pr(s′i | s j). In Figure 4, If we have evidence of the goal state being compromised, we

can compute its effect on attack 3 by assuming Pr(Goal) = 1.0 and eq. 13. Hence, the

unconditional probability of attack 3 has gone up from 0.49 to 0.85 in the evidence of an

exploit. Similar computations can be done for other nodes.

Pr(A3 | Goal) =
[Pr(Goal | A3) × Pr(A3)]

Pr(Goal)

Pr(Goal | A3) =
∑

A2∈{T,F}
[Pr(Goal | A2, A3 = T) × Pr(A2)

= (1.0 × 0.49)T + (1.0 × 0.51)F
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Pr(Goal | A3) = 1.0

Pr(A3) = 0.42 and Pr(Goal) = 0.49

Therefore Pr(A3 | Goal) = 0.85

2.4. Time Frame Estimation. Predicting time frames for degradation of a WSN

security parameter is a useful tool to carry out maintenance of an unattendedWSN and take

precautionary measures before they reach an unrepairable state. The MF and MI estimates

of WSN attacks is used to build such a risk level estimation. We model our risk assessment

framework as a continuous-time Markov process. Such a model consists of a finite state

space E, having n service levels - SL0 to SLn. Each service level is a subset in E. We define

a service level as:

Definition 2.6. Service Level: Service level is a state composing of non-empty sets of

attacks sk ∈ S. Attacks belonging to a service level have equivalent misuse impact.

Attacks are grouped based on their MI onWSN security parameters - confidentiality

(C), integrity (I), and availability (A). This gives us the number of service levels in the state

transitionmodel. The first service level, SL0, has no impact on aWSN security parameter, in

contrast to the final service level, SLx which has full impact. The time frame estimation will

be a two-step process; (1) Develop state transition model from MI estimates: Creation of

service levels. (2) Compute state transition rates from MF estimates using a rate transition

matrix: the probability of transition from a service level with lower impact to that of a

service level with higher impact. These two processes are elucidated in Section 3.4.

3. EXPERIMENTS AND RESULTS

In the following sections, we outline our experimental results and analysis. There-

after, we present our observations regarding the feasibility of our proposed approach.
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3.1. Network Deployment. The deployed sensor cloud network consisted of five

WSNs. The deployment region of these networks were pre-defined. Three of the WSNs

were deployed on the second floor of the Missouri S&T computer science department and

the remaining two on the third floor. The networks on the second floor consisted of three

sensor nodes each in addition to the base station and those on the third floor consisted of

four and five sensor nodes respectively. The sensor cloud served three users, tasked to

sense three different phenomena - temperature, humidity and light intensity. This network

deployment was used to perform validation of the proposed risk assessment framework

(Section 4).

3.2. Attack Graph for WSN Security Parameters. This section shows the rep-

resentation of attack graphs using SeaMonster 2 security modeling software. They were

modeled to depict the net threat level for individual WSN security parameters for one of

the WSN deployed on the second floor (Section 3.1). We calculated the probability of

success for each attack node in the attack graph to determine the threat level estimations

(Section 2.3.1, eq. 11). This was done assuming that theWSN had no security measures and

thus all attacks (Table 1) were feasible. This assumption helps in illustrating the complete

set of attacks on a WSN through an attack graph. In the presence of security measures for a

particular attack, the probability of success for that attack node will be zero (Section 4.1).

For the illustrated attack graphs (Figure 5, 6, 7), the expected threat level for a particular

security parameter was assumed to be 50% (expected probability of successful exploitation

of the goal state). The expected threat level indicates the subjective belief of a security

administrator about the chances of degradation of their WSN’s security parameter due to an

attack. In the absence of security measures, there is an equal likelihood of an attack being

feasible or otherwise. Although one can argue that absence of security measures should

prompt in a higher percentage of expected threat level, but to encompass the uncertainty of

an attacker’s attack, the assumption of 50% expected threat level is justified.

2www.sourceforge.net/projects/seamonster
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The outcome of the net threat level, due to the executed attacks on a WSN security

parameter, will vary based on the expected threat level. The effect on computation of net

threat level as expected threat level increases is discussed in Section 3.3. The unconditional

probability of success for each attack is given along with nodes of the attack graph. These

values are used to compute the net threat level. They are computed adopting the techniques

used to calculate the severity rating for vulnerabilities of wired networks established by

CVSS (Section 2.3).

3.2.1. Confidentiality. We select the attacks from Table 1 with confidentiality of a

WSN as their attack pattern. These attacks become the attack nodes in the attack graph for

confidentiality. Then, we analyze the pre- and post-conditions of each of these attacks from

the attack module (Table 2), building the logical correlation and depicting it via the attack

graph. Once we have created the attack graphs, we need to assign the attack nodes with their

probability of success. This is done by evaluating the Base metrics and Temporal metrics

(Table 4) for the attacks. An instantiation of this evaluation is given in Table 6. Misuse

frequency (MF) is then computed using (1) - (3). Confidentiality of aWSN can be exploited

via eavesdropping attack node (Eav) by successful execution of topology discovery (TD)

and adversary within communication range (ACR) attacks conjunctively (Figure 5). We

compute the unconditional probability of eavesdropping attack node using (9) and MF of

these three attack nodes (Eav: 0.82, TD: 0.74, ACR: 0.825).

Table 6. Evaluation of Misuse Frequency of attacks on WSN
Attack Name Base_Metrics

(B_AR,B_AC,B_AU)
Temporal_Metrics
(T_E,T_RL, T_RC)

MF
init

MFuFac

Eavesdropping Adj,Low,None F,W,C 0.686 0.966
Node Subversion Network, Medium,

Single
POC,W,C 0.723 0.95

Sinkhole/Selective
Forwarding

Network,Medium,MI FEE,W,C 0.686 0.966
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Figure 5. Attack Graph for Exploitation of Confidentiality

Then, we compute the unconditional probability for Eav using (9) as shown in eq. 14.

Pr(Eav)uncond. = Pr(Eav)T ∗ Pr(T D)T ∗ Pr(ACR)T

= (0.82 ∗ 0.825 ∗ 0.74) = 0.50
(14)

Similarly, node subversion (NS) can be exploited via successful execution of either malware

attack (MA) or node replication (NR) attack node. The MF of NS, NR, and MA is 0.83,

0.413 and 0.86 respectively. Since, we have a disjunctive join in the attack graph, the

unconditional probability for NS will be computed using eq. 10. Similar computations are

done for other attack nodes. We see from Figure 5 that an attacker can exploit confidentiality

of a totally unprotected WSN by executing Eavesdropping, Sybil, Blackhole, or Selective

forwarding, either individually or in combination, giving them 24 attack options. But some

of these combinations will not contribute towards the exploitation of confidentiality. For

example, Blackhole attack is a successful consequence of Selective Forwarding.
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Figure 6. Attack Graph for Exploitation of Integrity

If Selective Forwarding does not contribute towards the exploitation of confidential-

ity then there will be no contribution from Blackhole. Hence for an expected threat level of

50%, the computed net threat level for confidentiality will be 20.3%. Since it is very hard

to get hold of the information unless the adversary knows the location of the sensor nodes

and can closely monitor and capture the traffic. Given the protective measures used, this

can be challenging since the adversary must decipher the captured information.

∑
(NR,M A)∈{T,F}

(Pr(NS)T ∗ Pr(NR) ∗ Pr(M A))

Pr(NS)uncond. = 0.761

3.2.2. Integrity. Figure 6 depicts the exploitation of integrity of a WSN through

the execution of five attack states, either individually or in combination. The attack states

are - False data injection, Node malfunction, Alter/Replay attack, Sybil, and Sinkhole.
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This gives an attacker 25 options to exploit integrity, out of which few will be

nullified based on the unsatisfying JOIN criteria of an attack graph. For a node having

AND join, if any one of its child nodes are not executed, then the probability of execution

of that attack is zero. For example, if Sybil is not executed (Figure 6), the chances of

exploiting integrity via Alter/Replay attack goes down to zero. Hence, for an expected

threat level of 50%, the computed net threat level for integrity is 73.5%. The high threat

level to integrity is as a result of the fact that even if an adversary cannot decipher the

meaning of the captured information, they can very well corrupt the information such that

even the destination cannot comprehend it.

3.2.3. Availability. The attack graph for availability in Figure 7 illustrates that an

attacker can cause service disruption by exploiting either of three attack states - Frequency

jamming, Node outage, and Desynchronization. Executing these attacks in combination,

gives them up to 23 choices to cause permanent or partial breakdown of WSN services.

Hence, for an expected threat level of 50%, the computed net threat level for availability is

49.3%. The means to exploit availability of WSN is quite simple (jamming, node outage)

but quite difficult to counter. As such the expected threat level is close to net threat level.

3.3. Expected Threat Levels vs. Net Threat Levels. The computation for net

threat level of WSN security parameters in previous section was done assuming expected

threat level to be a probability of 0.5. In this section, we will depict the computation of net

threat level by varying expected threat level from a probability of 0.0 to 1.0, incrementing

it by 0.1 each time. The y-axis depicts the probability values of the net threat levels and the

x-axis depicting the variation of expected threat level from 0.0 to1.0.

Figure 8 illustrates the trend of varying expected threat level versus that of net threat

level for the three WSN security parameter - confidentiality, integrity and availability. As

one increases the expected threat level, the security measures implemented will also be

high. Increase in security measures makes the exploitation of confidentiality complex.
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Figure 7. Attack Graph for Exploitation of Availability

Although, the net threat level towards integrity goes up. This is because an attacker

does not need to decipher the captured information to exploit integrity. They can corrupt

the information itself. Thus, as the belief for exploitation of integrity rises, we see that

the net threat level goes higher than the expected value with probability of 0.7 being

the threshold value depicting the non-deterministic nature in the estimation of net threat

level for integrity. Similarly, availability can be exploited by jamming the sensor node’s

communication frequency or congesting the sensor nodes with a large number of packets

(denial of service). These mechanism are simple to execute and difficult to counter. Further,

being able to deterministically predict these attacks are difficult. As such the expected threat

level and net threat level does not vary much.

3.4. Time Frame Estimation. We estimate reasonable time frames depicting the

degradation of WSN security parameters in the absence of security measures. The first step

in computing time frames of degradation is to create service levels (Section 2.4). These

service levels are based on the Misuse Impact (MI) of the attacks.
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Figure 8. Expected Threat Level vs. Net Threat Level

The MI of attacks is computed using the environmental metric and impact category

of base metric (Table 5). The environmental metric depends on an organization deploying

theWSN. Assuming we have three differentWSN - A, B, and C, their environmental metrics

can be summarized as shown in Table 7. Based on these metric the times frame estimations

will vary from one physical WSN to another as a result of different number of service levels.

Given the metrics in Table 7, WSNA has 4 service levels for confidentiality, 4 service levels

for integrity and 5 service levels for availability. Similarly, WSNB has 4 service levels

for confidentiality (MI - 0,0.15,0.30,1), 3 for integrity (MI - 0,0.05,1) and 4 for availabil-

ity(0,0.15,0.30,1). WSNC has 4 service levels for confidentiality (MI - 0,0.16,0.39,1), 4 for

integrity (MI - 0,0.16,0.39,1) and 4 for availability (MI - 0,0.05,0.13,1). Computation for

time frames using Misuse Frequency (MF) is shown assuming the environmental metrics

of WSNA (Section 3.4.1).

3.4.1. Developing service levels. Computing the MI of the attacks whose attack

pattern is confidentiality (Table 1), we have two sets of impact - 0.14 and 0.33 (Table 5

and (7)), along with service levels SL0 (fully operational) and SLx (total degradation). The

attacks having an impact of 0.14 was grouped into service level SL1 and those having an
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Table 7. Environmental Metric for Physical WSN

Network Confidentiality
requisite

Integrity
requisite

Availability
requisite

Collateral
Damage
Potential

A High High High High
B High Low High Low-

Medium
C High High Low Medium-

High

impact of 0.33, was grouped into service level SL2. Confidentiality degrades and reaches

an irreparable state, as we traverse from SL0 to SLx . Similarly for integrity, there are two

sets of impacts as well - 0.14 and 0.33. For availability, we have three sets of impact - 0.14,

0.33 and 0.50. The service for all three WSN security parameters is summarized in Table 1.

Table 8. Service Levels for WSN Security Parameters

Service
levels

Attacks Attack Pattern

SL0(0.0) - -
SL1(0.14) Node Subversion, Spoofing, Node Replication, Mal-

ware attack, Wormhole, Selective Forwarding
C; I

SL2(0.33) Eavesdropping, Sybil, Selective Forwarding, Spoof-
ing, Alter/Replay, Acknowledgment Spoofing, Node
Malfunction

C; I

SL3(0.50) Frequency Jamming, Denial of Service A
SLx(1.0) - -

3.4.2. Computing state transition rates. We compute the rate transition matrix

usingMF estimates (Table 4 and (3)) once we have created the service levels. The transition

rates for the service level are illustrated in Table 9. We assume that a transition from a

higher service level to a lower service level is not feasible. Also, we assume that a network

cannot reach SLx directly from SL0 or SL1, since, SL0 is a fully operational level with

no harmful attacks. Furthermore, execution of attacks in SL1 will result in a transition to

the next service level (SL2 and not SLx since, the impact of attacks in SL1 is lower that

of attacks in SL2. The network would be functioning in SL0 in the absence of attacks.
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Execution of an attack belonging to SL1, causes a traversal from SL0 to SL1 and so

forth. The transition from SL1 to SL2 is dependent on the transition rate for SL0 to SL1 and

is computed as MF(SL1SL2)| MF(SL0SL1).

Given a time frame of 30 days, a WSN in absence of security measures will have

its confidentiality fully compromised in about 13 days. Since, the probability of full

compromise, reaching SLx , is around 0.44, which translates to 13 days (44 % of 30 days).

We also conclude that in such a WSN, there is 66.27% chance that the data will be fully

compromised. Integrity, in close co-relation to confidentiality, will also be lost in 13 days.

Since, the probability of full compromise, i.e. reaching SLx is around 0.44, which translates

to 13 days (44 % of 30 days). This result makes sense because a network cannot maintain its

integrity after confidentiality is fully compromised. Whereas for availability, there is a 20%

chance that aWSNwill face communication disruption beyond the point of recovery. Since,

probability of full compromise ( SLx) is around 0.20. Thus, a complete degradation might

occur in about 6 days (20 % of 30 days) if precautionary measures are not taken to protect

the WSN. The rate transition matrix computation for all three WSN security parameters is

summarized in Table 9.

Table 9. Rate Transition Matrix for WSN Security Parameters

SL0 SL1 SL2 SL3 SLx
SL0 0 (0.83)C,I,A (0.81)C,I

(0.77)A
(0.83)A 0

SL1 0 (0.83)A (0.66)C,I

(0.64)A
(0.69)A 0

SL2 0 0 0 (0.44)A (0.44)C,I

SL3 0 0 0 0 (0.20)A
SLx 0 0 0 0 0

3.5. Complexity Analysis and Scalability. In this section, we will discuss the

complexity involved in designing the proposed risk assessment framework and its scalability

with respect to large scale sensor clouds.



56

The initial steps involves the creation of a database which contains the information

on differentWSN attacks regarding their attack patterns, pre- and post-conditions, and JOIN

type in the attack graph. Creation of attack graphs requires extracting this information from

the database. This process involves considering each attack attribute as a root node and

traversing the remaining attack attributes in database and determining if the pre-condition

of the attack attribute being considered as the root node matches the post-condition of the

remaining attack attributes in the database.

We perform this step three times, once for each of the threeWSNsecurity parameters.

Hence, this process is upper bounded by O(n2), where n being the number of WSN attacks

taken into account. Creation of attack graphs is followed by scoring the attack nodes in

the graph with their probability of success which takes a constant amount of time. We

then compute the net threat level of the root node using the concepts of the Bayesian

networks, computational complexity of which is upper bounded by constant time. Time

frame estimations involves the creation of service levels from the Misuse Impacts and then

computing the transition matrix from the Misuse frequency values, which is again upper

bounded by a constant time. Hence the total computational complexity of our proposed risk

assessment framework is squared.

The framework creates three attack graphs for a givenWSN network. As such if N is

the total number of WSNs in the sensor cloud, the total number of attack graphs that will be

generated is 3N . For larger values of N , the number of attack graphs that needs to generated

and evaluated increases rapidly. Although this increase is linear and the generation of the

attack graphs is not dependent on either the number of sensor nodes or the number of WSNs

present in the sensor cloud. Hence, the proposed risk assessment can scale with respect

to the increase in number of WSNs in the sensor cloud. However, a challenge lies with

the security administrator to draw inferences from net threat level values generated by the

attack graph and is something we will address as a future work.
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4. VALIDATION

In this section we will study the impact of various attacks on deployed WSN (Sec-

tion 3.1) in a sensor cloud environment in order to determine the effectiveness of our

proposed risk assessment framework.

4.1. Initial Security Measures. Section 3.2 depicted the attack graphs for a de-

ployed WSNs in the absence of security measures. This illustrated the full potential of the

attack graphs since none of the attack nodes had their probability of success as zero. But

for validation purposes we used a set of initial security measures for the deployed WSNs.

The implemented sensor cloud was supported with proxy re-encryption scheme.

Although the encryption service is optional and depends on a user’s preference. Thus, data

coming from a WSN serving their application may or may not be encrypted. Our current

sensor cloud architecture also supports ten different frequency bands for communication.

The sensor node of a WSN is programmed with a unique frequency band during the pre-

deployment phase to prevent collisions while communicating. However, we can reprogram

these nodes with a backup frequency band. Thus, in case of a Denial of Service attack, if

the primary frequency band is jammed the nodes can switch to the backup band to send

out a distress signal, alleviating the effects of a DoS attack. We consider this as a partial

solution to a DoS attack. Additionally, Node malfunction at times can result due to the lack

of sensor node battery power. The sensor nodes having low battery might not be able to

correctly perform its operations (sensing) and send incorrect or infrequent data. Our sensor

cloud architecture has the capability of powering up the nodes using Ethernet cables and

USB connectivity instead of the traditional AA batteries. Thus, if a deployed WSN is in

close vicinity of a USB power source we consider this capability as a solution to attacks

that rely on depleting a sensor node’s energy. These are available to the WSN deployed on

the second floor of the Missouri S&T computer science department.
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Further, the five deployed WSN are sparse. This fact is relevant since the density

of a WSN belonging to a sensor cloud determines the feasibility of attacks like node

capture. Hence, if the deployment of a WSN is dense, two or more sensor nodes might have

redundant sensing region, as such if a node is captured it will be harder to detect it than in a

sparse network. Although attacks like node capture also depend on how easily the deployed

networks can be discovered (nodes deployed for health monitoring can be easily discovered

in contrast to the nodes deployed to track wildlife) and as such are susceptible to physical

node capture. Finally, we have also assumed that addition of new nodes to existing WSN

requires authentication.

4.2. Attack Models. We incorporate three attack scenarios on the deployed WSNs

belonging to the sensor cloud. Each scenario is targeted to exploit a given WSN security

parameter.

4.2.1. Attack model 1. The attacker in this scenario is an insider to the sensor

cloud. As such they might be aware of the encryption keys and deployment regions. Users

selecting encrypted way of data delivery still might be at risk from this kind of attacker.

Additionally, the attacker might also be aware of authentication procedures and might

add rogue nodes as legitimate nodes to the existing WSNs. The main motive here is to

compromise data. To avoid disclosing their identity by getting caught, they will refrain

from using attacks that will disrupt the availability of the network or cause inconsistencies

in data received by legitimate users. The straightforward way to achieve this would be by

adding a rogue node or subverting an existing one. As such the unconditional probability

of node subversion becomes 1.0. As a result, further exploitation of attacks such as Sybil

or wormhole eases up.

4.2.2. Attack model 2. The attacker in this scenario does not have the same ca-

pability as the previous attack model. As such, they will not be able to compromise data.

However, they can corrupt the data by causing data injection attacks and will try to sub-

vert the nodes not by physical capture (deployment region is not known) but by sending
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malicious codes, which if executed will subvert the nodes and give them the capability of

the attacker discussed in attack model 1 (escalation). In this context, the probability of

success of False Data Injection will be 1.0. Additionally with respect to escalation, the

attacker will also try to execute malware attack, making its probability of success as 1. This

malware attack might lead to node malfunction and not node subversion. Escalations are a

possibility, but the attacker does not have the required resources or expertise to cause it.

4.2.3. Attack model 3. The attacker here is not concerned about the network data.

Their objective is to disrupt available services and as such jam communication frequencies,

overload sensor nodes with spurious message packets and so on. In such a scenario, the

most tempting attack will be to destroy the sensor nodes. But if the topology cannot be

discovered, the next available option will be to jam the network communications. This can

be achieved by jamming the wireless communication frequency around the approximate

vicinity of the WSN. Additionally Desynchronization attacks can also be initiated through a

malware attack, causing a node to malfunction and not be able to establish communication

with neighboring nodes and transfer data.

4.3. Results and Observations. We performed risk assessment for the deployed

WSNs, given the initial security measures as discussed in Section 4.1. After computing

the net threat levels to the WSN security parameters, we simulated attacks according to the

attack models described in Section 4.2. Given these attacks we utilize our risk assessment

framework to re-compute the observed net threat levels. Once we have the estimated and

observed net threat levels, we compare and contrast the results to evaluate the effectiveness

of our proposed risk assessment framework.

4.3.1. Estimated net threat level. In this section, we assess the net threat level

to the WSN security parameters, estimated during the pre-deployment phase of the WSNs

under the sensor cloud. The probability of success for the attack node, physical tampering,

is assumed to be zero. This is because the deployed WSNs are sparse and as such absence
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of a node will be detected and addressed before the attack can be successfully executed.

Similarly, given the ethernet-usb power sources for the sensor nodes, the probability of

success of the attack node, energy drain attacks, is also assumed to be zero.

Confidentiality can be exploited from four attack nodes (Figure 5). If each of

these attack nodes contributes equally in the exploitation of confidentiality, there is a 25%

chance of exploitation from each node. But eavesdropping, can be suppressed if the user

opts for the available encryption service for their application. Given the uncertainty in

a user’s encryption service selection, exploitation coming from successful execution of

eavesdropping is not taken into account for expected threat level. Additionally, absence of

physical tampering will reduce the probability of successful execution of node replication

attack. This will reduce the expected threat level further (5% approximately, using the

concepts of forward propagation in Bayesian networks). Hence, the expected threat level

for confidentiality is estimated to be about 70%.

Similarly, integrity can be exploited from 5 different attack nodes (Figure 6). Con-

sidering equal contribution from each of these attack nodes, there is a 20% chance of

exploitation towards integrity coming from these nodes. But the probability of success of

one of the child nodes of the contributing attack node is assumed to be zero (energy drain

attacks). This reduces the contribution of that node (Node Malfunction) by 10%. Hence,

the expected threat level to integrity is estimated to be 90%. This zero probability of success

for energy drain attacks will also be reflected in the attack graph for availability as well.

Availability can be exploited by three attack nodes (Figure 7), approximately 33% contri-

bution from each node. But the attack node, Desynchronization, has node malfunction as

its child node, which in turn is the parent node of energy drain attacks. Hence, the expected

threat level to availability was estimated to be 88%.

Given these expected threat levels, the estimated net threat level to confidentiality,

integrity and availability was 56.14%, 74.95%, and 86.82% respectively. Computations

performed were similar to the ones discussed in Section 3.2.
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4.3.2. Observed net threat level. Dynamic risk assessment (Section 2.3.2) is used

to compute the observed net threat level. These estimations are performed after the evidence

of a successful attack execution. As such, the probability of success of attack nodes which

has been successfully exploited becomes one and the net threat level to the root node of the

attack graph (confidentiality, integrity or availability) for WSNs are re-computed.

The simulated attacks are based on the attack models described in Section 4.2.

The observed attacks from attack model 1 are node subversion, spoofing, and Sybil. The

observed net threat level due to which is estimated to be 45.19%. Observed attacks from

attack model 2 is malware attack and data injection attack. The observed net threat level

due to which is estimated to be approximately 72.00%. Similarly, the observed attacks from

attack model 3 was frequency jamming. The estimated observed net threat level owing to

this was approximately 28.38%. Each of these observed attack states are highlighted in

Figure 5, 6, 7.

4.3.3. Analysis of the results. The estimations of the risk assessment framework

can be utilized to allocate resources to reduce the net threat level during the deployment

phase of the WSNs. As such, higher the value of the estimated net threat level, greater

the amount of security resources that will be deployed. For example, if the nature of

applications being hosted by the sensor cloud becomes sensitive (military applications),

then using encryption becomes a necessity instead of an option. Similarly, the observed net

threat level values can be used to evaluate whether or not the invested security resources

is sufficient. If it is not then what all resources the security administrator must levy to

reduce the observed net threat level and re-deploy the WSNs using the updated security

resources. This allocation of resources can be traced back to the metrics used for computing

the probability of success of the attack nodes in the attack graph. Variation of these metrics

will help in identifying the resources that needs to be invested and their target instance
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in the network. For example, whether the number of authentication instances needs to be

increased or whether the way in which the network interacts with the outside domain needs

to be made more secure and so on.

In the experiments performed, we observe that the estimated net threat levels for

confidentiality and integrity were able to encompass the observed net threat levels due the

attacks that were directed to exploit them from attackmodel 1 and 2. This is owing to the fact

that the measures to exploit and counter confidentiality and integrity is bounded. There are

some set ways to exploit these two WSN security parameters and safeguarding these ways

reduces the chances of successful exploitation. Although, there was an over investment of

security resources. For confidentiality, the over investment was 19.5% and that for integrity

was 3.93%. But in contrast to confidentiality and integrity, although the estimated net

threat level for availability was able to encompass the observed net threat level, the invested

resources were under utilized to a large extent - 67.31%. This is because even though there

was an observed instance of frequency jamming, it did not affect the entire sensor cloud

network. There was partial disruption to one of the WSNs. But according to the proposed

risk assessment framework, the unconditional probability of an attack node is taken to be

1.0 if it has been observed. This is a challenge that needs to be addressed in our framework

with respect to assessing availability as it is not able to identify the extent of exploitation

and help in re-allocating security resources accordingly. For example, if an observed attack

phenomena has affected the sensor cloud network partially, the risk assessment framework

will re-compute the net threat level considering that the observed attack has affected the

entire network. This area will be addressed as a part of future work.

5. RELATEDWORK

The scope of attacks sustained by a WSN has been surveyed and discussed in [28]

[25] [19]. The authors have assessed well-known sets of WSN attacks along with their

countermeasures. They were, however, oblivious about the attack’s impact on a network
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and efficiency of the countermeasures. Walter [27] in his survey on security issues of a

WSN established the parameters based on which security of a WSN is characterized. These

parameters were confidentiality, integrity and availability. We are able to design the attack

patterns from this information for our work and analyze the attacks on a broader perspective.

Analysis of various attacks adopted by the adversary to exploit security parameters and ways

in which they could be averted were also discussed in [27]. Although, it did not address the

likelihood of exploitation of an attack.

Wood [29] and Xu [30] gives exposition on the omnipresent denial of service (DoS)

attack. DoS are not only hard to predict but also to counter. This helped us in understanding

the nature of jamming attacks in WSNs. The absence of predictability and correlation

with other attacks in case of DoS attack, is a drawback on the security administrator’s

part. Karlof [11], Kannhavong [9] and Newsome [17] gives an in depth analysis on

routing layer attacks and the Sybil attack respectively. However, these attacks can be

exploited by successful execution of attacks in different network layers. For this purpose

we should identify the interdependencies between different feasible attacks. Mauw [15]

and Phillips [20] demonstrated this kind of logical relationship via attack graphs or trees.

Using the principles from the work of Lee [12], we were able to assess the risks to a

network. But the drawback was that they were for a wired network scenario. Sheyner [24]

discussed the various types of attack graph andmodels. This contributed immensely towards

the development of the attack graph model for WSN. Gallon [6] devised the methods to

quantitatively assess the attack nodes in the attack graph; although they were not meant

for a WSN. National vulnerability database established the vectors to calculate the severity

ratings of vulnerabilities in a wired network. Using the same principles, we calculated the

severity ratings for the attacks on WSN. Frigault [5] gave insight on implementing attack

graphs as a Bayesian network. This gave us a better understanding about the adversary’s

capability, likelihood and impact of attacks for various attack scenarios. Dantu [3] and

Liu [13] analyzed attacks by assigning probability values to the attack graph nodes.
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Furthermore, using the concepts of Bayesian networks on these probability values,

they calculated potential attack paths and modeled network vulnerabilities. Nevertheless,

these computations were not for an attack scenario of a WSN and as such could not be

applied to the proposed attack graphs for a WSN. Houmb [7] proposed the methodologies

of risk level estimations using the exploitation frequency and impact of vulnerabilities in

a wired network. We adopted these concepts to identify the metrics necessary to compute

net threat level to the root node of our attack graph when it is represented as a Bayesian

network. This gave a degree of diversification and uniqueness to the WSNs with respect

to quantitatively analyzing our attack graphs and using the results to estimate maintenance

period for the largely unattended WSNs.

6. CONCLUSION AND FUTUREWORK

In this paper, we have presented a risk assessment framework for WSNs in a sensor

cloud environment. We depicted the cause-consequence relationship for attacks on WSNs

using attack graphs and perform quantitative assessment by representing them as Bayesian

networks. Thus, we are able to compute the net threat level to WSN security parameters

- confidentiality, integrity, availability and develop time frames estimating the degradation

of these WSN security parameters.

Static risk assessment helps in identifying critical resources in the network. This

information can be utilized to determine the effective placement of a intrusion detection

system (IDS) to monitor these resources in the network. Further, static risk assessment takes

into account the logical relationship between different attacks. Using this as a supplement

to current IDS will benefit them in their monitoring tasks by not having to wait till the

attack is taking place to raise an alarm. The proposed risk assessment will also be used

to determine how efficient a security measure will be, which can be measured in terms of

resource utilization and the capability to reduce the overall threat level to WSN security

parameters.
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Wewill use this as the basis to estimate the net threat level of overlayWSN formulated

by using individual sensor nodes from different existing WSN in the sensor cloud. Since a

substantial amount of overlay networks could be formed given the combination of sensor

nodes that are available, the current risk assessment framework will take the aid statistical

analysis to help the security administrator better analyze the obtained results. These facets

will be taken into account as a part of our future work.
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ABSTRACT

The acceptance of cloud as an infrastructure to host applications has been a growing

trend in the recent times. Facilitating and hosting applications on the cloud reduces the

support and maintenance cost. However, the security concerns of these applications on the

cloud is one of the primary reasons which makes organization avoid complete adoption of

cloud services. Despite the fact that cloud provides standard security, they do not address

it with respect to application’s security requirements. Without clear understanding of the

degree of security provided with respect to the scope of applications, organizations have

been cautious about migrating their application onto cloud platforms. In this paper, we

propose an off-line risk assessment framework to evaluate the security provided by a cloud

service provider from the perspective of an application to be migrated on it. Once the most

secure cloud service provider is identified for a given application, the proposed framework

will perform a cost-benefit tradeoff analysis in terms of security dispensed and service costs

to gauge an ideal cloud migration plan.

Keywords: Risk Assessment, Cloud Computing
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1. INTRODUCTION

Cloud computing is a viable solution for applications which depend on scalability

and reliability for an uninterrupted service. Cloud services in the form of Software-as-

a-Service (SaaS), Platform-as-a-Service (PaaS) and Infrastructure-as-a-Service (IaaS) cuts

down application maintenance and development costs dramatically. However migration of

applications on to the cloud platform gives rise to security issues as applications are no

longer within the secure domains of its organization. The security threats present varies

from one application to another and as such the promise of generalized security measures

provided by cloud service providers (CSP) may not be sufficient to alleviate the security

concerns. Hence, the security solutions provided by a CSP is like a big black box to its

clients.

Currently the means to assess security of a CSP is by going through their security

white papers, SLA agreement, or tendor notes. An organization can also employ the services

of a third party to do the same. Guidelines established by the authorities like ENISA [8] or

CSA [5] would help an individual assess the security of a CSP. Additionally, standards such

as PCI-DSS [2], HIPAA [3] lays down guidelines for CSP hosting application related to

specific fields. The drawbacks of these current measures is twofolds. First, a third party or

self assessment depends on the keenness and expertise of the evaluator which may or may

not be up-to-date with security standards laid down by a CSP. Secondly, such evaluations

are not from the perspective of security requirements of an application to be migrated onto

the cloud. A security measure present in a CSP may be applicable to one application, but

it may not be sufficient for another. For example, a cloud service provider hosting e-health

data needs to be HIPAA compliant like FireHost’s cloud platform with the inclusion of

explicit security measures like the one discussed in [9].

Thus, a better and an accurate way to assess a CSP’s security will be to do it in

contrast to the security threats present in an application. To do so, one must be able to

identify the vulnerabilities that are present in an application.



70

Thereafter to evaluate if a CSP addresses it using the available security measures.

There are several means to identify vulnerabilities in an application. Tenable [14] has the

tools to check an application for security issues. But this can be done once the application

has been deployed. As such any repairs at this point would be costly. We need to assess

the security vulnerabilities in an application during the system design phase. In this regard,

threat modeling tools like EMC’s Developer Driven Threat Modeling [7] and Microsoft’s

STRIDE [15] are helpful. Application threat modeling as discussed by Open Web Applica-

tion Security Project (OWASP) [13] gives some useful guidance in vulnerability detection

and secure application development. It helps to identify, quantify and address the security

risks associated with an application.

In this paper, we propose a suitable and dependable framework for assessing the

security provided by a CSP from the perspective of an application to be migrated on it. Our

framework will help in determining, given the risks that are present, whether or not it would

be cost effective to perform cloud migration. The applicability of our framework is before

the CSP selection phase and during the system design phase. It will help organizations

identify the threats associated with the functional elements of their applications. This

will be interpreted as the security requirements of their application. Given these security

requirements, an organization will be able to determine the extent of security that a CSP

will dispense for their applications.

Additionally, security measures, cloud platform infrastructure and safeguards differs

from one CSP to another. The techniques used by CSPs to address and mitigate threats on

their cloud platform changes with time and without prior knowledge of consumers. If an

application is hosted by a federation of CSPs, there could be every possibility of certain

incompatibility issues amongst the different CSPs. Therefore, the presence or absence of

security solutions on the cloud platform is no longer sufficient to assess the security of an

application on the cloud.
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Our proposed framework will aggregate all security measures of various CSP and

keep it up-to-date, taking into account the interaction between federation of CSP, while

performing security assessment for an application to be migrated onto the cloud platform.

2. PROPOSED METHOD

The off-line risk assessment framework is composed of three modules viz. - Mis-

sion Oriented Risk Assessment, Cloud Service Provider Security Assessment and Cloud

Adoption Strategies. A flow chart summarizing the off-line risk assessment framework is

given in Figure 1. The objective of this work is to evaluate the security capabilities of

 

Figure 1. Proposed Off-line Risk Assessment Framework

various CSPs based on the security requirements of a client’s application. This information

will be then used to develop an optimal cloud migration strategy. In the following sections,

we will discuss each module of the proposed framework in detail.

2.1. Mission Oriented Risk Assessment. The Mission Oriented Risk Assessment

module is responsible for identifying the security threats that are present in an application

and create the client’s security requirement that has to be addressed by a CSP. It consists of

two parts: (1) Project Assessment, (2) Risk Assessment.
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2.1.1. Project assessment. Project Assessment helps in design and analysis of an

application that aids in carrying out risk assessment during the system design phase. To

perform project assessment, system design in the form of Data Flow Diagrams (DFD) [10]

is given as an input to the framework. In this context, there can be two scenarios:

Scenario 1: An organization has already developed their application. They have their DFDs

ready and is now considering cloud migration.

Scenario 2: An organization is yet to conceive their application. The DFDs are not ready

but the organization is considering cloud migration once their application is developed.

In the first scenario, our framework will gather an application’s goals and objectives

by analyzing their DFDs. For the second scenario, our framework can assist in the creation of

mission ontology in the form of Context Flow Diagrams (CFD) and DFD. Once the mission

ontology is available, the information is passed through a vulnerability detection process.

For this purpose, we use the concepts of Microsoft’s STRIDE [15] in our framework.

STRIDE can analyze a system architecture and identify vulnerabilities and threats associated

with the functional elements of a system (elucidated by DFD). Hence our framework can

identify the exact locations of threats in an application along with the required mitigation

measures. Thus, we can not only identify the threats but also where they are present. Impact

of these threats are then computed by ranking them. Ranking helps in determining the high

impact risks and prioritize their mitigation. It is more beneficial to integrate risk assessment

to the process of system design since mitigating faults in the system design phase is more

economical than after its deployment (Applicable only to Scenario 2).

2.1.2. Risk assessment of system design using STRIDE. This is applicable only

to Scenario 2 discussed in Section 2.1.1. Mission ontologies and system designs are

generated in the form of several DFDs. Data flow diagrams gives an overview of system

functionalities; the data flow among the different system components by showing entry and

exit data points as well as where data gets processed. DFDs are easier to understand by

technical and non-technical audiences alike [10].
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Hence, for the purpose of system design generation and analysis, we have considered

DFD of an application as an input to our framework. The mission ontologies are then

passed through Security Development Lifecycle (SDL) and Threat Modeling tool [12].

SDL conceptualizes STRIDE to identify the threat related to the elements of a DFD.

Analyzing SystemDesign forVulnerabilities. STRIDE is an acronym for the different

categories of vulnerabilities [15] that may be present in an application. It stands for:

Spoofing, Tampering, Repudiation, Information disclosure, Denial of service, Elevation

of privilege. For each element in a DFD, STRIDE gives a set of feasible vulnerabilities.

This set however, is not application dependent but rather element dependent. For example,

consider the DFD of an Online Movie Streaming Application shown in Figure 2.
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Figure 2. DFD for Online Movie Streaming Service

It was drawn in Microsoft SDL. For process elements in a DFD, STRIDE gen-

erates five possible sets of vulnerabilities (spoofing, tampering, repudiation, information

disclosure, denial of service and elevation of privilege).
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Whereas for data store elements it generates four possible sets of vulnerabilities

(tampering, information disclosure, repudiation and denial of service). Depending on the

type of application, these set of vulnerabilities may or may not be applicable. For instance in

the online movie streaming service, the sets of possible vulnerabilities that STRIDE gener-

ates for "Customer Account" data store are "tampering, information disclosure, repudiation

and denial of service". However, in this domain, "repudiation" would not be feasible since

all transactions within "Customer Account" are authenticated and logged using a trusted

third party - "Bank", hence it will be omitted. Similarly, considering "Movies Metadata"

data store, the data in this store is made available for public consumption. Therefore "in-

formation disclosure" will not be applicable. Similarly, the possible set of vulnerabilities

is narrowed down to the ones that are applicable. This process is manual as it requires

human intervention (system designer) to understand the functionality of the elements of an

application.

Identifying Attacks. Once the set of possible vulnerabilities in the system compo-

nents(s) are narrowed down, our framework proceeds to identify the attacks that can exploit

these vulnerabilities. In order to do so, we use MITRE’s Common Attack Pattern Enumer-

ation and Classification (CAPEC) [4] which is an attack database containing information

on conditions that are required to execute an attack, its mitigation measures, and impacts

due to successful execution. CAPEC’s database, available in XML format, is imported into

our framework. We map the set of STRIDE vulnerabilities to the attack pattern categories

of CAPEC. The mapping is illustrated in Table. 1.

Additionally, each CAPEC attack pattern category has sub-attack pattern categories.

We depict this relationship using a tree structure (Figure 3). To find an attack that can

exploit an identified vulnerability, our framework finds the attack pattern category that the

vulnerability maps onto (Figure 1). This attack pattern category then becomes the root

node of a tree. Any attack pattern category or attack that has the root node as its parent

(information provided in imported XML file) will be grouped under it.
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Table 1. Mapping STRIDE Vulnerabilities to CAPEC Attack Pattern Categories

STRIDE Vulnerability CAPEC Attack Pattern Category
Spoofing Spoofing
Tampering Data Structure Attacks, Injection, Remote Code Inclu-

sion
Repudiation Attack categories of Spoofing and Tampering
Information Disclosure Data Leakage Attacks, Path Traversal, Functionality

Misuse
Denial of Service Resource Depletion Attacks
Elevation of Privilege Exploitation of Authentication, Exploitation of Privi-

lege or Trust, Privilege of Escalation

The tree structure is populated in this way; for attacks which are not the parent

of any other attack become the leaf nodes. Our framework traverses down from the root

to leaf level, registering feasible attacks and deleting attacks which are infeasible due to

the presence of initial security measures in the application. This gives a specific set of

attacks related to each functional element of the system. For example, our framework

would not just output that a process is vulnerable to spoofing attack, but it will give

the specific instantiation of spoofing attack pattern category (Phising, Man-in-the-middle,

etc.). Similarly for rest of the vulnerability types our framework traverses through the

CAPEC database and identifies attacks that will exploit the identified vulnerabilities. While

registering attacks, our framework will also import their proposed security mitigations as

provided by CAPEC. These mitigation strategies will form the basis of client’s security

requirements. This process is semi-automated. In events of absence or lack of information

about initial security measures present, our framework will ask the user a set of heuristically

developed yes/no questions in order to ascertain whether a registered attack is feasible.

Ranking IdentifiedAttacks. Once the relevant attacks have been identified our frame-

work ranks their impact on the application. For the purpose of ranking, we use DREAD [15]

ranking system. Other ranking techniques such as Attack Surface Metrics [11] can also be

used which identifies the threats in an application’s executable code.
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Figure 3. Tree Structure of CAPEC DB

Thereafter the identified threats are ranked based on their damage potential. How-

ever, it requires the executable code of an application and as such cannot be utilized during

the system design phase. DREAD, a logical extension to STRIDE analysis, is an acronym

and stands for,

• Damage (D): Impact of the attack,

• Reproducibility (R): How easy is it to reproduce the attack,

• Exploitability (E): How complex is the execution of the attack,

• Affected users (A): How many people will the attack impact, and

• Discoverability (Di): How easy is it to discover the threat.

Parameters such as "Affected users" depends on an organization and hence, is subjective

in nature. For rest of the attributes, CAPEC’s attack description quantifies them as high,

medium or low. Depending on the scale an organization will choose, 0-3 or 0-10 or 0-100,

they can quantify high, medium and low. For example, if the organization opts for the scale

0-100, they can quantify "low" as [0-30], (30-70] as "medium" and "high" as (70-100]. It

is evident that this type of quantization is subjective in nature.
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Since, it depends on the scale an organization will choose and how they will interpret

high, medium and low. In this regard, our framework uses the scale of 0-10. To find the

final ranking of an attack, our framework sums up the scores of each DREAD attribute and

normalizes it so as to keep the final ranking in between 0 and 10. For example, if we have

the following scores for the DREAD attributes of a registered attack X ,

(D : 8; R : 10; E : 6; A : 6; Di : 5)

Its rank will be given as,

Rank(X) = ((D + R + E + A + Di)/5)

Rank(X) = 7

In this way the rank of all registered attacks are computed. Once the ranks are

obtained, they are sorted in decreasing order. Based on a threshold, chosen by an organiza-

tion, security mitigation measures are exported for those registered attacks whose ranks are

above the set threshold. This becomes the client’s security requirement and input to module

2 of our framework, cloud service provider security assessment.

2.2. CloudServiceProviderSecurityAssessment. Cloud service providersmostly

use a low-touch self-service model to implement SaaS, PaaS and IaaS. These self-service

models are economical with respect to renting the services provided by the cloud platform.

Nonetheless it impedes effective evaluation of cloud’s infrastructure security.

Additionally most details regarding cloud platform security are presented in a way

that are obscure to the clients. Otherwise they are cajoled within the facts of advertisement.

As such, a security evaluator has to carefully extract the relevant security information from

all such documents regarding security. This module of our framework evaluates various

CSP’s security measures as per the client’s security requirements.

We address facts like given a set of client’s security requirements, howmuch security

coverage is guaranteed by a CSP. Our framework evaluates a client’s security requirements

as described in Section 2.1. To perform security assessment of a CSP, our framework

collects public information of different CSPs regarding their security measures.
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These public information are available in the form of tendor notes, security white

papers and other third-party statistical report. For evaluation purposes, we consider three

cloud service providers namely - Amazon, Microsoft and Defense Information Systems

Agency’s Department of Defense Cloud Broker (DISA: DoD Cloud Broker).

Security evaluations based on public information regarding a CSP’s security mea-

sures can answer questions like,

1. What kind of security measures does a CSP have?

2. Whether or not a CSP adheres to certain standard compliant like SAS-70 [1], PCI-

DSS [2], or HIPAA [3]?

3. What does a CSP guarantee with respect to application security through its Service

Level Agreement (SLA)?

Even though such questions may help in assessing a CSP’s security, it digresses

from the client’s security requirements. But in contrast to such traditional means of risk

assessment, our proposed framework keeps the client’s security requirements in mind.

Hence, the security assessment extends from project to cloud infrastructure. Our framework

after collecting security information of differentCSPs, contrasts itwithmission-oriented risk

assessment. This is achieved by comparing the resources (conditions) required to execute the

registered attacks with that of the resources (conditions) secured by the security measures

dispensed by a CSP. If the resources (conditions) required by an attack is safeguarded

by a security measure, that particular attack is suppressed by a CSP. We denote this as

the security coverage provided by a CSP. A CSP’s security measures is mapped onto the

prioritized registered attacks (output of module 1). Each mapping is then scored by a risk

reduction factor denoted by αi j . For a CSP’s security measure, Mi, and an attack, T j ,

(Mi,T j) is a security coverage if Mi reduces the attack execution probability Pr(T j) with a

reduction factor αi j . The concept of security coverage is depicted via Figure 4.
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Figure 4. Cloud Service Provider Security Coverage

Cloud security measures, S1,...,Sn, is mapped onto application vulnerabilities,

V1,...,Vn. This mapping need not always be one-to-one. It can either be conjunctive

or disjunctive in nature. In conjunctive form, a single security threat requires more than one

security measure to be suppressed. Whereas in disjunctive form a single security measure

can suppress a given threat. For example, we can see that the mapping of V2 and Vi are

conjunctive in nature and that of V1 and Vn is disjunctive in nature (Figure 4). The reduction

in the execution probability of an attack will vary based on the conjunctive or disjunctive

nature of coverage. This is elucidated via "risk reduction factor".

Thus, given the security coverage and risk reduction factor of a CSP, we compute

its trust based on its capability to reduce the threats present in an application to be hosted

on it. The output of this module will then be given as the most trustworthy CSP amongst

all the available options to host an application.

2.3. Cloud Adoption Strategies. Module 2 of our framework gives the security

coverage provided by the most trustworthy CSP. However, there are possibilities that these

security coverages might not envelop all the threats present in an application. As such the

security coverages that are not available needs to be imposed by the organization.
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To accomplish such a task requires a cost-benefit tradeoff analysis. The analysis will

determine which cloud-based solution will be economical in terms of providing required

service and ensuring complete application security.

This module of our framework computes a CSP’s service cost and security control

cost incurred by the client to impose their security requirements, also known as client’s

share of responsibilities. Given the migration of all or few of the functional elements

of an application, module 3 estimates the security coverage provided by a CSP for the

threats present in the functional elements. The threats which are not covered by a CSP’s

security coverage identifies the security controls that an organization needs to implement.

It then estimates the total cost (cloud service cost and security control implementation cost)

due to cloud migration. Based on such an analysis it develops a suitable cloud migration

strategy - complete, partial or none. In other words, migrating all functional element of the

application onto the cloud platform, migrating some functional element of the application

onto the cloud platform, or not migrating any functional element of the application onto the

cloud platform.

To this extent, mission ontology is considered as a graph G=(V,E). V is the set of

nodes representing the system elements. E is the set of edges representing the functional

dependencies. A series of what-if analysis will be performed on this graph, assessing the

consequences of outsourcing a group of vertices onto the cloud platform. A cloud adoption

plan will consist of varying combination of more than one vertices. Then for each cloud

adoption plan formed, cloud migration is considered. Security coverage for the threats

present in each cloud adoption plan is assessed. The threats which are secured by the cloud

is known as provider’s share of security responsibility. We then compute client’s share of

responsibility by identifying the cost of implementing the security controls for the threats

that are not present in the security coverage provided by the cloud for that particular cloud

adoption plan.
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Therefore, given a cloud adoption plan −→P , the cost assessment is computed as,

PlanAssessment(
−→
P ) = VenServ(

−→
R ) ⊕ CliCst(¬

−→
R ) (1)

where VenServ(
−→
R ) denotes provider’s service and security coverage cost and CliCst(¬

−→
R )

denotes client cost for implementing the security measures of threats not covered in the

security coverage of the cloud.

Cost-benefit tradeoff analysis is performed in a similar way for rest of the developed

cloud adoption plan. Organization will choose a plan that minimizes VenServ(
−→
R ) ⊕

CliCst(¬
−→
R ). But chances are, the provider cost and client cost can be of different units. To

address this issue of multi-objective problem, the concept of Pareto-optimality [6] can be

used.

3. CONCLUSIONS

The security provided by cloud service providers has not been addressed adequately

in terms of the security requirement of an application to be migrated on to it. As such

organizations have been uptight in completely migrating their applications to the cloud plat-

form. In this paper, we have presented an off-line risk assessment framework for evaluating

the security of various cloud service providers (CSP) as per the security requirements of an

application to be migrated on to it. This gives an organization a better understanding about

the security of their application on the cloud platform rather than generically evaluating the

security of a CSP. Our framework helps in developing (if used during software development

phase) and identifying the vulnerabilities associated with an application. It then evaluates

the security of different available CSPs by contrasting it with the application’s security

requirements. Once the most suitable (secure) CSP is identified, the framework performs a

cost-benefit tradeoff analysis.
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This is done to determine the most optimal cloud migration plan. In other words,

to identify the application’s components whose migration onto the cloud platform will be

beneficial both in terms of cost and security.

Currently, we are building the tool by implementing the off-line risk assessment

framework and validating the obtained results. The work will then be extended to the

risk assessment domain when the application is running on the cloud platform; online risk

assessment of cloud service providers. The online risk assessment of cloud service providers

will take into account the security issues arising due to multi-tenancy and interoperability.
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ABSTRACT

Organizations find it beneficial to host their applications on the public cloud platform

because it reduces infrastructure ownership as well as maintenance cost. However, they

are skeptical about completely hosting their applications on these cloud platforms due to

security concerns. The security assured by cloud providers is not specific to the requirements

of user applications hosted on these cloud platforms. To address this important issue, we

proposed an off-line risk assessment framework for cloud service providers. The proposed

framework assesses the security provided by a cloud service provider with respect to the

security risks present in an organization’s application to be hosted on the selected cloud

platform. In this paper, we present a cloud migration strategy for our proposed off-line

risk assessment framework to perform a comprehensive sensitivity analyses of the factors

that play a vital role in cloud migration. We do so by modeling our cloud migration

strategy as a multi-objective optimization problem and applying it to a cloud migration use

case scenario. We discuss in details the relationship between different conflicting cloud

migration parameters like cost, application security, migration constraints, and scalability

along with a performance evaluation study to compare the impact of different evolutionary

algorithms to model a cloud migration framework.
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1. INTRODUCTION

Cloud computing platforms can host clients’ applications helping in reducing own-

ership and maintenance liabilities by not having to acquire hardware, software, and facilities

to operate their applications. This benefit clients as they can reduce their revenue expen-

ditures by hassle free use of publicly available cloud platforms. Clients can also use cloud

services according to their pay-as-you-use model which makes scaling up and down rel-

atively easier in comparison to a private cloud hosting. However, these benefits are not

devoid of challenges and risks since cloud migration moves a client’s application from the

secure boundaries of their private network to more or less an untrusted domain. Therefore,

security is a primary concern that prevent clients from fully migrating to the cloud.

The process of cloudmigration involves moving a client’s application and associated

data to the cloud platform of different available cloud service providers (CSPs). In doing

so, several objectives are to be considered, most notable of them being cost and security.

The frameworks presented in [16] [13] [22] [15] address the cost component of cloud

migration, whereas other frameworks like [2] [17] [8] which have discussed aspects related

to application and cloud platform security. Additionally, other works have introduced non-

financial facets like technical/legal concerns [16] [27], or legacy applications [9] which play

a critical role in determining the migration of a client’s application to a cloud platform.

The decision making process of cloud migration involves several such parameters, and it

becomesmore challenging as some of these vital parameters are conflicting in nature, for e.g.

strengthening the security of an application hosted on the cloud platform by implementing

additional security measures will increase the overall cost. Similarly, consider an instance

when a part of an organization’s application is not migrated to the cloud platform either due

to legal or technical issues.
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In such instance, organizations are responsible for hosting, maintaining, and securing

the partial application on their private networks. They will also have to address any

associated scalability issues. Given such a scenario, the question is, if it will be beneficial

for organizations to migrate and address their legal or technical issues, or should they

host their partial application on their private networks. Further, organizations also need

to consider if they should host their entire application on a single cloud service provider

(CSP) or distribute their application on multiple CSPs. To be able answer such challenging

questions, requires us to understand the relationships that exists between these different

parameters involved in the decision making process of performing cloud migration. As

such, there is a need to perform a comprehensive sensitivity analyses.

Along this direction, we develop a holistic cloud migration framework built on

top of our previously proposed off-line risk assessment framework [20]. The security of

hosted applications on the public cloud platform is given high priority. Notable works

like [7] address the challenges of performing security risk assessment for the cloud platform

by assessing the SLA presented by clients and evaluating from the CSP’s perspective the

number of SLA violations that might happen based on the demands presented by the

clients in their SLA. Similarly, authors in [4] present a risk assessment framework of

CSPs which utilizes information gathered from clients and cloud vendors to assess different

risk scenarios. They do so by proposing a machine learning framework which leverages

the security evaluation documents of various CSPs publicly available on Cloud Security

Alliance Security, Trust and Assurance Registry to output quantitative ratings describing

the risks associated with different cloud services. However, such evaluations are not from

the perspective of the security requirements of an application to be migrated onto the cloud.

A security measure present in a CSP may be applicable to one application, but it may not

be sufficient for another. This is addressed via the off-line risk assessment framework by

introducing the concepts of security coverage, total risk reduction, and share of security

responsibilities.
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We incorporate these novel concepts to design the security model of our cloud

migration framework, and adopt other parameters like cost, migration feasibility from

existing cloud migration frameworks [16] [13] [9]. Additionally, we have introduced a new

concept of fault tolerance, which will allow clients to group parts of their application with

similar functionality and host them separately, thereby ensuring that the entire application

is not compromised in the event of an attack belonging to a specific attack pattern.

Overall, the sensitivity analyses of our cloud migration framework is modeled as an

multi-objective optimization problem with the help of Non-Dominated Sorting Algorithm

- II (NSGA-II) [6]. Although there are many ways to solve a multi-objective optimization

problems [23] [5] [25], the selection of NSGA-II was based on our study of other evolution-

ary algorithms (Section 5). The presented results in this regard will be beneficial to extend

our proposed cloud migration framework using other evolutionary algorithms for different

cloud migration scenarios and design. Our contributions in this work are as follows:

• Performed an extensive sensitivity analyses of the vital parameters involved in cloud

migration by proposing a cloud migration framework built on top of the offline risk

assessment framework of CSPs (Section 2).

• Introduced a novel security model for cloud migration which helps in evaluating the

security of different CSPs as per the security risks present in an application.

• Introduced a new concept of fault tolerance in performing cloud migration allowing

clients to specify grouping of parts of their application with similar functionality.

• Presented the performance evaluation of different multi-objective evolutionary al-

gorithms to model our cloud migration framework and statistically validating our

selection of NSGA-II, and provided insights into modeling our framework with other

evolutionary algorithms (Section 5).
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2. PROPOSED CLOUDMIGRATION FRAMEWORK

The most cost-efficient CSP might not be the ideal host for a client’s application

while performing cloud migration. Similarly, the most secure CSP might not be the best

option for all or some of the application’s elements. Since, with the guarantee of the desired

security, if the migration costs more than what it would cost to host an application privately

then the migration is not that fruitful. But another contrasting scenario could be that a client

might consider to pay a high cost if the security dispensed is more than that of the private

domain and alleviates the responsibilities of maintaining the security patches. Hence, an

ideal CSP for hosting a client’s application needs to provide the desired security at the cost

which a client is willing to pay. In such cases where multiple objectives are involved in a

cloud migration process, decision making is not a trivial task and some cost-benefit tradeoff

analysis needs to be performed.

In our proposed cloud migration framework, we have modeled the cost-benefit

tradeoff analysis as a multi-objective optimization problem to solve multiple conflicting

objectives [5]. In our case, these objectives are reducing security risks, costs incurred

by clients, and the number of application elements not hosted on the cloud platform.

Solving such problems requires to find a set of decision variables satisfying the constraints

established by the problem and concurrently optimizing a vector function, −→x representing

all the involved objectives. The evaluation of two or more objectives in −→x produces a

solution vector −→y . To compare any two solutions in −→y (say −→y1 and −→y2) a dominance criteria

is defined, also known as the Pareto criteria as shown in eq. 1. The Pareto criteria states

that a feasible solution vector, −→y1, is said to dominate another solution vector, −→y2 ( −→y1 <
−→y2),

if no component of −→y2 is greater than the corresponding components of −→y1, and there exists

at least one component of −→y1 which is greater than the components of −→y2 (eq. 1).

1. fi(−→y1) ≤ fi(−→y2), ∀i ∈ {1, 2, ..., k} and,

2. f j(
−→y1) < f j(

−→y2), ∃ j ∈ {1, 2, ..., k}
(1)
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In order to solve this multi-objective optimization problem, we have used the Non-

dominated Sorting Algorithm - II (NSGA-II) [6] based on our study discussed in Section 5.

2.1. Problem Statement. The objective of our cloud migration framework is to

find a cloud migration plan consisting of an application’s elements such that it maximizes

overall security of the application and minimizes the cost. We formally define a cloud

migration plan as follows:

Definition 2.1. CloudMigration Plan: Given an application’s data flow diagramG= {V,E},

where V is the set of elements in the data flow diagram,

V = {v1, v2, ..., vN } (2)

for a total of N elements, and E is a |V | × |V | adjacency matrix representing edges between

these elements,

Ei j =


1, ∃vi → v j

0,Otherwise
(3)

A cloud migration plan can be defined as a vector,
−→
Pj ,

−→
Pj = {v1, v2, ..., vq} (4)

where, 1 ≤ q ≤ N and N is the total elements in the data flow diagram. And 1 ≤ j ≤ 2N ,

is the maximum possible cloud migration plans that can be formulated.
−→
Pj = true if all the

elements in
−→
Pj are migrated to the cloud platform.

In order to formally establish the problem of cloud migration as a multi-objective

optimization problem using NSGA-II, we need to develop our objective functions. For our

proposed cloud migration framework, we consider the objectives of minimizing (1) security

threats present in the application, (2) overall expenditure of a client, and (3) the number
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of application elements that are not migrated to the cloud platform. Along these lines, we

devise three models; a cost model, a security model, and a migration feasibility model. We

comprehensively discuss these models in the following sections.

2.2. CostModel. Costs incurred by an organization can be onmany different fronts.

In terms of cloud migration, it will cost to avail the services of a CSP and for any service

negotiations (security related or otherwise) which are not present in the service level agree-

ments. Costs will be incurred by an organization if they choose not to migrate an application

on the cloud platform since they have to acquire resources (hardware and software) to op-

erate their application and will also be responsible for securing them. Considering these

facets, we categorize the cost that a client might incur as - Client Cost (CClient), Security

Control Cost (CSCC), Vendor Service Cost (CVendor).

The category of Client Cost covers all costs that a client will have to bear if they

choose to host some of the application’s elements by themselves. Such costs encompasses

but are not limited to buying - hardware, licensed software, physical location to host the

hardware, electricity to operate the hardware, and Internet services [15]. Some of these

costs like physical location to host the hardware, licensed software, Internet can be fixed

whereas others like, electricity or hardware might vary based on usage or decisions to scale

up or down. Additionally, self-hosting will also include labor costs, software and hardware

maintenance costs. We have not taken into consideration the labor cost, since we reckon that

for either private, cloud or hybrid hosting labor costs will be involved and will be subjective

in nature but it is constant for any given organization. Hence, it will not affect the migration

scenario. Corrective maintenance cost is assumed to be 20% of software and hardware cost.

As such, the cost of self-hosting an application’s element is as follows:

CClient =
∑

∀v∈(1−−→Pj )

CH/W + CS/W + CM (5)
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where, CH/W is the cost of all required hardware and physical resources, CS/W is the

cost of buying all required licensed software, and CM is the corrective maintenance cost.

Additionally, if some elements of a client’s application are legacy systems, there might be

certain compatibility issues if these elements are migrated to the cloud platform since the

available resources on the cloud platform do not provide support for legacy systems [27].

Thus, if clients consider migrating a legacy system then they have to rewrite the system

using resources whose support will be available on the cloud platform. This will have a

cost of its own. We formalize this as follows:

Constraint 2.1. Legacy Systems: If a node v ∈ V , in a cloud migration plan,
−→
Pj , being

considered for cloud migration is a legacy system, then it needs to be rewritten using

software or hardware resources provided by the cloud. The cost of rewriting such a legacy

system is depicted as follows:
q∑

i=1
λi × Clegacy(vi) (6)

where λi is the legacy constraint flag for a node vi ∈
−→
Pj and,

λi =


1, if vi = legacy system

0,Otherwise
(7)

In eq. 6, q is the total number of application elements in −→Pj , and Clegacy is the cost of

rewriting the legacy system.

Security Control Cost is the cost that clients have to invest in to reduce the security

risks present in their application. In this regard, there can be two different kinds of cost.

First, if an application’s element having a security risk is not migrated to the cloud platform

then it has to be patched or suppressed by the clients. Secondly, if an application’s element

is migrated to the cloud platform but the cloud needs to implement a specific security

measure (which is not a part of SLA) to suppress the security risk (and are willing to do so),
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then the client has to pay for that extra service. For example, a particular hardware on the

cloud platform hosts multiple virtual instances. If a client’s application requires a security

measure to be incorporated for the entire hardware then the cloud cannot ask the users of

other virtual instances to pay for it. Since other user’s application might not be vulnerable

to such a security risk and do not require the security measure. As such, the cost of the

security measure needs to be paid by the client who has requested for it. This scenario is

adopted from [11] and can be expressed as follows:

Constraint 2.2. Security Measure Implementation: The security control cost required to

mitigate a security risk in an application’s element is to be implemented by the client if the

element is not migrated on to the cloud platform. Otherwise, it will be implemented by the

cloud.

CVenSCC =

q∑
i=1

∑
∀T(vi)

ηi ·(CSCC )Vendor×

(1−ηi)·(CSCC )Client
(8)

where for a cloud migration plan consisting of q number of application elements and each

element having a set of threats T(vi), ηi is the security share flag for vi given by:

ηi =


1, vi is migrated to cloud

0,Otherwise
(9)

thus, the total security control cost (CSCC) is given by:

CSCC =
∑

∀v∈(1−−→Pj )

CSCC(v)) + CVenSCC (10)

whereCSCC(v) is the cost of implementing security measures for those application elements

that were not migrated to the cloud and had some associated security risks.
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Vendor Service Cost is composed of the costs that a client has to pay in order to avail

the services provided by a CSP. These costs are expressed in terms of the cloud computing

service models that will be used by a client and varies for different CSPs. For example,

if a client is going to use Infrastructure-as-a-Service (IaaS) [16], the Vendor Service Cost

is expressed in terms of number of virtual instances used, number of cores used, storage

devices required, their type and billing option. An instantiation of such cost option can be

found on Amazon EC2 pricing page.

Additionally, we identify scaling up as an aspect that will attribute towards the

vendor service cost. The size by which the system might expand will increase the size and

number of required instances and feasibility of private hosting. Thus, the cost associated

with respect to scalability is as follows:

Constraint 2.3. Cost of Scalability: For any node of an application, v ∈
−→
Pj , such that

−→
Pj = true, has a factor of scalability associated with it, then it adds to the vendor cost as

follows:

CVendor =

q∑
i=1

CVendor(vi) × σ (11)

where σ (σ ≥ 1) is a factor for scalability and will be determined by an organization based

on their policies. Thus, the total cost (TC) for a cloud migration plan (−→Pj) is:

TC(
−→
Pj) = CClient + CSCC + CVendor (12)

2.3. Security Model. Security provided by various CSPs can be evaluated by dif-

ferent methods like security level agreements [10], generating knowledge bases to assess

threats confronted by Cloud assets [14], or developing security service level agreements

(SecSLAs) and individually analyzing the trust of different Cloud providers [8]. These

methods are able to identify the security threats and their counter measures present on a

CSP but does not answer how relevant they will be to a particular client’s application.
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To do so, we extend the notions of security evaluation from these works and incor-

porate it with our previously proposed offline risk assessment framework [20] to output the

ranked set of security risks that a client needs to mitigate when migrating their application

to the Cloud. In this regard, we introduce and define the concepts of security coverage, total

risk reduction, and share of security responsibility to build our proposed cloud migration

framework’s security model.

Definition 2.2. Security Coverage: Let T be a set of threat and M be a set of cloud security

measures. Security coverage, SC, is defined as a mapping SC : M × T −→ {0,1}. Then,

given a security measure, ml ∈ M, and a threat, th ∈ T, ml is a security coverage of threat

th, (ml ,th) ∈ SC, if probability of exploiting threat th, Pr(th), is reduced by applying ml , i.e.

Pr(th | ml) = αlh * Pr(th) with a reduction factor 0 ≤ αlh < 1.0

The above definition states that if a security measure employed by a CSP suppresses

a security risk in a client’s application then that particular CSP is providing security coverage

to the client’s application. The security coverage provided by a CSPwill lead to reduction of

the security risks present in an application. We express this in terms of total risk reduction

R(th) as follows:

Definition 2.3. Total Risk Reduction: Given a threat th ∈ T and a security coverage SC,

total risk reduction R(th) is measured as:

R(th) =


∏

∀ml∈M |(ml,th)∈SC
(αlh), if tlh is disjunctive

1 − (
∏

∀ml∈M |
(ml,th)∈SC

(1 − αlh)), otherwise
(13)

Security coverage along with the total risk reduction gives clients an idea on how

secure their application will be if migrated to a particular CSP. Along these lines, the client

expects that if an application element is migrated to a CSP then it should provide security

for that element. We define this using Share of Security Responsibility in Definition 2.4.
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Definition 2.4. Share of Security Responsibility: Given a cloud adoption plan −→Pj , and a set

of threats T , letΘ represent a set of chosen application elements to be migrated on the cloud

platform according to the plan
−→
Pj . We define provider’s share of security responsibility as:

∑
θ∈Θ

∑
th(θ)∈T

Pr(th(θ)) (14)

where θ is an application element in set Θ and th(θ) is the threat(s) associated with that

element.

Thus, the client’s share of security responsibility, R
′, is equal to the aggregated

impact of security threats present in application elements which do not belong in Θ,

R
′

=
∑
(δ∈V)
∧(δ<Θ)

∑
th(δ)∈T

Pr(th(δ)) (15)

where δ is an application element in the set of elements V . The objective while performing

cloudmigration will thus be to minimize a client’s share of security responsibilities, R
′, for a

given cloud migration plan, −→Pj . The value of R
′ is based on the security rating quantization

scale selected by an organization and is subjective in nature. Generally, the rating scales

can vary as [0,1], [0,10], or [0,100]. Based on the adopted rating scale, security rating of

high, medium, and low will be quantized appropriately. For example, if the rating scale is

[0,10], low threat can be interpreted as [0,3], medium as (3,7], and high as (7,10]. Hence,

for a security scale of [0,10] if probability of exploitation of a threat (Pr(t)) is say, 0.56,

then it will be scored as 5.6 (0.56 × 10).

2.4. Migration Feasibility Model. In this model, we assess any restrictions clients

have while performing cloud migration. First, if migration of certain elements like data

store, results in a violation of legal or organizational policies like privacy of the users then

it might not be feasible to migrate such elements beyond the domain of an organization’s

private network. For example, some CSPs have their data centers located across various



96

countries where the IT laws are different. Some of it might require the CSPs to share a

copy of their data with government agencies. Secondly, if a particular application element

cannot leave the trust boundaries of a client’s private network as a result of performing

some private operations or hosting sensitive data, then it cannot be considered for cloud

migration. We depict these constraints as follows:

Constraint 2.4. Migration Constraint: An application’s element, v ∈ V , can be considered

for cloud migration if and only if,

∀
1≤i≤q

vi ∈
−→
Pj, τvi ∧ γvi = f alse (16)

where τvi depicts whether or not an application element, vi, has any organizational trust

issues related to cloud migration. And, γvi depicts whether or not there could be any legal

issues if vi is migrated to the cloud platform. As such, minimizing the number of application

elements that are not migrated to the cloud platform can be expressed as:

Mig(
−→
Pj) = vN − vq (17)

where vN is the total number of application elements and vq is the total number of applica-

tion’s elements present in a cloud migration plan, −→Pj .

2.5. Problem Formalization. We can now formalize the cloud migration frame-

work as a multi-objective optimization problem:

For an application’s data flow diagram depicted as a graph G = {V, E}, devise a cloud

migration plan,
−→
Pj composed of elements of the application such that,

minimize: TC(
−→
Pj), R

′

(
−→
Pj), Mig(

−→
Pj) (18)
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subject to:

TC(
−→
Pj) ≤ TC(threshold)

R
′

(
−→
Pj) ≤

−→
R
′

(threshold)
q∑

i=1
λi × Clegacy(vi)

q∑
i=1

∑
∀T(vi)

ηi · (CSCC)Vendor × (1 − ηi) · (CSCC)Client

CVendor =

q∑
i=1

CVendor(vi) × σ

∀
1≤i≤q

vi ∈
−→
Pj, τvi ∧ γvi = f alse

(19)

3. CLOUD MIGRATION SCENARIOS AND ALGORITHM DESIGN

Our proposed cloud migration framework will determine which of the elements

of an application is most suitable for hosting on a cloud platform taking into account the

aspects of cost and security. In this regard, many different scenarios can be feasible. The

two broad categories that are applicable is as follows; (1) Non-Federated Migration: The

most ideal elements migrated on a selected cloud service provider’s platform and the rest

on a client’s private network. (2) Federated Migration: The most ideal elements migrated

across a federation of cloud service providers and the rest on a client’s private network.

Under both of these categories, we follow the concept of hybrid hosting and in

the best case, the entire application may be hosted on a CSP or a federation of CSPs.

Additionally, our proposed framework also considers the concept of fault-tolerance. We

elaborate on the aspect of fault-tolerance for our scenario using the following example.

Consider a simplistic web application requiring web servers, backend servers and database.

All of these elements can be hosted on a single large physical (virtual) instance on the

cloud platform. Although in the event of a hardware failure, the entire functionality of the

application might become unavailable.
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Alternatively, one can host the same application using a small instance and two

medium instances. In such a deployment, hardware failures might only result in a partial

breakdown of the application’s functionality. Hence, we introduce a level of fault-tolerance

by hosting the application elements on separate physical (private hosting) or virtual (cloud

hosting) instance based on their functionalities. Thus, we extend the previously stated

cloud migration scenarios as follows; (1) Non-Federated Migration without fault-tolerance.

(2) Non-Federated Migration with fault-tolerance. (3) Federation Migration with fault-

tolerance.

The capability to specify the extent of fault-tolerance is available to the users via an

input field, clustering label. All application elements belonging to the same clustering label

will be hosted on the same physical (virtual) instance. We further discuss these concepts

using the algorithms for some of the major functionalities of our framework which we have

divided into two broad categories; Initialization (Algorithm 1) andMigration Computations

(Algorithm 2).

Algorithm 1 Cloud Migration Framework - Driver Method
Require: Set of Application Elements, MigrationConst flags, UniqueClusters inV
1: for all vi ∈ V do
2: if (MigrationConst == 1) then
3: Mig-Const-Flag += 1
4: end if
5: end for
6: for all vi ∈ V do
7: Aggregate Number of UniqueClusters
8: end for
9: Create Two Arrays
10: PrivateHosting[UniqueClusters+1]
11: CloudHosting[UniqueClusters+1]
12: for all vi ∈ V do
13: invoke MigrationComputations(vi, viMig−Const−Flag

)
14: TotalCost +=Temp-Cost
15: TotalResDmg += Temp-ResDmg
16: end for
17: //eq. 18 and 19
18: Declare Objectives(TotalCost, TotalResDmg)
19: Declare Constraints(legacy,elasticity,security,migration)
20: invoke NSGA-II(Objectives, Constraints)
21: return Cloud migration plans

The initialization of the framework requires users to specify the input in a text file

format containing rxw attributes where r denotes the number of framework input (e.g.

eq. 10, 11) associated to a single or multiple CSPs under consideration and w denotes
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the number of elements in an application’s data flow diagram (DFD). Additional inputs

are required corresponding to total number of application elements (N), cost (TC(
−→
Pj),

eq. 12) and client’s share of security responsibility (R′) threshold. The threshold values are

specific to an organization and are to be determined based on the organizational policies

and requirements. As depicted in Algorithm 1, in the beginning of initialization process,

our framework goes through all the specified application elements and stores any migration

constraints that might be associated with them in the form of a migration constraint flag

(line 1-5, eq. 16). Then it aggregates the total number of unique clustering label information

for all the elements (line 6-8). This is followed by a creation of two arrays whose size is

determined by the total number of clusters specified as shown in line 10 and 11. These arrays

will be utilized to make sure that during the computations our framework takes into account

the cost of a cluster only once. After all preliminary information are read and mapped

correctly, our framework traverses through every node invoking the migration computation

method passing it the node information and migration constraint flag (line 12-13). The

migration computation method returns the cost and R
′ values (line 14-15) which is then

incorporated in the objective functions and constraints function (line 18-19). The objectives

and constraints are then passed to the MOEA framework’s NSGA-II package to return the

optimal cloud migration plans to the user (line 20-21).

The algorithm for migration of computation (Algorithm 2) is responsible for com-

puting the net cost and client’s share of security responsibility (R′, eq. 15) value for each

application element. For federated scenario, this is done for multiple CSPs in contrast to a

single CSP in non-federated scenario. Cloud hosting computations (line 3-19) begins with

aggregating the total cost of hosting an application element on the cloud platform. It starts

by checking if the application element is coded using legacy software and if there are any

additional costs in re-coding the element using the technology which is supported by the

cloud platform (line 4, eq. 6). Our framework then computes the vendor service costs by

taking into account the scalability factor (σ, eq. 11) of the application element.
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Algorithm 2MigrationComputations(vi, v
i
Mig−Const−Flag)

Require: Set of Application Elements, Cost and Residual Damage of elements, Clustering Labels, Legacy, Security Coverage, and Scalability Flag of elements inV
1: Temp-Cost = 0
2: //Hosted on Cloud
3: if (vi == 1 && vi

Mig−Const−Flag
== 0) then

4: C-legacy-temp[i] = C-legacy[i]*legacyFlag[i]
5: if (clustering-label[i] == 1) then
6: C-vendor-temp = C-vendor[i]*scalability[i]*60
7: else
8: if (!CloudHosting[clustering-label[i]]) then
9: C-vendor-temp = C-vendor[i]*scalability[i]*60
10: CloudHosting[clustering-label[i]] = true
11: end if
12: end if
13: if (security-coverage[i] == 0) then
14: C-ven-scc = (C-scc-client-cloud[i]*(1-cloud-SC-flag[i])) + (C-scc-vendor[i]* cloud-SC-flag[i])
15: else
16: C-ven-scc = 0
17: end if
18: C-cloud[i] = C-vendor-temp[i] + C-legacy-temp[i] + C-ven-scc[i]
19: Temp-Cost = C-cloud[i]
20: else
21: Cost-Client[i] = C-scc-client[i]
22: Temp-ResDmg += Security-Risk-Impact-Level[i]
23: //For Database Elements
24: if (clustering-label[i] == 1) then
25: Cost-Client[i] += C-sw[i] + C-hw[i]
26: else
27: //Other Element Clusters
28: if (!PrivateHosting[clustering-label[i]]) then
29: Cost-Client += C-sw[i] + C-hw[i]
30: Temp-Cost = Cost-Client
31: PrivateHosting[clustering-label[i]] = true
32: end if
33: end if
34: end if
35: return (Temp-Cost, Temp-ResDmg)

This is done for a period of sixty months (line 6). In doing so, it takes into account

any specified clustering label information (line 8). For security implementation costs, the

framework will check if security coverage (SC, Definition 2.2) is present for the identified

security risks. If security coverage is present, the client does not incur any additional costs

(line 16). In private hosting computations (line 20-33), the framework aggregates the cost

of software (CS/W ), hardware (CH/W ), security implementations (CSCC , eq. 10) for a given

node. Security risks in private hosting falls under client’s share of security responsibilities

(R′, eq. 15). Hence, our framework aggregates the R
′ value, if any. While computing costs,

our framework accounts for the differences arising due to specification of clustering labels

(line 23-26 and line 28-31). The complexity of our framework algorithm is guided by the

number of elements in the DFD being assessed (Algorithm 1, line 1). Every other operation

taking place after that takes constant time.
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As such, the time complexity of our framework is equivalent toO(N), where N is the

number of elements in a DFD. Although, large scale applications might not be constrained

to level zero DFD and for an application having DFDs upto level h, the net time complexity

of our framework is governed by O(hN).

4. FRAMEWORK EVALUATION

The objective of our cost-benefit tradeoff analysis framework is to find an optimal

cloud migration plan for our use-case application depicted in Figure 1. For this purpose,

we have considered three different semi-synthetic cloud service providers (CSPs). This is

because the publicly available documents about the security measures promised by different

available real CSPs are almost same. As such, ifwe consider real lifeCSPs, the assessment of

our proposed framework will be reduced to finding a cloud service dispensing the minimum

cost. Hence, in order to exhibit a variation in the security policies used by different CSPs

and to show the complete applicability of our proposed framework, we are considering

semi-synthetic CSPs.

Although, we have modeled the cloud service costs according to the structure

provided by real CSPs. We believe that if an extensive documentation about the security

measures of real CSPs is available, then there will be some variations and the assessment

for such scenario will be governed by what we present here. We have used the open

source Java framework, MOEA version 2.10’s Executor method to implement our cloud

migration framework usingNSGA-II. The Executor method takes as input NSGA-II relevant

parameters (Table 2) and the problem class to be solved (algorithm 1 and 2). It further

invokes other notable methods like Evaluate and Solution whose input arguments are our

framework objectives and constraints (eq. 18, 19.
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Figure 1. University Club Manager Application

These methods then results in the generation of optimal cloud migration plans

(Table 3). MOEA’s documentation3 and our implemented code is available on GitHub4.

Experiments were run on a machine hosting a Linux operating system having 8GB of RAM

and core i5 processor.

4.1. Use-Case Scenario Description. The data flow diagram depicted in Figure 1

will form the basis of our use-case application for whichwe plan to estimate an optimal cloud

migration strategy. The application shown in Figure 1 is a web application for managing

and registering club activities of a university. Users can access the API which consists

of three functionalities: user log-in, club information, and managing financing operations.

Access to the log-in or financing operations page will follow an access control and log-in

verification operation. The authentication data is stored in a Log-in database. Once logged

in, a user can modify their user profile. This information gets stored in a User database.

Further operations after authentication phase might involve updating the activities of a club

and/or managing its financing operations.

3moeaframework.org
4goo.gl/KqTQ5t
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The activities related to a club are stored in the Club database. Financing operations

are logged in a Finance database and performed with the help of a trusted external entity,

Bank. We assume that our university club manager web application will require 10 web

servers, 2 middle tier servers and 4 databases. The databases will run Microsoft SQL

server, enterprise edition. We also assume that for private hosting the application will

require acquiring new software licenses. The application user interface will require high

availability (99% and above). The application will not require any disaster recovery. We

further assume for private hosting, hardware needs to be acquired; servers, routers, firewall.

Storage area (room, electricity, Internet services) are assumed to be already available.

Corrective maintenance costs are considered to be 20% of total software and hardware

costs [1]. Labor cost is not taken into account in this scenario. The typical hardware

refresh rate for an on premise hardware is between 36 months to 60 months. In our case,

we have considered it to be 60 months. Since most of the in-house servers will start to lose

their ability to adapt to increasing workload after 48 months. The generic IT infrastructure

refresh rate is thus about 60 months. The specifications of our private hosting servers and

their approximate cost are listed in Table 1.

Table 1. Hardware & Software Specifications for use-case scenario

Type Specification Cost
Server Dell Precision T7610 $2,969
Router Linksys LRT224 $178
UPS APC-BR 1500G $171

Storage Area Network Dell PowerVault MD3400 $4409
Rack Cost Tripp lite SR420B $930

Load Balancer Cisco Localdirector 416 $450
Windows Server 2012 2 cores $700

Microsoft SQL Server 2014 8 core $4924

In terms of cloud hosting, we have considered three unique CSPs. The service and

cost model of these CSPs has been designed in accordance to Amazon EC2, Microsoft

Azure, and Rackspace.
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Although, due to the absence of a fully detailed publicly available security docu-

mentation of these CSPs, we have made some assumptions regarding their security coverage

(Section 2.3). This is done in order to depict some diversity of our proposed cloudmigration

framework.

Hence, we consider our CSPs for the use-case scenario to be semi-synthetic, with a

real-world cost and service model and a synthetic security model. The minimum require-

ments to host our use-case application on the cloud platform will require about 10 small

instance for web servers, 2 medium instances for the 2 middle tier servers and 4 databases.

Alternatively, all of these can be hosted on a single large instance. This decision is based

on the client and is guided by their selection of cloud migration scenario as discussed in

Section 3. The input to our framework is specified in text file containing all the detailed

cost and security values for the given application and the CSP under consideration. The

output of our framework for non-federated cloud migration scenarios (with or without fault-

tolerance) will be a binary string. Each bit of this binary string will correspond to an

application element in the data flow diagram. The order needs to be pre-determined and for

our use-case scenario it is depicted numerically alongside the DFD nodes in Figure 1. A bit

value of 1 will correspond to the application element being migrated to the cloud platform

and a bit value of 0 will correspond to private hosting. In federated migration scenario,

the output will be an integer encoded string with bit values ranging from 0 to C, where 0

to C − 1 will represent various unique CSP under consideration and C represents private

hosting. In the following sections, we present the results of our framework evaluation and

sensitivity analysis.

4.2. Use-Case Scenario Evaluation. This section presents the results of our frame-

work applied to our use-case application. We have assumed a cost threshold of $300,000

for a five year period and a client’s share of security responsibility (R′) threshold of 40 for

our use-case application. The R
′ value is based on our security rating quantization scale,

which we have assumed as: [0,10] where a value of zero indicates no security impact, and



105

ten represents highest security impact. As such, for our use-case application containing

fourteen elements (excluding the external entities), the net R
′ value will fall in the range

of [0,140]. Hence, a R
′ threshold of 40 units elucidates low security risk. This value is

subjective in nature and is proportional to the security rating quantization scale.

We estimate cloud migration plans for different migration scenarios as depicted in

Section 3. The effect of variation of threshold values and other input parameters on our

framework output is shown and discussed in Section 4.3.

Further, our use-case application has been modeled using NSGA-II which is depen-

dent on several parameters like evaluation number, population size, mutation and crossover

rate. In addition to the search space, these parameters play an important role in obtaining

the desired solution set. This is because the parameters (mutation and crossover rate) can

take probabilistic values. As such, there are chances that a model output might be sensitive

to the values these parameters take. We studied the sensitivity of our cloud migration

framework output due to the variation of NSGA-II input parameters. In doing so, we varied

the value of one NSGA-II parameter at a time, keeping the rest constant, and analyzed the

obtainedmodel output. The population size determines the starting search space. Bigger the

population size, better the obtained diversity. Evaluation number dictates the total iteration

of searches performed to reach optimality of solution set. Crossover rate determines the

creation of child population using the encoding of the previous population set. Mutation rate

determines the chances of modifying the encoding of a given individual in the population

to generate a new individual. Mutation brings about diversity in the population and has

an evident effect on models having lower population size. Although mutation brings about

diversity, it prevents the search process from converging to an optimal solution set. Hence,

it is not desirable to have a very high mutation rate.

In our framework, we determined that the output is most sensitive to evaluation

number. On an average, for all different cloud migration scenarios, after evaluation number

passes 1200 mark, the solutions on the pareto front becomes constant.
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Further, they are unaffected by the variation of other NSGA-II parameters. The

population size is the second most dominating criteria, yielding optimal results between the

175 to 250 mark. After this point, increasing population size had no significant effect on the

obtained solutions. We did not observe any significant effect on our framework output due

to the remaining NSGA-II parameters. Based on these analyses, we finalized the NSGA-II

parameter values as summarized in Table 2.
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Figure 2. Non-Federated Migration Plans CSP1, CSP2, and CSP3

Table 2. NSGA-II Parameters for Use-case Application Evaluation

Parameter Value Parameter Value
Evaluations 1200 Population Size 250
Crossover Rate 0.6 Mutation Rate 0.1
Crossover Distribu-
tion Index

15.00 Mutation Distribu-
tion Index

10.00

Figure 2 shows the output of our cloud migration framework for non-federated

migration (NFM) with and without fault-tolerance. Figure 3 shows the output for federated

migration with fault tolerance (FM-FT). In these figures, the y-axis shows the cost incurred

by the clients and x-axis shows R
′ value of the estimated cloud migration plans. The

obtained solution sets depicted in Figure 2 and 3 is also summarized in Table 3.
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In the cloudmigration plans for the two scenarios (Figure 2 NFM - circle marked and

NFM-FT - cross marked), we note that some of the R
′ values are in close proximities. For

example, R
′ in NFM-CSP1 is 0.00 and 8.65 (first two coordinates) and R

′ in NFM-FT-CSP1

is 0.00 and 8.65. For a R
′ value of 0.00, the cloud migration plans in both scenarios is all 1

bit which means all elements of an application are migrated to a cloud platform.

Although, the cost varies in the two scenarios; For a 0.00 R
′ value in NFM scenario,

the migration plan costs $176,750 for a five year period, whereas for NFM-FT scenario it

is $133,430 for five years (Table 3). Given our description of fault-tolerance (Section 3),

in NFM-FT scenario, we envision the hosting of application elements in a set of small

and medium instances according to their functionality, whereas in NFM we try to host all

elements in a single large instance. This reduces the cost in NFM-FT scenario, but may

introduce other overheads like maintaining these separate small clusters. Additionally, we

reckon that such setups may also introduce latency due to transfer of data between clusters

of application elements (if they end up being hosted on separate physical instances on the

cloud platform). Such overheads are not depicted in terms of its monetary value in Figure 2

and is something a client needs to consider while contrasting between NFM and NFM-FT

migration scenarios.

Further, in the NFM-FT scenario the number of solutions obtained is more than in

NFM scenario. We can attribute such behavior to the change in cost in NFM-FT scenario

computations which is inherently less than that of NFM scenarios. As such, a migration plan

in the NFM-FT-CSP1 (Cost - $111,238 and R
′ - 12.94) having R

′ value in close proximity

(as in the case for R
′ of 8.63 and 8.65) when projected to NFM scenario, will get dominated

by presented output due to an increase in cost. Similar behavior can be seen for migration

output of CSP2 and CSP3. On an average, NFM-FT scenario gives cost reductions of at

least 20% as compared to the NFM scenario.
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Figure 3. Federated Migration Plans

Figure 3 shows the cloudmigration plans for FM-FTmigration scenario. Unlike non-

federated cloud migration, we can observe a much more uniform spread in the solution set

for FM-FT migration scenarios. This is because FM-FT migrations take into consideration

the hosting capabilities of all CSPs for every individual application element. This capability

along with different available clustering specification due to fault-tolerance option helps in

obtaining better solutions. When compared to the solutions obtained in NFM-FT scenario,

for a R
′ value of 0.00, FM-FT gives a cost reduction of approximately 3.6% for CSP1 and

50% for CSP3. In case of CSP2, the costs are considerably lower than that for CSP1 and

CSP3 since databases requiringMicrosoft services cost much less when hosted inMicrosoft

Azure. As such, ideally one of the federated cloud migration plans could have been to host

the entire application on CSP2 (cost modeled after Microsoft Azure). But given the search

design of our framework, the tradeoffs in finding security coverage for application elements

and thus emphasizing in reducing the responsibilities of clients to enforce and look after

security of the application does not yield such an ideal output. Although, CSP2 for 0.00

R
′ valued cloud migration plan, is hosting 50% of the application’s elements and as such

striking a balanced tradeoff between cost and security features.
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Another uniform observation across all cloud migration scenarios is that one can

nullify R
′ (client’s share of security responsibilities) for the use-case application. Although

such an option will cost clients the most with respect to the other feasible migration plans.

For example, considering cloud migration plans for NFM-FT-CSP3 scenario (Figure 2,

circle marked and Table 3) the cost value of 0.00 R
′ is $247,475. For our assumed R

′

threshold of 40 units, and considering R
′ of 0.00 to be 100%, the R

′ of the second plan

is approximately 78.5% (100 − (8.65/40)%), at the expense of a cost reduction of 2.81%

((($247, 475 − $240, 732)/$240, 732)%).

Similarly, for the next cloud migration plans having R
′ of 11.15 (72%), 15.19

(62%), and 17.69 (56%), there is not ample cost differences (0.015%, 0.044%, 0.015%) as

compared to the first two plans with R
′ of 0.00 and 8.65. With all the migration plans being

pareto optimal, clients can select from any one of them, but certain considerations need to

be made when it comes to making a decision to select from the first two plans. Selection of

the second migration plan having a R
′ of 8.65 will save the users a considerable amount of

revenue and they can choose to patch the security risks themselves. But, such actions will

not account for any additional costs that might apply in future due to security upgrades or

new patches. Decisions for such a scenario need to be made in accordance to the policies

followed by a client’s organization.

Further, the cost aspect for CSP2 is significantly less than that for CSP1 and CSP3,

since our use-case application assumes the use of Microsoft SQL servers. For Microsoft

Azure platform there is no additional licensing cost for the same. This significantly cuts

down the overall cost as compared to hosting on Amazon EC2 or Rackspace modeled CSPs.

The decision to migrate in such scenarios is based on some additional factors which we

have discussed in Section 4.

4.3. Framework Input Sensitivity Analysis. Evaluation frameworks that model

real world scenario are generally complex in nature and consist of many input parameters. In

this regard, our proposed cloud migration framework consists of nineteen input parameters.
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Table 3. Solution Set for Different Cloud Migration Scenario

Scenario $ Cost (5 years) Residual
Damage

Migration Plan

NFM-CSP1 176,750 0.00 11111111111111
170,007 8.65 11111111111101

NFM-CSP2

31,837 0.00 11111111111111
25,087 11.15 10111111111101
24,949 15.19 11011111111101
24,942 17.69 10011111111101

NFM-CSP3

247,475 0.00 11111111111111
240,732 8.65 11111111111101
240,695 11.15 10111111111101
240,587 15.19 11011111111101
240,550 17.69 10011111111101

NFMFT-CSP1

133,430 0.00 11111111111111
114,498 8.63 11111111111110
111,238 12.94 11111011111110
107,755 17.28 11111111111100
104,495 21.59 11111011111100
101,716 28.71 11111011101100

NFMFT-CSP2 25,282 0.00 11111111111111
19,191 10.87 11111101111101

NFMFT-CSP3

257,520 0.00 11111111111111
191,428 8.63 11111111111110
163,628 12.94 11111011111110
163,607 15.16 11111001111110
120,752 28.27 11111010101110
113,988 39.14 11111000101100

FM-FT

128,640 0.00 01011110102100
109,753 8.63 22002110202013
103,345 17.28 21022110101233
100,186 24.40 01011110232233

These input parameters can be broadly categorized as cost values, security risk

level values, and discrete binary values (true or false) to depict presence or absence of

security measures. In most cases, some of these input parameters play an important role

in determining the output. A straightforward way to evaluate the same is to vary one

input parameter and keep rest of the input parameters constant [19]. The challenge of this

approach lies in the fact that in real world scenario multiple input parameters can vary

simultaneously and affect each other in determining the output. In order to address this

challenge, we utilized Sobol sensitivity analysis [26].

The Sobol sensitivity analysis takes into account the interactions between input

parameters while computing their effect on model output. It is a useful technique for being

able to measure the effect of an input or a group of input on the output of a model. The

model input parameters are passed through a sample generator to generate a set of random
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input values while performing Sobol sensitivity analysis for a framework. This is done

by specifying a range using the minimum and maximum values a given input parameter

can take. The randomly generated input set is then used to evaluate the model output and

produce two basic results in the form of first-order sensitivities for measuring the effect of

individual input on output and total-order sensitivity accounting effect of group of input on

the output. Given the challenge of performing sensitivity analysis for real world models

as discussed earlier in this section, we are interested in the total-order sensitivities for our

model. The total-order sensitivity value ranges from 0 to 1, with a value of more than 0.8

considered as significant in terms of affecting the model output. A step-by-step application

of Sobol sensitivity analysis can be found in [29]. We identified two of our input parameters,

cost threshold and R
′ threshold, to be the most important criteria. Since, these parameters

not only act as input, but are also a part of the constraints. Thus, they determine the feasible

search space for finding the model output. The input parameter specifications for our Sobol

analysis is summarized in Table 4.

Table 4. Framework Input Sensitivity Analysis Parameters

Attribute Value Attribute Value
Initial Samples 5,000 Cost Distribution 100,000-

500,000
R
′ Distribution 10-140 Total Runs per plan 30,000

Redundant Runs 10

From Table 4, one can note that, for 5,000 initial samples, the random sampler

generates 30,000 input samples in the specified input distribution range. The simulations

were run ten times with a different random seed in every run. Thus, the obtained results are

averaged over 300,000 simulation runs. Figure 4 shows the total-order sensitivities of cost

and R
′ values for all of our proposed cloud migration scenarios.

In most cases, the threshold value of cost dominates R
′ (NFM-CSP1, NFM-CSP3,

NFM-FT-CSP2). This can be interpreted as the availability of security coverage on the

cloud platform and as such the clients do not have to invest in security measures.
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Figure 4. Total Order Sensitivities

This leaves cost threshold as the primary criteria in the formulation of a feasible

cloud migration plan. The absence of security coverage is reflected when R
′ threshold is

equally sensitive as cost threshold (NFM-FT-CSP1) and at times dominates it (NFM-CSP2).

Although a continuous distribution can be specified for our remaining input parameters like

vendor cost, security risk of individual application elements and so forth, we have not

included these parameters in our Sobol analysis. This is because variances of the values

for these input parameters are influenced by other inputs which in our model have discrete

values of either 0 or 1 and is subjective in nature. Hence, their inclusion in Sobol analysis

is not fully applicable. These relationships between the input parameters of our framework

is shown through a dependency chart in Figure 5. We note from Figure 5 that discrete

parameters such as Scalability, Security Coverage, Migration Constraint are the primary

factors that determine the variance of other input parameters like cost of Software or

Hardware, vendor services, implementing security measures and so on. Given the auto

scale up and down options present in most of the cloud platforms, scalability will primarily

affect the software and hardware costs incurred during private hosting. Security Coverage

directly affects R
′, which might result in costs related to patching any potential security

risks. Migration constraint also plays an important role in determining costs incurred by

clients for private hosting.
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Figure 5. Dependency between Framework Input Parameters

This in turn might increase the financial implications if coupled with scalability

factor. Migration constraints can also influence R
′, since one cannot migrate an element

to a cloud platform even if it has security coverage present there, thereby increasing total

cost of ownership. Thus, for our framework, we reckon that migration constraint plays

the most important role in determining the obtained output. This is followed by security

coverage along with cost threshold, R
′ threshold, and finally scalability along with the other

remaining input parameters.

5. EVOLUTIONARY ALGORITHMS PERFORMANCE COMPARISON

In this section, we compare different evolutionary algorithms that could have been

used tomodel our proposed cloudmigration framework. Our objective here is to statistically

validate our selection of NSGA-II to model our proposed cloud migration framework and to

provide insights into feasibility of other evolutionary algorithms to model our framework.

The comparison is based on criterion such as Hypervolume,Maximum Pareto Front Error,
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and Generational Distance [18]. We have considered six different evolutionary algorithms.

Their selections were made based on the rationale used by them to solve multiobjective

problems. The list of algorithms and their solution strategy is summarized in Table 5.

Table 5. Evolutionary Algorithms Solution Strategies

Algorithm Type Algorithm Type
NSGAIII Reference Point GDE3 Differential Evolution
PAES Evolutionary Strategy eNSGAII ε-Dominance
OMOPSO Particle Swarm NSGAII Genetic Algorithm

Figure 6 shows the Hypervolume of the algorithms specified in Table 5. Hypervol-

ume is one of the indicators to measure the closeness of the estimated pareto front to the

desired pareto front in the solution space. In this regard, larger the size of Hypervolume,

better is the performance of the algorithm.

From our experiments, we note that NSGA-II and εNSGA-II have the best values

(∼0.51), followed by GDE3, NSGA-III, PAES, and OMOPSO. Further, NSGA-II and

εNSGA-II are statistically indifferent from each other.
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Figure 6. Hypervolume

Figure 7 shows theMaximum Front Error of the different algorithms under consider-

ation. By definition, smaller the value of the Maximum Front Error, better the performance

of the algorithm. From our analysis, we note that OMOPSO and PAES have the maximum
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pareto front error, followed by GDE3. NSGA-III and εNSGA-II have almost the same

Maximum Pareto Error, with εNSGA-II having marginally lesser value. NSGA-II has the

least Maximum Pareto Front error amongst all other algorithms.
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Figure 7. Maximum Pareto Front Error

Figure 8 shows the Generational Distance comparison for the algorithms. Gener-

ational Distance, like Hypervolume is the measure of the pareto front generated and its

closeness to the desired ideal pareto front. Smaller the value of Generational Distance

better is the performance of an algorithm. We note from the obtained results in Figure 8

that PAES and OMOPSO have the maximum generational distances. The performance of

the remaining four algorithms are in close proximities of each other with εNSGA-II having

the best results. Although, NSGA-II is statistically indifferent as compared to εNSGA-II.
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To summarize the findings above, our currently proposed cloudmigration framework

yields optimal results when modeled using NSGA-II, which in most cases is statistically

insignificant when compared to εNSGA-II and NSGA-III. Although, we reckon that the

performance of εNSGA-II will improve over traditional NSGA-II if the number of objective

functions increases for our proposed cloud migration framework. For example, if attributes

of the objective function for cost is broken down to create individual objective functions.

Along these lines, reference point evolutionary strategy will give better results if clients

fine tune the migration constraints along with cost and security requirements by specifying

desired cloud migration plans as reference point for the cloud migration framework. In

such a scenario, the framework will try to find optimal cloud migration strategies by taking

into consideration the client’s desired cloud migration plans. The particle swarm evolution

strategy in contrast to genetic algorithm strategy does not utilize crossover and mutation.

Particle swarm also does not employ any sorting techniques as used by genetic

algorithm, giving it a computational advantage over genetic algorithm strategy. Although,

this benefit of particle swarm is not fully utilized in our case where maximum population

size for non-federated migration scenario can be approximately 2N (where N is the number

of elements in the data flow diagram) and N = 14. But, considering the cases of industrial

applications where data flow diagrams (DFD) will not be restricted to level zero DFD, the

maximum population size could be approximately 2hN (where h is the depth of the DFD).

Further, this population size in the case of federated migration consisting of C number

of cloud providers will become, ChN . In such cases, we reckon particle swarm will be a

better option in modeling the cloud migration framework than genetic algorithm. In the

case of differential evolution, its uniqueness lies in the way it generates child population

and its application of crossover, mutation and selection parameters as compared to genetic

algorithm. It will perform better than genetic algorithm when applied exclusively for our

federated cloud migration framework having large number of available cloud providers.
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This is because federated migration with large number of cloud providers will result

in a solution vector encoding composed of real numbers with adequate diversification,

which is the forte of differential evolution strategy.

6. OBSERVATIONS

In terms of performing cloud migration, our proposed framework performs cost-

benefit tradeoff analysis by giving priority to the security threats present in an application

instead of cost and security features of available CSPs. This is evident from the obtained

results as some of the output for client’s share of security responsibility (R′) values across

differentmigration scenarios are the same (R′ of 0.00 and 8.00). But, there is also uniqueness

in the solution set for different cloud migration scenarios. This is due to the characteristics

of different CSPs. Thus, our framework extends its assessment from the client to cloud

platform as claimed in our previous work [20].

Intuitively, increasing cost incurred by a client (for services and security measures)

should tend to reduce R
′. But, we note from our output for scenarios like, NFM-CSP2 and

NFM-FT-CSP1, that this is not always the case. This can be attributed to security coverage

on a given CSP which does not require clients to invest in security patching and as such

reducing R
′ without an increase in total cost. Another factor that might also attribute to

such a behavior is the amount of fault-tolerance (clustering label) that could be specified by

a client which can add to either the service cost or security cost (in case security coverage

is not present).

Further, federated migration scenarios inherently reduce cost as it assesses and

selects the best option for an application element from various available CSPs. Although,

in doing so clients will have to keep in check the service policies of multiple CSPs at any

given instant. These service policies are susceptible to change on a short notice. Thus,

clients can reap the cost and security benefits that federated migration has to offer but

should also be able to keep themselves up-to-date with the changes in CSP’s policies and
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if necessary, react to it. Solely in terms of cost-benefits, we note that CSP2 has the best

output since it has been modeled after Microsoft Azure and our use-case application has

a reliance on Microsoft software. Overall, the percentage of migration achieved for our

use-case scenario on an average is about 80% (see Table 3). But, we reckon that this can

be affected by changes in the model input (Figure 5). Although, our framework being

modeled as a multi-objective optimization problem will still provide users with a set of

alternative solutions regardless of the migration scenario. This will enable them to compare

and contrast the obtained migration plans and assess it for various organizational factors

that might be applicable. For example, Quality of Service parameter like performance of

the application can be evaluated by observing the elements that has been suggested for

migration [3] and comparing it to the migration status of the elements that directly interact

with the later.

This aspect is very useful if users opt for federated migration scenario. Further,

given the modular structure of our framework, users can add additional input factors and

objectives (or constraints) to tailor model output to meet their comprehensive needs.

7. RELATEDWORK

The task of cloud migration benefit clients as it reduces the inconvenience of owning

and maintaining software or hardware to run their applications. However, the task itself has

several challenges and careful considerations are requiredwith respect to various parameters

most notably cost effectiveness, security of applications on the cloud platform, andmigration

constraints due to legacy applications. In the following paragraphs we summarize some

compelling works related to cloud migration, categorized by the aforementioned parameters

they take into consideration.

The authors in [15] describe a hybrid cloud migration process with the primary goal

of reducing total cost of ownership for large scale organizations. They present a comprehen-

sive study, identifying numerous cost factors that govern cloud migration policies. In [16],
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authors present a case study showing the cost implications of migrating an application to

the IaaS platform of Amazon EC2. They have also identified that cost is not the sole criteria

affecting cloud migration as other non-financial aspects like reputability of CSPs, technical

unfamiliarity play an important role in the decision making process. They extended their

case study presenting a comprehensive modeling tool [17] that provides cost estimates of

migrating to public IaaS cloud platform. The benefits are in its capability to compare and

contrast the services provided by different CSPs.

Authors in [27] present the challenges of migrating existing applications to the cloud

platform like changes made to the software environment, programming models such that it

can operate on the cloud platform. They present a model identifying the tasks involved in

the cloud migration process and analyzed them according to the cost involved in performing

them. This work helped in the formulation of our migration feasibility model.

In [21], authors discuss the technical and non-technical challenges of migrating a

web server to the cloud platform. They discuss the non-trivial aspects in cloud migration

which involves taking into consideration many criteria, addressing all of which manually

is challenging. As such, they propose an automated framework, CloudGenius, for helping

clients in the decision making process for cloud migration. Authors in [2] present an

overview of the challenges in performing cloud migration like financial aspects, security

concerns arising due to cloud migration such as multi-tenancy and data confidentiality. The

authors in [13] present a detailed cloud migration decision making framework. It takes into

account the architecture of an application to be migrated along with its service requirements

in terms QoS factors, security risks involved, and the financial aspects of the process.

Authors in [12] perform an in-depth review of existing cloud migration techniques

related to hosting legacy systems on the cloud platforms. Their literature review discusses

the similarities between Service Oriented Architecture (SOA) and Cloud platforms. In [9],

authors present an evolutionary, iterative approach to help small-medium enterprises (SME)

is able to migrate their legacy applications to the cloud platform. The outlined solution
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aims in making the process less dependent on any particular kind of technology support

or CSP. Through these works, we were able to identify and acknowledge the impact and

challenges of migrating legacy applications to the cloud platform. Authors in [28] discuss

the impact of various NSGA-II algorithmic parameters on the optimization process and the

obtained solution set. The experiments and results presented in [28] helped us form our

basis for NSGA-II sensitivity analysis. Our proposed cloud migration framework extends

our previously proposed risk assessment framework [20] and addresses the optimality

between most notable factors like client cost and application security while performing

cloud migration. In doing so, we have extended and refined cost parameters as presented

in [15] [16] and introduced the costs related to addressing the security risk by implementing

the security measures. For security evaluations we utilized our risk assessment framework

which introduces the novel concepts.

These are security coverage, risk reduction factor, and client’s share of security

responsibility, extending application risk assessment hosted on the client’s private network

to one ormultiple CSPs. This sort of security evaluation ismore economical and outlines the

relevance of the security policies of different CSPs, giving more confidence to clients in the

security aspect of cloud migration as compared to existing works using security SLAs [8]

or security checklist [17]. Additionally, our proposed cloud migration framework also

incorporates other challenges of performing cloud migration like hosting existing legacy

applications, migration constraints due to technical or legal concerns, and elasticity [9]

[27]. We have also introduced the concept of fault-tolerance which differentiates from

existing approaches of providing cloud migration reliability [24] by using hosting based

on application functionality instead of replication. The nature of our cloud migration

framework is generic, integrating several different parameters and is not specific to any

particular clients like small or medium enterprises [22]. Our framework modeling is done
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using genetic algorithm (NSGA-II) in an attempt to semi-automate the challenging task of

hybrid cloud migration for federated and non-federated scenarios which to the best of our

knowledge is the first attempt in this direction.

8. CONCLUSION

In this paper, we have presented cost-benefit analysis of a cloudmigration framework

modeled as a multi-objective optimization problem for optimizing the cost of migration and

client’s share of security responsibilities. We have proposed various migration scenarios

like non-federated and federated cloud migrations supported by a newly introduced concept

of fault-tolerance which allows to separately host application elements based on their

functionality. We have applied our proposed migration framework to a use-case application

scenario and analyzed the output as well as the sensitivity of input parameters used in

our framework. Furthermore, we have evaluated the performance of different evolutionary

algorithms to model our proposed framework.

This helped in statistically validating the selection of NSGA-II and provided insights

into the applicability of other evolutionary algorithms for cloud migration problem. These

insights can be used to model different migration scenarios (Section 5) which relies on

application design.

Nevertheless, we reckon that cost and security cannot be the only factors to deter-

mine a suitable CSP for a client’s application. Once an optimal cloud migration plan has

been generated and adopted, the decision on its continuity is met with various challenging

aspects. In this regard, one should be able to supplement the proposed cloud migration

framework with subjective information like reputability of a CSP and objective information

like availability, throughput, and other performance metrics. Hence, as an extension to

our current cloud migration framework, we plan to formulate an On-line Trust Evaluation
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Framework to address these challenges by collectively associating the subjective and ob-

jective parameters to quantify the suitability of selected cloud service providers to continue

hosting a client’s application.
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ABSTRACT

The security of clients’ applications on the cloud platforms has been of great

interest. Security concerns associated with cloud computing are improving in both the

domains; security issues faced by cloud providers and security issues faced by clients.

However, security concerns still remain in domains like cloud auditing and migrating

application components to cloud to make the process more secure and cost-efficient. To

an extent, this can be attributed to a lack of detailed information being publicly present

about the cloud platforms and their security policies. A resolution in this regard can be

found in Cloud Security Alliance’s Security, Trust, and Assurance Registry (STAR) which

documents the security controls provided by popular cloud computing offerings. In this

paper, we perform some descriptive analysis on STAR data in an attempt to comprehend

the information publicly presented by different cloud providers. It is to help clients in

more effectively searching and analyzing the required security information they need for

the decision making process for hosting their applications on cloud. Based on the analysis,

we outline some augmentations that can be made to STAR as well as certain specific design

improvements for a cloud migration risk assessment framework.

Keywords: Cloud Computing, Data Analyses, CSA STAR, Risk Assessment
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1. INTRODUCTION

The cloud platforms have received a gradual acceptance in the community due to its

beneficial services provided through well-known delivery models like software-as-a-service

(SaaS), platform-as-a-service (PaaS), and infrastructure-as-a-service (IaaS). However, se-

curity of client’s application on the cloud platform is still one of the primary concerns that

make them reluctant in completely adopting their services. A client’s requirement in these

regards has been to procure from cloud service providers (CSPs) transparent and concrete

information regarding the security of their platform across different delivery models. To

bridge this gap, several works from industry and academia alike have been proposed in the

recent past. Some of these works [6] [21] [14] provide guidelines for clients to help them

perform security assessment of various CSPs while others [1] [15] help in establishing best

practices regarding application security on the cloud platform.

Nevertheless, comprehending cloud security is not a trivial task as the process

becomes convoluted in the presence of multiple dimensions across which security needs to

be addressed like networking, application, data storage, and so forth. Additionally, CSPs

are reluctant to publicly publish detailed internal security information of their platforms due

to market competitiveness and the risk of enhancing malicious activities. A stellar effort

in publicly making available the security assessments of numerous CSPs with a certain

degree of transparency and accuracy can be found in Cloud Security Alliance’s (CSA)

Security, Trust and Assurance Registry (STAR) [3]. The security evaluations of CSPs

in STAR is conceived using the Consensus Assessments Initiative Questionnaire (CAIQ)

which is based on CSA’s Cloud Controls Matrix (CCM) [2]. These security evaluations are

addressed across different cloud platform dimensions like - identity and accessmanagement,

encryption and key management, auditing, and so forth which CSA has coined as control

groups. These control groups pose a set of assessment questions.
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In CAIQ version 3.0.1, these questions can be answered by a CSP in a yes, no, or

not applicable fashion. Further, they can also provide supplementary notes to the yes or no

answers and specify the compliances that they are following for a control group.

Several works are present in the literature which have addressed the concerns of

security assessment of CSPs by utilizing CSA STAR [6] [9]. The primary objectives of

these works have been to analyze the control groups answered by various CSPs to create

quantitative security rating scales helping clients to objectively understand the security

provided by different CSPs. These kinds of quantitative approaches benefits the clients

as it could be quite tedious to manually peruse the entirety of STAR registry looking for

CSPs that might synchronize with their security requirements. However, we reckon that

these approaches do not fully alleviate the security concerns that clients might have once

their applications are hosted on the cloud platform. This is because the objective security

assessment performed in these approaches does not account for the security threats present in

a client’s application and how the underlying security practices of a CSP will nullify them.

To address this challenge, the offline risk assessment of CSPs framework was proposed

in [19]. The notable features of the offline risk assessment framework can be summarized

in its capability to perform application risk assessment during the design phase including

cloud security metrics, aggregating the cloud security metrics of various CSPs, and then

performing a cost-benefit tradeoff analysis to develop an optimal cloud migration plan for

the client’s application. The tradeoff analysis is an important aspect of the framework in

contrast to other cloud security assessment approaches since security is one of the primary

concerns but not the only one which impedes complete adoption of cloud services.

Considering the outlines of the offline risk assessment framework, our contributions

in this work are as follows:

• Perform a descriptive and exploratory analysis of CSA’s STAR registry to better

understand the pattern and context of answers from different CSPs.
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• Use the results of our analysis to suggest improvements to the structure of CAIQ and

CCM which is used to populate the STAR registry.

We envision that the results of this study will further help in improving the design of

the offline risk assessment framework. This is because analyzing the pattern and context

with which CSPs have responded to the security assessment questions will help clients

further improve the design of their application and reduce some of their impending security

concerns.

The rest of the paper is organized as follows - Section 2 discusses some of the

works in the literature that utilizes CAIQ and STAR to perform security assessments of

CSPs. We present our descriptive and exploratory analysis of STAR in Section 3. Section 4

discusses the enhancements we suggest to CAIQs and STAR registry from the results

obtained through our analysis. Section 5 outlines the improvements that can be made to the

offline risk assessment framework by using our results. We conclude our work in Section 5.

2. RELATEDWORK

Risk assessment of cloud computing platforms and the services offered by different

cloud vendors has been one of the prominent fields of work related to the cloud computing

domain. This is because of several factors like migrating the client’s application from their

private domain to the public domain of the cloud service providers (CSPs), partially losing

control over their data, and uncertainty regarding the cloud provider’s security policies

and their assurance. Several works related to this field can be found in the literature,

however, there are still numerous open and emerging security challenges and threats to the

domain of cloud computing as identified in [8]. Further, the advent of Internet of Things

(IoT) paradigm supported by cloud computing platforms will also introduce new security

challenges [20].
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The authors in [6] proposed a risk assessment model evaluating CSPs utilizing the

public information available in CSA’s STAR registry and built a quantitative framework

profiling different CSPs based on their security, privacy and services. Other instances of

works that utilizes CSA STAR repository and its CAIQs can be found in [9]. In [21], authors

discuss another quantitative model to evaluate and compare the security dispensed by CSPs

which is based on the concept of developing security service level agreements (SecLAs).

The authors make use of the Analytic Hierarchy Process (AHP) for its decision making

purpose and evaluate the SecLAs qualitatively and quantitatively. Additionally, authors

in [5] present the concepts of automatically enforcing SecLAs in the cloud platforms.

The authors propose a model in this regard which engages the software life cycle of the

components that is covered in the SecLAs to determine the associated constrains of the

security components, the security requirements of the clients and follows it with automatic

provisioning and configuration of the selected security resources. However, evaluating

and addressing security concerns on the cloud platform is not the end game. Given the

dynamic nature of the cloud, architecture and policies are susceptible to change on a short

notice. Therefore, clients need assurance that the identified security policies are still in

place. The context of security assurance has been discussed extensively in [4]. Along

these lines, authors in [12] have identified that in order to keep up with changing cloud

environments and evaluate the change in security policies and their assurances there is a

need for continuous auditing. Furthermore, authors in [14] propose techniques to dispense

real-time cloud security assessment. Their approach, called the Moving Interval Process

can help clients compare their security assessments with the security offerings of the

CSPs and also help CSPs compare their services with other CSPs by understanding the

needs of their clients with high accuracy and computational efficiency. Additionally, other

works focus solely on evaluating particular types of delivery models like software-as-a-

service [22], infrastructure-as-a-service [11], or a specific domain of the cloud security like

data security [7].
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3. DESCRIPTIVE AND EXPLORATORY ANALYSIS OF CSA STAR

In this section, we will give a brief overview of the CSA STAR registry followed by

our document pre-processing techniques that we performed on the datasets collected from

the STAR registry. Thereafter, we present the results of our descriptive and exploratory

analysis and discuss some of the lessons learnt from them which will be used as the

foundation to suggest enhancements to the STAR registry such that it can be optimally

integrated with the offline risk assessment framework for cloud service providers (CSPs).

3.1. The STARRegistry: Background. A good publicly available source in terms

of aggregating security measures employed by different CSPs can be found on Cloud

Security Alliance’s (CSA) Security, Trust & Assurance Registry (STAR) [3]. This registry

is based on CSA’s Cloud Controls Matrix (CCM) document [2], which provides security

assessment questions across sixteen cloud security domains (referred to as control groups).

These security assessment questions also known as the Consensus Assessments Initiative

Questionnaire (CAIQ), can be used by CSPs to provide security assessment of their services

and by client’s to evaluate the security guidelines present with a particular CSP. Some

examples of the control groups used in CCM are Application and Interface Security, Audit

Assurance andCompliance, Identity andAccessManagement, and so on. These domains are

further broken down into their subcategories which help in elaborating the kind of security

elements that should be addressed in these control groups. CCM also lists the impact of

these control groups on cloud platform’s architectural domains like, Physical infrastructure,

Networking, Computing, Storage, Application, and Data along with its applicability to

delivery models like, SaaS, PaaS, and IaaS. It also specifies if the exploitation of a control

group solely affects the service provider and/or clients along with its impact on corporate

governance. Finally, it lists the appropriate compliance and standards that CSPs should

follow and be certified with (if applicable) like, HIPAA, COBIT, ISO 27001 and so forth.

We consider CCM version 3.0.1 which consists of 133 total assessment questions in general

(16 control groups and their subcategories).
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Out of these, 71 assessment questions affect clients (in union with service providers;

no exclusivity) whereas, 61 exclusively affects service providers. Some of the assessment

questions are further sub-categorized by CSPs while answering them in the STAR registry.

In such cases, there is a net total of 295 assessment questions. In CAIQ version 3.0.1, which

we have considered for our analysis purposes, CSPs discretely address them according to

yes, no, or not applicable answers along with some optional notes elaborating or providing

supplementary information to their answers. The 16 control groups and their acronyms as

outlined in CCM is summarized in Table 1.

Table 1. CCM Control Groups

Control Group Control Group
App. and Interface Security AIS Human Resources HRS
Audit Assurance and compliance AAC Identity and Access Management IAM
Business Continuity Management and op-
erational resilience

BCR Infrastructure and Virtualization Security IVS

Change, Control and Configuration Man-
agement

CCC Interoperability and Portability IPY

Data Security and Information Lifecycle
Management

DSI Mobile Security MOS

Data center Security DCS Security Incident Management, E-
discovery and Cloud

SEF

Encryption and Key Management EKM Supply Chain Management, Transparency
and Accountability

STA

Governance and Risk Management GRM Threat and Vulnerability Management TVM

3.2. Document Pre-processing. We scrapped the STAR registry on CSA’s website

to collect CAIQ documents answered by 201 CSPs. Majority of these were present in *.xls

format with some in *.pdf. Out of these, we found 138 of them (all in *.xls format) to

be in accordance with CAIQ version 3.0.1. Although, these documents followed a similar

structure (CAIQ and CCM documentations), their answering techniques varied for some

CSPs. To elaborate this, while answering questions as yes, no or not applicable, some CSPs

have used check marks like x, while others use characters like Y, or strings like Yes. We

cleaned all the collected documents with the objective of creating a universal structure of

the answering columns. To address such challenges and others like these, we imported all

the collected documents into R studio. We cleaned all the extra rows and columns due to the

import process of an excel document to a R data frame. Thereafter, for the answering column

inconsistencies, we replaced an affirmation response, either in yes, no, or not applicable
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column, with a numerical 1 and remaining answering columns (of the same row) with a 0.

We further broke down each document import into two separate data frames; one (let us refer

to this as dfGen) consisting of the control ID of the CAIQ questions, its description, notes

columns (all of which were character datatype), and the yes/no/not applicable answering

columns (numerical). The other data frame (let us refer to this as dfComp) of a CSPs import

consisted of the control ID, its description and compliance information (all character data

types). Additionally, document import also introduced NAs which were addressed and

removed from the created data frames. However, the pre-processing techniques could not

be applied to all of the 138 documents because some of the documents were write protected

by the CSPs due to which we could not make certain changes in the original xls documents

which were required by the cleaning procedures written in R. This reduced our sample size

for descriptive and exploratory analysis from 138 to 108 CSPs.

3.3. Analysis and Lessons Learned. We first present a summarized analysis of the

CCM document. The objective behind it is to get a general understanding about facts like

howmany assessment questions belong to a control group and how they affect different cloud

platform domains like network, storage, data, and so forth. The total number of security

assessment questions posed in each of the 16 control domains in the Cloud Control Matrix’s

(CCM) Control Group Structure is shown in Figures 1 and 2. In these figures, the x-axis

represents the 16 different control groups and the y-axis represents the number of assessment

questions belonging to each of these control groups. The question we ask ourselves from

this is - whether the quantity of questions presented in a control group a direct indicator of

its emphasis in the cloud security. In other words, does a control group like Mobile Security

(MOS) consisting of the largest number of questions (20) reflects the sentiments of the cloud

community in terms of emphasizing its importance with respect to cloud security. Such

notions will then convey the ideology that the community emphasizes on MOS category
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more than Encryption and Key Management (EKM) which has 4 assessment questions

(Figure 1). However, basing these notions on a single criterion (total number of questions

in a control group) will not help in depicting the complete picture.
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Figure 1. Cloud Control Matrix’s Control Group Structure - Part 1
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Figure 2. Cloud Control Matrix’s Control Group Structure - Part 2

We further explored the relative impact of these 16 control groups on the different

aspects of the cloud platform as shown in Table 2 and 3. In these tables, the column

Table 2. Impact of Control Groups on Cloud Platform Domains - 1

AIS AAC BCR CCC DSI DCS EKM GRM
Physical 25 100 73 20 0 100 0 46
Network 75 100 64 20 14 44 75 46
Compute 100 100 64 100 71 44 25 55
Storage 100 100 64 100 86 56 100 55
App 100 100 55 100 86 33 75 55
Data 100 100 64 80 100 33 100 55

CorpRelevance 50 100 82 100 71 22 75 100
Tenant 50 67 36 40 57 22 50 82

represents the control groups proposed in CCM and the row shows the different cloud

platform domains that these control groups affect. Each cell of these tables exhibits the

relative percentage impact of the control groups on the cloud platform domains.
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Table 3. Impact of Control Groups on Cloud Platform Domains - 2

HRS IAM IVS IPY MOS SEF STA TVM
Physical 64 62 54 20 40 100 100 0
Network 55 69 77 100 25 100 100 100
Compute 55 85 100 80 40 100 100 100
Storage 55 85 69 80 15 100 100 67
App 64 92 69 80 65 100 100 100
Data 91 85 69 80 35 100 100 33

CorpRelevance 100 31 46 40 90 100 100 33
Tenant 100 62 46 20 45 100 22 68

For example, in Table 2, an impact value of 25% of Application and Interface

Security (AIS) control group on Physical infrastructure domain of the cloud platform

elucidates that given all the security assessment questions and their sub-categories belonging

to the AIS control group, a quarter of them impacts the Physical domain. Analyzing Table 2

and 3 row-wise, we can perform categorical analyses to further (and more accurately)

understand how different cloud platform domains are impacted by the control groups as

exhibited by the CCM document structure. For example, consider Storage domain; the

highest impact is 100% from 6 control groups (AIS, AAC, CCC, EKM, SEF, STA). The next

impact category can be considered to be 80% and above which will have 3 control groups

(DSI, IAM, IPY). The remaining impact categories can be 50% to 80% and below 50%,

having 6 (BCR, DCS, GRM, HRS, IVS, TVM) and 1 (MOS) control groups, respectively.

Additionally, column-wise analysis of these tables by aggregating the relative impact scores

of each control group across all cloud domains can shed light from another perspective

into the relevance of the control groups in terms of security assessments of CSPs. While

using the STAR registry for security evaluation of the CSPs, users can take into account

such information to have a better comprehension of the assessments provided and further

improve upon it by adding their requirements. For example, does a user give more emphasis

on the Storage domain over Compute for their application. We will discuss more on this in

the enhancement to STAR registry in Section 4.
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We then performed exploratory analysis on the dfGen data frame which consisted

of yes, no, or not applicable responses for 295 net total CAIQ questions from 108 CSPs.

The objective behind this was to understand the pattern of yes, no, and not applicable

answers from different CSPs. The summarized answering response scores for yes, no, and

not applicable are shown in Figure 3, 4, and 5, respectively. The min and max scores for

100 150 200 250 300
Score Value

Figure 3. Distribution of Yes Responses in STAR Registry

0 50 100 150 200
Score Value

Figure 4. Distribution of No Responses in STAR Registry

yes responses (Figure 3) are 128 and 294, respectively. Its mean lies approximately at 236.

It also consists of 3 outliers (score - 60,101,118). The no response scores (Figure 4) have

a min and max of 0 and 98, respectively with mean value approximately 26 and consisting

of 4 outliers (score - 113,124,136,207). Finally, for the not applicable responses (Figure 5)

the min and max scores are 0 and 90, respectively. The mean score is approximately 26,

with 3 outliers (score - 96,116,192).
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Overall, we observed that some of the CSPs that are the outliers of the no and not

applicable response set are mostly SaaS vendors. They offload most of the infrastructure

tasks to other vendors. This results in high count of no or not applicable with respect control

groups like DCS or IVS since currently there is no way to nullify these control groups from

the CAIQ (We discuss this further in Section 4). Additionally some of the CSPs have either

answered yes or no (and ignored the not applicable column altogether), or in some instances

they have answered yes and no for an assessment question. Hence, intuitively, the outliers of

the yes response set are outliers in either the no or not applicable response set. In addition

0 50 100 150
Score Value

Figure 5. Distribution of NA Responses in STAR Registry

to the scores, the dfGen data frame consists of Notes from CSPs explaining some of the

vendor specific control group parameters. One of the considered attempts to comprehend

these notes in a (semi-)automated way was to make a compilation of the entire notes set

for a CSP. However, doing so would have made the whole analysis too broad like reading

through a policies whitepaper without any focus as to what the reader might be looking for,

thereby making the process generic in nature. Alternatively, one can aggregate only the

notes of those control group assessment questions which has been responded either with

a No or Not applicable. Although, as we considered the highest score outlier for the No

responses (Figure 4) we could not find any supporting notes. Further, in these cases most

of the notes were documented as “in progress” or “can be ordered”.
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Similarly, for the highest score outlier for not applicable responses, no notes were

provided. In contrast, many vendors who answered Yes have provided notes which were

much more detailed. As such, we reckon that notes should be present when CSPs respond

with a no or not applicable and when available it can be followed up with manual analysis.

However, for one of the assessment questions - BCR-06.1: “Are any of your data

centers located in areas having high probability of environmental risk”; responding it with a

no is positive affirmation. This has also been pointed out in other works like [6]. Although,

this is the only question of its kind amongst the 295 questions so while scoring using version

3.0.1, one cannot simply count the number of Yes and No responses. Nevertheless, this

should not be sufficient grounds to reject the usage of the version 3.0.1 and when it comes

to (semi)automated analysis, being aware of the context of the question will be essential.

For example, in CGID BCR-1.2 - “Do you provide tenants with infrastructure service

failover capability to other providers”, if a vendor responds with no, should this be rated

negatively and reduce the categorical rating of the vendor? Since, in notes they explain why

they do not provide the specified control and the counter/failsafe to the requested control

is provided. As such, solely relying on aggregating no scores will negatively impact the

scoring and we need to able to integrate context aware analysis for the assessment questions.

For example, to accurately rate BCR-1.2’s answer, one needs to be able to assess the kinds

of counter/failsafe options that are provided and if they are comparatively better than the

control specification stated in the assessment question. Automated analysis of such kind of

information without or minimal human intervention is not a trivial task, but it is something

that needs to be addressed. Furthermore, when assessment questions are responded with

a yes, it may induce follow up questions like for AAC-2.4 - “Do you conduct internal

audits regularly as prescribed by industry best practices and guidance”. The response to

these questions is typically yes, but at times it either does not mention which industry best

practices they follow, or clarify if those best practices are universally applicable across all

CSPs (considering delivery and deployment models).
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Although, at times CSPs cannot reveal all the information in details on a public

forum due to several reasons like market competitiveness and/or presence of malicious

entities which can then compromise their security. We will discuss ways to address this in

Section 4.

Additionally, we analyzed assessment question responses of the 16 control groups

individually to see their pattern and check if there were any similarities across different

CSPs (aggregating by their delivery model and so forth) and contrasting it with the analyses

of the original CCM structure as presented in Table 2 and 3.

Table 4. Score Responses from CSPs on Individual CAIQ Control Groups

AIS AAC BCR CCC DSI DCS EKM GRM
Yes% 82 86 72 86 75 82 65 85
No% 8 11 16 7 13 8 21 12
Not Applicable% 10 3 12 7 12 10 14 3

HRS IAM IVS IPY MOS SEF STA TVM
Yes% 85 79 79 70 49 80 80 85
No% 9 15 6 11 17 16 11 7
Not Applicable% 6 6 15 18 34 4 9 8

From Table 4, we note that on average the control groups of AAC and CCC have

the maximum yes responses. The maximum no responses belongs to the control group

EKM and maximum not applicable responses to MOS control group, which also has the

minimum yes responses. The minimum no response belongs to the IVS control group and

thereafter the minimum not applicable belongs to the control groups AAC and GRM. If

we hypothesize the importance of a control group based on its relevance impact across

different cloud platform domains (Table 2 and 3), we would say that control groups like

AIS, AAC, CCC, SEF, and STA will be the top contenders which the CSPs will address and

respond with yes to the assessment questions belonging to these control groups. However,

considering the summarized results in Table 4 and taking into consideration the survey

performed by RightScale in their 2017 state of the art cloud report [16], our hypothesis is
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partially true. To further elaborate on this, according to our hypothesis it does turns out that

control groups of AAC and CCC are of importance and majority of CSPs respond positively

to the assessment questions in this domain.

This notion is also affirmed by RightScale’s survey that as the maturity of cloud

platform models and understanding of the client base keep on increasing, issues like com-

pliance and audits take priority over raw security aspects of the cloud platform. Therefore,

CSPs seems to increasingly address these areas more positively leaving very little or no

ambiguities (minimum not applicable response for AAC). As far as security itself goes, one

may state that the notions outlined in control groups of IAM and EKM is of value and would

be addressed by CSPs as positively as compared to AAC or CCC control groups. However,

this does not seem to be the case as we saw from our analysis that EKM consisted of the

maximum no responses from the CSPs and IAM also has a leaning towards the minimal

bounds. We attribute this behavior to two reasons, (1) as RightScale’s survey show there is

reduction in the overall security concerns of clients compared to the previous years with the

maturity of the cloud models and, (2) we reckon that CSPs believe that the aspects of these

control groups will be more effectively handled by clients themselves giving them more

control over the security of their hosted application. Furthermore, quite a few of the CSPs

from our collection did not have IaaS provisioning or borrowed the services of other CSPs

for performing storage and computation aspects. This could also attribute towards the high

no count for domains like EKM which otherwise seems to be of importance when it comes

to security on the cloud platform.

The control group of MOS itself has the maximum number of assessment questions

as compared to the other control groups. However in terms of its relative impact with respect

to the cloud platform domains, it is lackluster if compared to AAC, CCC, SEF, SEF, and

so forth. When it comes to responding to this control group, as we can see from Table 4, it

has the minimum yes responses and maximum not applicable responses. Its no responses

is also the second highest in the spectrum.
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According to RightScale’s survey the notion of this control group is not touched

upon extensively. We strongly believe that with the rising trend in the concept of Internet of

Things (IoT), CSPs should paymore attention to this area since, its eventual exploitation will

impact other control groups. Finally, based on our CCM structure analysis we hypothesized

that the control groups of SEF and STA have considerable impact on all the considered cloud

platform domains and it will be addressed positively on average by the CSPs. However, this

hypothesis is not reflected from the results in Table 4. On the contrary, SEF has the third

highest no responses.

Another valuable trove of information is embedded in the notes column of the CSP’s

CAIQ responses. Generally, these notes are textual, unstructured information providing

supplementary information regarding the CSP’s yes, no, or not applicable responses to the

different control group questions posed in accordance to CSA’s CAIQ pattern, however

certain CSP’s did not provide any supporting information for their CAIQ responses. To

understand the context of the textual information present in the notes column, we performed

some basic text mining operations on them. In this direction, we stripped all the 108

CSP’s notes information and created a free flowing text documents, one for each CSP.

We then created a corpus for all these 108 text documents in R and applied various text

mining document pre-processing steps. This involved the general pre-processing steps like

removing punctuations, whitespaces, English stop words, and stemming the documents.

We also removed certain custom words applicable to our domain, for example removing the

name of the CSPs. After finishing the pre-processing steps, we acquired a corpus with 108

text documents, containing 883 unique terms and a 0% sparsity. We followed this with the

creation of the document term matrix to initially identify the most frequent terms which is

summarized in Table 5. As a result of document stemming, terms like security, secured,

securing, and so forth are reduced to its core form “secur”. We can note from the results in

Table 5 that custom, system, security, and access are the top four most frequent terms.
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This indicates that CSPs while elaborating on their policies related to the 16 different

control groups as proposed in theCAIQemphasizes on security of the system that are in place

to support the infrastructure. Additionally there is information related to customizations of

the client’s applications that are hosted on their platform, their policies in terms of access

control and so forth. This gives some insights into what the CSPs believe the clients should

be aware of when it comes to the policies about their cloud platforms.

However, solely relying on term frequency for understanding the context can be

misleading. This is because a particular term like security, systems, or customization can

be repeated in several different contexts. Therefore, to obtain a deeper level of granularity in

terms of context of the supporting notes we performed tokenization on our corpus, consid-

ering phrases built from individual terms and identifying their frequencies. In this regard,

we utilized the ngram analysis. The ngram analysis shows how frequently a particular term

is followed by another term. We generated bi-grams, tri-grams, and four-grams from our

corpus of 108 CSP text documents. The top results for our obtained bi-grams, tri-grams,

and four-grams are summarized in Table 6, Table 7, and Table 8 respectively. For a given

row in these tables, the first column illustrates the generated n-gram phrase followed by the

term that most frequently follows that specific n-gram in the first column. The last column

shows the frequency of occurrence (across all the 108 documents) of the generated n-gram.

A few of the frequent contexts from the bi-grams (Table 6) can be associated to groups and

employees; their assignment for access controls and encryption keys; CSP service zones.

Table 5. Most Frequent Terms in the Corpus

Term Frequency Term Frequency
custom 16740 system 13284
secur 11448 access 10368
inform 9180 respons 8964
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In addition to that, the uptime of the cloud computing infrastructure, details of

communicating and discussing security related incidents and policies, and descriptions on

security information and event management (SIEM) systems and their protocols.

However, as we increase our tokenization terms i.e. move from bi-grams to four-

grams, we notice that the context of presented textual information shifts focus from encryp-

tion, identity and access control (as in the case of bi-grams) towards application interface

management and security, performing audits, data management and its security (as in the

case of tri-grams shown in Table 7), and finally towards actual physical security of the

cloud computing infrastructure and their employees (as in the case of four-grams shown

in Table 8). Therefore, we can encapsulate the contexts mined from the textual data in

the notes column into three broad categories: (1) access control and application security,

(2) protocols (security and otherwise) used by CSPs and how often they are reviewed, (3)

information related to the physical security of cloud infrastructure. Coupling a tokenization

feature to the STAR registry will benefit both the CSPs that participate and the clients who

will access it. We will discuss the outline of such a prototype and its benefits to CSPs and

their client in Section 4.

Mining the textual information present in the notes for different CSPs gave us an

understanding of the contexts that were presented in them. However, we also wanted to

ascertain if the CSP’s responses (yes, no, or not applicable) were statistically significant

when compared to each other. For this assessment we performed t-tests on our data

frames accounting for the 295 assessment questions.

Table 6. Top Bi-grams and Their Frequencies

bi-grams Next Term Frequency
group employe assign 216
zone provid oper 108
up system generat 324

communic discuss secur 108
replic siem system 324
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Table 7. Top Tri-grams and Their Frequencies

tri-grams Next Term Frequency
interfac use content creator 108

perform period review iptabl 108
data real time configur 108

begin state implement tool 108

Table 8. Top Four-grams and Their Frequencies

four-grams Next
Term

Frequency

manag process evidenc within inform 108
exterior physic secur personnel enter 108
secur oper personnel anomali detect 108

Our null hypothesiswas if themean of the yes (or no/not applicable) answerswere the

same for any two given CSPs in the collection of our 108 CSPs then they will be statistically

significant to each other. The t-values were too large to support the null hypothesis and

the alternative hypothesis was accepted depicting that there was no significant statistical

significance between any of the CSPs with respect to their responses to the assessment

questions.

4. ENHANCEMENTS TO STAR

Based on our analysis presented in Section 3.3, in this section we will discuss some

enhancements to the STAR registry and the CAIQ documentation which can improve it in

general and will also be used to improve some of the outlines of offline risk assessment

framework. More specifically, the offline risk assessment framework aims at integrating

cloud security domains to risk assessment procedures performed during the design phase

of an application which might be migrated to the cloud platform in the future. Therefore,

according to the CCM structure (CAIQ v.3.0.1) and the answering patterns of the CSPs,

combined with the 2017 user surveys from RightScale, we outline the following evaluation
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criterion that should be integrated to the STAR registry framework - (1) Compliance

applicability, (2) Client’s security emphasis on cloud platform domains, and (3) Relevance

of a control group (CGID) and its assessment questions.

The increase in maturity of the cloud platform models have seen a shift in client

concerns from security towards cloud compliance, audit reviews, and cost efficiency. Com-

pliances are currently listed in a comprehensive fashion in the CCM documents. A client

who is new to this domain will not make much sense of “NIST SP 800-53 R3 SC-7 (1)”.

This will require them to manually go over the compliance standards which are documented

elsewhere. This process, for all the compliances listed for one given CSP, can be tedious

and may deter newcomers from the process of cloud migration. In order to better under-

stand compliance applicability, STAR registry can be implemented with a phrase-based

description database of its compliance list. This can be supplemented with a schema for

comparing it with the CSP’s compliances giving further insights into the applicability of

compliances with respect to the functionality of a client’s application. The aforementioned

criterion can be further coupled with client input like - (1) Application functionality (health,

e-commerce, government, and so forth), (2) Delivery model (SaaS, PaaS, and IaaS) and

Deployment model (public, private, and hybrid).

Application functionality can be used to narrow down the compliance applicability

estimation process. This will also make the process a bit more client-centric then what it

current state. The process of selection of a CSP to host an application given the category of

that application and the type of data it stores and processes, certain compliance standards

need to be present on the CSP. For example, a CSP hosting an educational application needs

to be FERPA compliant. Similarly, medical applications need HIPAA compliant CSPs and

e-commerce needs PCI DSS compliance standards. As such in the evaluation category for

compliance applicability, a risk assessment framework should populate the available list of
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compliances in CCM documentation with tag phrases elucidating their functionality. These

tag phrases coupled with client input for application category will be used to identify the

CSPs which are following the required compliances.

Delivery and deployment model client input will be used to shortlist the set of control

groups that impact clients, changing the evaluation criteria from the CSPs perspective to

the client’s requirements. This will be further useful because in the current CAIQ version

used by the STAR registry, CSPs which are not IaaS providers have to respond with no

or not applicable. As such control groups not relevant to a deployment model should be

nullified. Thereby, companies do not have to answer not applicable if the response is based

on the fact that they do not provide such functionalities. This will help to focus on the not

applicable responses which are actually relevant. Given this improvement, if a CSP states

that they are IaaS providers and there is a control group related to IaaS, but the CSP has

answered not applicable or no to it; then one can better focus and analyze the impact of such

responses. Once the control groups have been shortlisted, a risk assessment framework can

use it to better perform a (semi)automated analysis of the evaluation criterion - Relevance

of a control group and the answer to its assessment question. In doing so, more preference

is given towards the control groups that impact clients more and then perform generic CSP

evaluations. To this extent we have analyzed the impact of control groups on cloud platform

domains along with its impact on client and/or service provider (Table 2 and 3). Given the

nature of the delivery and deployment models used, the division of responsibilities between

the client and CSP will vary and a much fine grained evaluation can be performed using the

STAR registry by incorporating this information.

The information present in the notes section of the CAIQ responses of a CSP in

the STAR registry provide details regarding the actions a CSP has taken with respect to

an assessment question belonging to a control group. Manual analysis of such information

will help a client shortlist the set of CSPs that might meet their functional and non-

functional requirements. Nonetheless, this in itself is a tedious task and sometimes this
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information might have partial details (or not be present at all) which are not sufficient to

make accurate decisions. We reckon one of the reasons behind this could be attributed to

the market competitiveness because of which CSPs might be reluctant to provide complete

information about their CAIQ assessment. Therefore a workaround to this concern could

be to perform privacy preserving document comparisons by encrypting the notes section

of the STAR registry. Clients can perform analysis on the encrypted information, without

having the CSPs to reveal the information to other competing CSPs and the clients itself.

Alternatively, one may argue that clients can get such information from CSPs by contacting

them. However, CSPs may be reluctant to reveal all their cloud platform information.

If they do, theymight have the clients sign a non-disclosure agreement, which ideally

is not foolproof. Therefore, CSPs can encrypt some of their more detailed information and

outsource it to the STAR registry. With the STAR registry acting as a trusted third party,

clients can submit their queries which can then be used to perform document similarity

threshold detection, or querying of k nearest CSPs that matches with certain functional

requirements of the clients and so forth. In this regard, several works in the literature

are present [23] [18] which can adopted and applied to the schema of the STAR registry

to obtain the desired outcomes. Furthermore, submission of information using encrypted

means can be beneficial with respect to physical security of the cloud infrastructure. The

CSPs can make their employees undergo a training routine, the aggregate scores of which

can be shared to the STAR registry through encrypted mechanisms. The clients can then

query this information to determine physical security aspects like which CSP’s employees

have scored better or between multiple CSPs when was the last security training carried out.

Additionally, the tokenization performed as a part of our text mining (end of Sec-

tion 3.3) gave us an insight into the context presented through the textual information by

CSPs in the STAR registry. This process can be extended and utilized to implement a

queryable data database for STAR registry. Such a registry will enable clients to enter

the phrases for which they seek information like application management or access control
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policies and so forth. The query feature can be supported by n-gram dictionaries as a result

of which the search process can narrow down the set of CSPs which present information

whose context matches with that of the client’s query context. This kind of process will

make the client’s assessment task of CSPs much more efficient and effective as compared

to manually analyzing the entire STAR registry. Further, n-gram dictionaries can also lay

the foundation for prediction algorithms. Thereby, clients who are not fully aware of their

exact query terms can be suggested (via. prediction) a set of phrases which will reduce

their search uncertainties. This process of a query-able database through tokenization can

also benefit CSPs since they can use the client’s query to estimate contexts that clients are

typically looking to assess and reformat and better align their responses (textual ones) to

the needs of the client base.

5. IMPROVEMENTS TO OFFLINE RISK ASSESSMENT FRAMEWORK

The offline risk assessment framework evaluates the security provided by different

cloud service providers based on the security risks present in a client’s application [19].

Based on its evaluations, it suggests a pareto-optimal cloud migration strategy for the

client’s application. In doing so, it also takes into account any migration constraints that

may arise due to client’s finances, legal and technical concerns. A summary of the functional

objectives of the offline risk assessment framework is shown in Figure 6.

Traditional risk assessment during design phase of an application addresses the

security concerns present in them. To validate a CSP’s security, third party security audits

can be performed on them, which may increase the service costs and too many third party

audits can expose CSP’s infrastructure information to outsiders [15] compromising the

cloud platform. However, if clients have a way to safeguard their application related to

cloud domains that are either within or beyond their control, it will reduce their level

of uncertainty about a CSP’s security policies. This can be done by performing risk

assessments during design phase addressing security threats from hosting an application on
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Figure 6. Offline Risk Assessment for CSPs

the cloud. Analysis of the STAR registry gives us insight into how a CSP has responded to

questions raised in the CAIQ for a particular control group. Incorporating this information

in the risk assessment framework will make the assessment process more effective and cost

efficient. This can be achieved by including cloud security issues during the design phase,

belonging to a control group of the CAIQ that has not been addressed in detail by the CSP.

To do so, data models like exploit, include, threaten, mitigate can be developed capturing

the application design with incorporated security measures and misuse patterns, different

feasible attack patterns, and cloud misuse patterns [10]. The correlation between these data

models can be established using techniques such as misuse case diagrams [17]. This can

be further extended to include new models developing transition of security threats arising

from the cloud misuse patterns into the applications hosted on it. For example, consider

the scenario shown in Figure 7 which shows the risk assessment of a hotel reservation

web application hosted on a cloud platform using misuse patterns of the web application in

isolation and that of the cloud platform.
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Figure 7. Cloud Security Domain in Design Phase Application Risk Assessment

As we transition from cloud misuse patterns like using Malicious virtual machine

instances (see invokes in Figure 7) to application attack patterns (Malware injection leading

to possible theft of user credentials), we will be able to identify threats which might not have

been considered if an application was hosted on a private domain. As such, this kind of

assessment facilitated by STAR registry evaluations as shown in Table 4 will make clients

relatively more prepared in terms of (securely) designing their applications with plans of

future cloud migration. This will considerably cut down cost and uncertainties related to

cloud security while performing migration.

Furthermore, the Internet of Things (IoT) paradigm has been growing at an un-

precedented rate. According to IHS estimates, in 2015, there were 15.4 billion connected

devices and it is projected to rise up to 30.7 billion and 75.4 billion by 2020 and 2025,

respectively [13]. This will have a notable effect on platforms like Cloud (along with

edge and fog computing) computing whose essential feature lies in its capability to pool

various computing resources and provide it as a pay-as-you-use model. The presence of

vast amount of mobile and embedded devices will change the ways in which clients connect

to the cloud computing infrastructures. Therefore, a divergence from accessing the cloud
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computing resources from traditional devices to mobile or embedded devices will increase

the attack surfaces of the cloud computing infrastructure as well as the client’s applications

hosted on them. Securing these attack surface rising as a result of these mobile devices

becomes even more challenging since many of these devices are resource (energy and com-

puting) constrained. Further concerns arise due to the lack of proper standardization and

compliance documentation related to these interconnected mobile and embedded devices.

The emphasis to such mobile security concerns has been foreshadowed by CAIQ’s mobile

security (MOS) control group, which amongst all the 16 control groups has the highest

set of questions. However, based on the responses provided by the participating CSPs it is

evident that mobile security control group is not a top concerns when compared to control

groups like audit, assurance, and compliance (AAC) or datacenter security (DCS).

Current cloud risk assessment frameworks, including the offline risk assessment

framework for CSPs, do not take into account the aspect of mobile security which may

result in overlooking various security concerns that will eventually arise due to the growth

of IoT paradigm affecting the cloud computing infrastructure and applications hosted on

it. Thus, we outline the inclusion of the mobile security (as established by cloud control

matrix’s CAIQ) to improve the functional output of the offline risk assessment framework.

Additionally, as discussed in Section 4, some of the enhancements to the STAR registry

like tokenization, privacy preserving document comparison, and phrase-based description

of compliance applicability can also be applied to improve the functionalities of the offline

risk assessment framework. A summary of our analysis results and actionable insights to

improve the STAR registry and risk assessment frameworks is given in Table 9.

6. CONCLUSION AND FUTUREWORK

In this paper, we have presented exploratory and descriptive analysis of data from

Cloud Security Alliance’s (CSA) Security, Trust and Assurance Registry (STAR). We

analyzed the answering pattern of various CSPs related to the control groups that has been
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Table 9. Analysis Results and Actionable Insights - Summary

Analysis Action Benefits
No specific support for delivery models Breakdown CAIQ based on question relevance to

delivery models
CSPs and
Clients

In terms of responses, lack of emphasis onMobile
security

Increase emphasis to Mobile security CSPs and
Clients

Many CSPs make use of other CSP’s services Integrate responses from externally referred CSPs Clients
Compliances have no information to elaborate
functionality

Elucidate compliances with annotations or tag
words to evaluate relevance to application

Clients

Manual analysis of notes section of CAIQ can be
tedious for a very large sample space

Introduce tokenization and data mining to express
context of textual data to narrow down search
scope

Clients

No interaction between CSPs and Clients Incorporate query-able framework wherein
clients can express their needs to narrow down
search scope

Clients

No interaction between CSPs and Clients AllowCSPs to access client’s query to understand
client requirements

CSPs

Lack of detailed information in some sections to
make accurate decisions

Present sensitive information in encrypted format
and query on it

CSPs and
Client

An insight into the emphasis given by CSPs to
different security aspect of the Cloud

Incorporate cloud security metrics to design
phase application risk assessment

Clients

outlined in the Consensus Assessments Initiative Questionnaire (CAIQ) like auditing, data

security, encryption and key management. We also analyzed the context provided in the

textual information presented by the CSPs in their STAR assessments by performing n-gram

analysis. In doing so, we were able to identify several features that can be incorporated

in the STAR registry to help clients more effectively analyze and search for the required

security (or related to other domains like auditing) information they need for the decision

making process for hosting their applications on a cloud provider’s platform. Along with

also helping the CSPs better comprehend the needs of clients and customize the information

they present to clients accordingly. Additionally, through our analysis we have also outlined

some design optimizations that can be incorporated in the offline risk assessment framework

to make its evaluations of a CSP more accurate, further reducing the security uncertainties

of the client. As a future work, we would like to integrate this with the off-line assessment

tool for the complete risk assessment of an application.
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ABSTRACT

Security of applications on the cloud platformhas been one of the primary issues that

prevent clients from completely adopting the services provided by various cloud vendors.

Although there is a general notion of security present on the cloud platform, it is not

addressed with respect to the security threats present in a client’s application. To address

this concern, the offline risk assessment of cloud service providers framework was proposed

earlier. Nonetheless, while performing risk assessment during the software design phase

of an application it neither considers cloud security domains as an assessment category nor

identifies resources that needs to be protected in the likelihood of a successful attack. In this

paper, we present a framework that will address these challenges during the design phase

of an application, making client applications adequately prepared for cloud hosting and

reducing some of their prevalent security uncertainties related to migrating their application

on the cloud platform. Furthermore, the proposed framework will aim to reduce a client’s

demand for having cloud vendors validate their provided security by performing multiple

third party security audits. We present a use-case study showing the applicability of our

proposed framework along with discussions about its usefulness.

Keywords: Cloud Computing, Risk Assessment, Software Development Lifecycle, Misuse

Patterns
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1. INTRODUCTION

Cloud computing platforms through its deployment models (IaaS, PaaS, and SaaS)

have provided clients with many notable benefits [21]. These benefits range from not having

to own or maintain computing infrastructure to integrating built-in software APIs with a

client’s application. Although these advantages are well-received in the community, clients

are still skeptical to migrate their applications on a cloud platform. This is because of the

security concerns arising due to applications being migrated from the secure boundaries of

a client’s private network to a more or less untrusted domain of a cloud service provider

(CSP). The CSPs do provide a notion of security but it does not address the fact that how

relevant they will be with respect to the threats present in a client’s application. This concern

was addressed by proposing the offline risk assessment framework for CSPs in [35].

The mission oriented risk assessment methodology in the offline risk assessment

framework addresses the security evaluation of an application during its software devel-

opment lifecycle (SDLC) phase. This is done by evaluating different components of an

application like processes, databases, or users interacting with the application; collectively

known as application elements, using well known techniques like Microsoft’s STRIDE5.

Security risk evaluation during SDLC phase is economical in nature as it allows clients

to effectively evaluate the consequences of different implementation architectures. How-

ever, before one can start the secure SDLC process the security requirements specifications

phase [17] needs to be addressed. In this phase, design and security teams specify the crit-

ical assets of an application, their assumed asset level (high, medium, or low), and security

measures that should be implemented.

Nevertheless, there are two potential shortcomings in this method. First, it does not

consider the successful execution of an attack due to which multiple application elements

can be left exposed to further exploits. As such formulation of security measures should

consider the spread of attacks in an application and identifying critical elements.

5msdn.microsoft.com/ee823878.aspx
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These elements needs to be secured in away such that it halts the spread of attacks and

minimizes damage. Secondly, assumed asset level outlines the security priority of different

application elements. However, existing technique [23] of using qualitative classification

(high, medium, or low) is not capable of answering the following - “In the event of a security

exploit, should we give all the assets belonging to the same asset level equal priority?”

Furthermore, when an application is migrated on the cloud platform, CSPs provide

some basic level of security related to domains that are beyond the clientâĂŹs control [8].

A way for clients to validate this is by leveraging third party security audits. This might

give rise to two foreseeable concerns. First, CSPs might have to spend extra dollars to have

these audits performed which in turn may increase their service costs. Secondly, performing

too many third party audits will reveal information related to cloud infrastructure (security

and otherwise) to many outsiders [1] and if used maliciously, may compromise the cloud

platform. Although, if clients have a way to safeguard their application related to the

domains that are beyond their control, it will reduce the level of their uncertainty about

a CSP’s security protocols. This can be achieved by securely designing an application

accounting for the threats originating from the cloud platform.

To address the aforementioned challenges, we propose a novel design phase risk

assessment framework extending the mission oriented risk assessment methodology by

including cloud security domains during the SDLC phase. We do so by considering semi-

automated generation of cloud misuse patterns as proposed in [18] and integrating it with

security evaluation of an application’s data flow diagram (DFD). Along this direction,

we can identify those application elements which needs to be protected in the event of a

successful attack either arising from the cloud platform or due to the application’s inherent

nature of being a web-application. Our proposed framework will help in identifying critical

application elements, providing a deeper level of granularity to the asset level classification

technique and thereby improving the design of early intervention policies in the event of a

successful attack on an application.
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Our contributions in this work are as follows:

• Designing and developing a novel design phase risk assessment framework by intro-

ducing cloud security metrics.

• Identifying critical application elements to be protected in the event of different

attacks, and providing a deeper level of granularity to asset level classification tech-

nique.

• Simulating the proposed framework on a use case scenario analyzing the effectiveness

of considering cloud security metrics during the design phase risk assessment of an

application.

The rest of the paper is organized as follows. In Section 2 we introduce our use case

scenario and briefly discuss the outlines of the previously proposed offline risk assessment

framework. In Section 2.1, we present the outlines of our proposed framework discussing

our threat model and relevant algorithms. Thereafter, we show the applicability of our

proposed framework by presenting the obtained results from our use case scenario and

discussing its physical significance in Section 3. We further discuss the usability of our

proposed framework in Section 4. In Section 2 we discuss some of the significant literature

with respect to risk assessment performed for software applications and the cloud platform.

Finally, we conclude the paper in Section 5.

2. PROPOSED FRAMEWORK

An effective way to assess the security provided by different CSPs is to compare

them with respect to the security risks present in an application that will be hosted on their

platform. To do so, one must be able to identify the security risks present in an application

and determine if CSPs address themusing their securitymeasures. This concept is addressed

by the previously proposed offline risk assessment framework for CSPs [35].
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Figure 1. Hotel Reservation - Use Case Diagram

The framework identifies security risks that are present and determines whether it

would be cost efficient to perform cloud migration on a CSP. These tasks are facilitated with

the help of three independent but correlated modules: (1) mission oriented risk assessment,

(2) cloud vendor security assessment, and (3) cloud adoption strategies.

Our proposed risk assessment framework’s primary objective is to address the

challenges in mission oriented risk assessment methodology as discussed in Section 1.

We have designed our framework to be generic enough such that it can applied to any

application scenario, however for a better understanding we will elaborate it using a use

case scenario that depicts a web application framework for a hotel management, in particular

the process of reserving a hotel room. Users or hotel management employees can access

the API which consists of three functionalities: log-in, room information, and managing

reservations. Access to the log-in page by users will follow a log-in verification operation.

The authentication data is stored in a Log-in database. Once logged in, a user can perform

room reservations. This information gets stored in a Reservation database. Operations

during the reservation phase involve creating, confirming, canceling, fulfilling, and/or

closing the room reservations. In case a reservation is fulfilled, the payment information

(credit card) is validated through a trusted external entity, Bank. The actions that can be

taken by legitimate users and employees are summarized in the use case diagram shown in

Figure 1 and its corresponding data flow diagram is given in Figure 2.



159

 

Club 

Info 

Log-in 

Page 

Handle 

Finance 

API 

Access 

Control 

Verify 

Log-in 

Edit 

Profile 

Control 

Finance 

Club 

Activity 

Finance 

Operation 

Transaction 

Manager 

User Bank 

Log-in DB User DB 

Club DB 

Finance DB 
1 

2 

3 
4 

5 
6 

7 
8 

9 

10 

11 

12 

13 

14 

Application Boundary 

Figure 2. Use Case Scenario: Data Flow Diagram for Hotel Room Reservation Web
Application

In the following sections, we will be referring to this application scenario while

describing in detail the different components of our proposed framework.

2.1. Mission-Oriented Risk Assessment. The mission oriented risk assessment

module [35] semi-automates performing risk assessment during the design phase of an

application. Nevertheless, the whole approach is based on an optimistic outlook. In

other words, its security requirements phase only collects information primarily related to

the domains of security objectives, critical security assets, their asset levels, and security

measures to be implemented. Such an optimistic outlook does not consider identifying

critical application element(s) which needs to be secured during a successfully executed

attack scenario to minimize the incurred damages. This assertion is based on the fact that

one cannot guarantee the complete safety of an application. Although the implemented

security measures (identified through risk assessments performed in the design and testing

phase) will be able to protect against some attacks, it does not assure that other (unknown)
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attacks with similar exploitation objectives will not be able to bypass the implemented

security measures. To understand this motivation, let us consider a very näive example of

cross-site scripting (XSS) attacks on web applications.

XSS attack [3] in its simplest form, can be used to inject javascript code in input

fields from client side which is executed on the server side to cause malicious activities.

For example, an attacker can use the Log-in Page (Figure 2) to inject malicious scripts

which needs to be submitted and validated against the Log-in DB. If the attack remains

unchecked it can return log in credentials leading to elevation of privilege. An example

of such an injected script is shown in eq. 1. Although it alerts the message Hello, World,

attackers can inject much more malicious code. To counter this, a security measure could

be to apply techniques such as filtering or obfuscation as shown in eq. 2. For example in

filtering, double quotes within the script tags will be filtered out thereby nullifying the attack

attempt. This security measure can be bypassed by using ASCII characters instead of using

characters like single and double quotes or backslashes therefore bypassing the implemented

filtering technique (eq. 3). With this example, our intention is not to demonstrate that XSS

can be bypassed as other security measures are available to prevent it. However, we use

this instantiation to depict that no set of security measures (either used disjunctively or

conjunctively) can assure complete safety. As such, clients should be prepared with certain

early intervention policies (EIPs) to minimize the damage in the event of a successful attack

execution.

< script > alert(“Hello,World′′) < /script > (1)

< script > alert(filtered-empty body) < /script > (2)

< script > String. f romCharCode(

97, 108, 101, 114, 116, 40, 34, 72, 101, 108, 108

111, 44, 32, 87, 111, 114, 108, 100, 34, 41)

< /script >

(3)
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Nonetheless, clients operate under budgetary constraints which limits the amount

of security resources that can be incorporated in an application. Therefore, a pre-requisite

to developing early intervention policies is to identify application elements prioritized

according to their level of exploitation in the event of successful attacks. Hence, through

our proposed framework, our objective is to perform analysis identifying critical applications

elements that needs to be protected for different attack patterns such that the limited security

resources can be allocated in timely fashion minimizing the spread and damage due to the

attacks.

To identify these critical applications elements (CAEs), we incorporate attack pat-

tern category database such as Common Attack Pattern Enumeration and Classification

(CAPEC) along with the application design to generate possible misuse cases. These mis-

use cases coupled with implemented security measures will be used to develop probabilistic

state transitions which will be further modeled using the concepts similar to that of perco-

lation centrality [31]. Percolation centrality (PC) of a node v in a network with N number

of total nodes at a time interval t is computed as follows:

PCt
v =

1
N − 2

∑
s,v,r

σs,r(v)

σs,r

xt
s

[
∑

xt
i ] − xt

v

(4)

where s and r are the source and destination nodes, respectively. σs,r(v) is the number

of shortest paths between s and r passing through v. σs,r is the number of shortest paths

between s and r . xt
s (0 < xt

s < 1) is the state of infection or spread at the source node during

the time interval t. xt
v is the spread of infection at node v during t. Such concepts are helpful

in identifying the relevance of a node in a network with respect to the spread of a virus

instead of solely relying on their position in the network topology. Figure 3 summarizes the

outlines of our proposed framework with respect to identifying CAEs.
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Figure 3. Critical Application Element Assessment

The CAPEC database archives the list of known attack patterns that can be used in

order to exploit an application. We have used it to model our misuse cases because even

if an attack is unknown (uses a different exploitation mechanism), its overall pattern and

objectives will be similar to that of a known attack. Hence, while generating misuse cases

we group the attack pattern categories based on their exploitation objective (or pattern).

In this regard, we account for CAPEC’s domains of attacks (view ID: 3000) which lists

the different attack categories. The application design block in Fig 3 will consist of input

information such as the application DFD (Fig 2), external entities interacting with the

application and the use cases associated with them (Figure 1). Additionally, we consider

the security threats resulting due to the characteristics of the cloud platform (multi-tenancy,

shared resources and so forth). To do so, we incorporate misuse cases of the cloud platform

adopted from the works of [18].

2.1.1. Threat model. The threat model with respect to our use case scenario con-

siders the attacker to have intermediary expertise and access to tools and resources (bot

scripts) which can help in carrying out the attacks. The exploitation objective of the at-

tacker would be to either compromise the services provided by the hotel management web

application (denial of service, CAPEC ID#469) or steal legitimate user credentials in the
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form of their identity or financial information. For the latter, attacker might use a collection

of different attacks - man in the middle (CAPEC ID#94), command injections (CAPEC

ID#248), Simple Script Injection (CAPEC ID#63), Exploitation of Trusted Credentials

(CAPEC ID#21; parent of session replay and cross-site request forgery) and so forth.

In the cloud computing platform, the attacker can execute attacks from beyond

the network boundaries or pretend to be a legitimate user (malicious insider). As such,

attackers may rent virtual instances collocated in the same physical infrastructure as that

of our hotel management web application. They can then monitor the resources utilized

by the legitimate application and choose to disrupt services by demanding more resources

during its peak utilization hours resulting in denial of service. Attackers may also create

and submit malicious virtual machine instances to the cloud repository [18] which in turn

if used by the legitimate user may result in malware injection. These malwares can then

monitor the virtual machine (VM) activities, steal user credentials and relay the information

back to the attacker.

Finally, we assume the cloud provider to be a trusted party and they will not collude

with the attacker. In accordance to these attributes of our threat model, an instantiation of

the generated misuse cases for our use case scenario is shown in Figure 4. The notations

used in our misuse case diagram like include, threaten, exploits, and mitigate has been

adopted from the works of [32]. Their utilization is further explained in Algorithm 3 shown

in Section 2.1.2.

2.1.2. Integration of cloud domains to application risk assessment. The gen-

eration of our misuse case diagrams requires three key input parameters - AppDesign;

information about the application elements, AttPattern; application attack patterns gener-

ated from CAPEC, and CloudExploit; misuse cases for threats and vulnerabilities specific

to the cloud computing platform. Each column in these tables consists of the information

shown in Table 1, and the rows represent elements of the application. AttPattern consists

of attacks exploiting a web application hosted on a private network represented by IDwa.
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CloudExploit is composed of attacks originating from the cloud platform which is

encapsulated in IDcc. Using the information in AppDesign and AttPattern, and Cloud-

Exploit we create five more data structures which will be required to generate the misuse

case diagrams in our proposed risk assessment framework. The four traditional well-known

misuse pattern notations [32] are exploit, include, threaten, and mitigate.

Table 1. AppDesign, AttPattern, and CloudExploit Attributes

AttPattern AppDesign CloudExploit

IDwa, Name Element Name, Type IDcc, Name

Prerequisite Resources Asset level (High,Medium,Low) Prerequisite Resources

Likelihood and Severity Interaction (forms, file upload) Consequences

Mitigation Security Measures Mitigation
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Additionally, we introduce a fifth one - invoke (see Figure 4) which will be used for

the integration of the threats originating from the cloud platform into the application. The

generation of these data structures is shown in Algorithm 3.

Algorithm 3Misuse Case Generation
Require: AppDesign, CloudExploit, and AttPattern
Ensure: Misuse case data structures
1: << include >>:
2: for all elem1 ∈ AppDesign do
3: for all elem2 ∈ AppDesign do
4: if elem1→ elem2 then
5: include← (elem1, elem2)
6: end if
7: end for
8: end for
9: << invoke >>:
10: for all IDcc ∈ (CloudExploit) do
11: for all IDwa ∈ AttPattern do
12: if (IDcc .Consequence == IDwa .PrereqResource) then
13: invoke← (IDcc , IDwa )
14: end if
15: end for
16: end for
17: << exploit >>:
18: for all elem ∈ AppDesign do
19: for all IDwa ∈ AttPattern do
20: if (PrereqResource == Interaction) then
21: exploit← (IDwa , elem)
22: end if
23: end for
24: end for
25: << threaten >>:
26: for all elem2 ∈ exploit && include do
27: include← (IDwa , elem1)
28: end for
29: << mitigate >>:
30: for all elem ∈ exploit && AppDesign do
31: if (SecurityMeasure→ elem) && (SecurityMeasure→ prereqResource) then
32: mitigate← (elem, IDwa )
33: end if
34: end for
35: return include, invoke, exploit, threaten, mitigate

The include data structure is generated by traversing all the elements in AppDe-

sign. If there is an edge between the application elements - elem1 and elem2, then those

element pairs are registered in include (lines 2 to 8). We then traverse the misuse patterns

present in CloudExploit and estimate if the consequences of their successful exploitation

(IDcc.Consequence) might result in the satisfying the prerequisite of any attack pattern in

AttPattern (IDwa.PrereqResource) (lines 10 to 12). If it does, we register the cloud misuse

pattern and application attack pattern in invoke (line 13). For the exploit data structure, our

framework traverses all the attack patterns stored in AttPattern for each application element

in AppDesign (line 18 and 19). For a given attack pattern and application element, if the

resource required to execute the attack is available in the interaction type of the element
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(line 20) then the attack pattern along with the application element is registered in the

exploit data structure (line 21). The threaten data structure is then created by using exploit

and include. Given an element present in exploit, if it also present in include, then the

corresponding attack pattern and connected element is added to the threaten data structure

(lines 26 to 28). Finally to create mitigate, our algorithm uses AppDesign and exploit to

identify the security measures that the elements have and checks if those security measures

suppresses the required resources to execute the attacks exploiting those elements (line 31).

If true, the element (along with its security measure) and corresponding attack patterns are

added to the mitigation data structure (line 32).

The inclusion of the invoke data structure introduces the cloud security domains

to the application security assessment procedure. As we transition from the cloud misuse

patterns to the application attack patterns (<< invoke >> in Figure 4), we can identify the

threats which might not have been considered if an application was hosted on the client’s

private network. As such, this kind of assessment will make clients relatively more prepared

in terms of (securely) designing their applications with plans of future cloudmigration. This

will in turn considerably cut down the cost and uncertainties related to cloud security.

Once the misuse case diagrams have been generated, we model them as state transi-

tion diagrams to estimate the probabilistic spread of an attack in the event of their successful

execution. This is done by taking into consideration the severity and likelihood information

of the attack patterns present in AttPattern (Table 1). The state transition diagram shown in

Figure 5 for our use case scenario (Figure 2) depicts the routes that an attacker (or legitimate

user) can take across the application elements present in the system. In our use case scenario

for a hotel management web application’s reservation process, the usage starts with the log

in state for a user (if used by employee, they can directly access the next states with their

credentials). From log in, one can transition to creating a room reservation (or accessing an

already created one). This can be followed up with confirming the reservation, canceling

it, or fulfilling it.
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Confirming a reservation can be followed up with either fulfilling it or closing it.

Once a reservation is fulfilled, it will be closed. From the canceled or closed states the

application usage reaches the stop state.

START
Create 

Reservation

Confirm 

Reservation

Cancel 

Reservation

Close 

Reservation

Fulfill 

Reservation

Log In STOP

USER

EMPLOYEE

Figure 5. State Transition Diagram for Use Case Scenario in Figure 2

The state transition diagram will then be used to depict the flow of different attacks

in the application. This information will be used to determine that - given a particular attack

pattern, which application elements are most susceptible (or critical) and thus, should be

protected in the event of an attack detection belonging to that pattern. These kinds of assess-

ments are necessary since it helps in the decision making process of effectively allocating

security measures for resource constrained clients. An intuitive approach in this assessment

would be to identify the nodes (application elements represented as DFD) which have the

highest connectivity, i.e. to measure the betweenness centrality of nodes. Although, relying

just on the topography of the graph (DFD) will not yield comprehensive results since there

is also a need to identify the nodes which are attributing most towards the spread of the

attack. In order to evaluate this wemodel our state transition diagram (Figure 5) by adopting

techniques similar to the concepts of percolation centrality [31] as defined previously in

eq. 4.
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2.1.3. Identification of critical application elements. For our framework, in order

to model our state transition diagram (Figure 5) estimating the level of exploitation on a

particular node, we need to assess the following factors:

• Level of exploitation for a node.

• Transmission probability of an attack from one node to another.

To estimate the above factors, wewill use the qualitative information related to the likelihood

and impact of attacks available from CAPEC and store it in our AttPattern table (Table 1).

In CAPEC, likelihood of an attack depicts the probability of success of an attack, taking into

consideration factors like attack prerequisite, skills and resources required, available and

implemented security measures and so on. Similarly, attack severity defines the average

impact of an attack on the targeted software which in conjunction with confidentiality,

integrity, and availability (CIA) impact can be used to determine the overall impact of

a successful attack. These CAPEC categories are qualitatively scored as very low, low,

medium, high, and very high. We will use attack severity and CIA impact to estimate

the level of exploitation of the nodes in our transition diagram (Figure 5) and the attack

likelihood to estimate the transmission probabilities. As such, we do not assume that if a

safe node is in contact with an exploited node, then it will also be compromised; we account

for the attack’s complexity and application design for such evaluations.

To quantitatively use the CAPEC’s qualitative ratings in our percolation centrality

computations, we assume a subjective rating scale of 0→ 1 and adopt the concepts similar

to [28] to generate the required rating scales as shown in Table 2. Given our rating scale

(0→ 1), we have assumed an error delta of ±0.1 units. We model the state of the attacks on

a node in the state transition diagram (Figure 5) based on the concepts presented in [30] for

infection spread across a network. In our context, we assume that at any given time interval

for a node attacks can be in one of the following states - exploited, safe, or exposed. An

attack in exploited state conveys that it has been successfully executed on that node.
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Table 2. Quantitative Ratings for CAPEC Qualitative Scores

Qualitative Score Quantitative Scale Rating value

Very Low 0-0.2 0.1

Low 0.2-0.4 0.3

Medium 0.4-0.6 0.5

High 0.6-0.8 0.7

Very High 0.8-1 0.9

A safe state will indicate that a node has not been compromised by the attack, and

exposed state depicts that there has not been any evidence of a successful attack, but the

chances are high. We summarize these states and their state transition matrix setup in

Figure 6.

SAFE

(2)

EXPOSED

(3)

EXPLOITED

(1)

| p11  p12  p13 |

| p21  p22  p23 |

| p31  p32  p33 |

State Transition Matrix

Figure 6. Attack States and Transitions
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For the sake of simplicity in our estimations, we assume that in each time interval,

an attacker will traverse a distance of one-hop in the state transition diagram (Figure 5) and

there will be no backtracking (an attack on a node in exploited state will not transition to

safe or exposed state).

Accordingly, projecting Figure 6 on Figure 5; for a node with an attack in the

exploited state in a given time interval, can either transition to exploited, safe or exposed

states on its connected forward node. If an attack on a node is in safe state it will also be in

safe state on the connected forward node in the next time interval. Finally, for an attack on

a node in exposed state can transition into either the exposed, safe, or exploited state on the

connected forward node. Hence, we can update our state transition matrix as:


p11 p12 p13

p21 p22 p23

p31 p32 p33


=


p11 p12 p13

0 p22 0

p31 p32 p33


(5)

In eq. 5, a value of pi j = 0 indicates that there can be no transition from state

i to j. The remaining transition probabilities will be estimated using the likelihood of

success (given by l) of an attack k computed as (P(l)k), a subjective security bias factor

(µ j) estimating the impact of a security control to suppress an attack on a node j, and a

balancing weight (ωi) based on the state (exploited, safe, or exposed) of the attack on the

previously connected node(s) i, as shown below:

P(s)i j = ωi ×
(
P(l)k ∗ µ j

)
, ∀k ∈ AK (6)

where P(s)i j is estimated transition probability of an attack between two nodes, vi and

v j having states i to j and AK is the total number of attacks under consideration for the

current node, v j . The security bias factor µ j ranges between 0 → 1, where 0 conveys the

belief that the implemented security measure can suppress the likelihood of the attack(s) in
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AK completely and 1 indicates that the security measures has no impact on the attack(s).

Practically, the impact of µ j can be evaluated following the guidelines laid down for security

measures in [2]. The balancing weight ωi ∈ {E x, S, E p}, where E x, S, E p correspond to

Exploit, Safe, and Exposed state respectively. The estimate of P(s)i j will lie between 0→ 1.

We subjectively divide this into three ranges to determine the ωi value of the current

node. Since each of the nodes will correspond to an application element, one can determine

these ranges based on the specified asset level (Table 1 - high, medium, or low) of the

element during the security requirements phase. For example, an instantiation of these

ranges for a high security asset could be as follows:

P(s)i j =



0→ 0.1, ω j ∈ Sa f e ∧ ω j = 0

0.1→ 0.3, ω j ∈ E xposed ∧ ω j = 0.5

0.3→ 1, ω j ∈ E xploited ∧ ω j = 1

(7)

These ranges can be adjusted according to the security objectives of a client. There-

fore based on P(s)i j , if an attack’s state on the current node v in a time interval t is estimated

to be in exploited state, then the level exploitation (xt
v) can be estimated as follows:

1
AK

(∑
∀AK

Sevvj ×

( ∑
∀ak∈AK

NodeImpact

))
(8)

where AK is the total attacks under consideration for the current node, v j . Its quantitative

value can be estimated based on the rating scale shown in Table 2. ak is an attack in

AK . Sevvi and Sevcur is the net exploitation amount of the previous and current node,

respectively. The obtained value of xt
v is normalized over the total number of attacks under

consideration in order to keep the final output in the range of 0 → 1. NodeImpact is an
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application specific criteria which can be estimated as follows:

AssetLevel ×

(
1

AK

∑
∀ak∈AK

Cak + Iak + Avak

3

)
(9)

where AssetLevel ∈ {high,medium, low}, is the security relevance of the current node as

specified by the clients. Cak, Iak, Avak ∈ {high,medium, low} is the successful impact of

the current attack ak ∈ AK on confidentiality (C), integrity (I), and availability (Av). This

is further normalized to keep the final estimate within the selected quantitative scale. It can

be noted that if the previous node’s ωi ∈ Sa f e, Sevvj = 0, i.e. severity of the current node

connected to a safe node will be zero.

Finally, we need to update the level of exploitation computed in eq. 8 by including the

impact of the cloud platform misuse patterns which invokes the application attack patterns

(Figure 4). To do so, we use the result of the surveys conducted by cloud security alliance

(CSA) with regards to the top 12 cloud security threats and how they affect different cloud

security domains as listed in CSA’s cloud controls matrix documentation. A good publicly

available source in this domain can be found on Cloud Security Alliance’s (CSA) Security,

Trust & Assurance Registry (STAR)6. This registry is based on CSA’s Cloud Controls

Matrix (CCM) document [4], which provides security guidelines across sixteen cloud

security domains. These guidelines can be used by CSPs to provide security assessment

of their services and by client’s to evaluate the security guidelines present with a particular

CSP. Some examples of the security domains used in CCM are Application and Interface

Security, Audit Assurance and Compliance to Identity and Access Management and so

on. Each of these domains are broken down into their subcategories accompanied by

their control specification which helps in elaborating what kind of security measures and

compliance should addressed in these domains. CCM also lists the impact of these control

specifications on the cloud platform’s architectural domains like, Physical infrastructure,

6https://cloudsecurityalliance.org/star/
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Networking, Computing, Storage, Application, and Data as well as its applicability to

delivery models like, SaaS, PaaS, and IaaS. We consider CCM version 3.0.1 which consists

of 133 total control specifications (16 domains and their subcategories). For more detailed

analysis, readers are kindly referred to work in [36].

We utilized the results presented in [36] to create a list (Table 3) showing the

importance of cloud security domains in terms of their security relevance. The score

Table 3. Cloud Domains Security Relevance

Domain Score

Identity and Access Management 8
Virtualization, Encryption and Key Management, Application Secu-
rity, Information Management and Data Security

7

Incident Response, Traditional Security Business Continuity andDis-
aster Recovery, Cloud Computing Architectural Framework

5

Data Center Operations, Governance and Enterprise Risk Manage-
ment

4

Interoperability and Portability, Legal Issues 2
Security as a Service, Compliance and Audit Management 1

column in Table 3 shows how many of the 12 cloud security threats affects the given cloud

security domains. For most of these cloud security domains, a cloud service provider (CSP)

does provide some level of security. Nonetheless, a client does have some responsibilities

related to them. We shortlist these domains and create our own ranked list in Table 4 using

the scores given in Table 3.

Table 4. Cloud Security Domain Ranked List

Domain Rank
Identity and Access Management 5
Virtualization, Encryption and Key Management, Application
Security, Information Management and Data Security

4

Disaster Recovery 3
Legal Issues 2
Compliance 1
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We estimate the impact of our cloud misuse patterns on these cloud security do-

mains and update eq. 8 to compute the net exploitation level of an application element by

multiplying the normalized cloud security domain impact or CSDI using the ranks of the

cloud security domain as follows:

(xt
v)net =

(CSDI × xt
v)

TotalDomains
(10)

where TotalDomains is the total number of unique cloud security domains affected in the

computation of xt
v for a node v in the application. The resulting output of our framework

will then be a ordered list of application elements having a (xt
v)net value ranging from

0→ 5. This value will depict their importance in terms of security evaluation after taking

into consideration the feasibility of attacks that can exploit it when either hosted on a

private network or a cloud platform. We demonstrate the results of applying our proposed

framework to the use case scenario in Section 3.

2.2. Complexity Analysis and Scalability. In this section, we discuss the com-

plexity involved in designing our proposed risk assessment framework and its scalability

with respect to large scale application scenarios.

The initial steps involves the input of the application design using data flow diagrams

and creation of a database using algorithm 3. The database consists of information like

include, invoke, exploit, threaten, and mitigate. The generation of these data structures is

upper bounded by O(n2) (for e.g. algorithm 3, lines 4 to 18). Although for an application

having a set amount of security measures and assuming that the number of entries in attack

pattern together with cloud exploits (Table 1) over a period of time remains constant, we can

state that the generation of our database takes place in a constant time. The generation and

input of these information is followed by the estimations of the net exploitation levels ((xt
v)net)

by the traversing state transition diagrams as shown in Figure 5. These state transition

diagrams can be considered to be directed acyclic graphs and given the methodologies
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used by our proposed risk assessment framework, an optimal way to traverse it will be to

apply breadth first search. For a graph consisting of V vertices and E number of edges, the

complexity of breadth first search is upper bounded by O(|V | + |E |) which is linear time.

As we visit each node, we compute the transition probabilities (P(s)i j) and net exploitation

level of each node which takes constant time. Hence, assuming uniform attack patterns and

cloud exploits, our framework scales linearly as the size and complexity of the applications

increase.

On the contrary if we keep the application design constant and vary attack patterns,

cloud exploits, and security measures by taking into consideration different threat models

simultaneously, then the complexity and scalability of our risk assessment framework will

be squared. In a more pragmatic setup, we reckon that an application’s functionality

and security objectives drive the establishment of the attack models and not vice versa.

Therefore, it is more likely that future iterations of the design process will add more

application elements while keeping uniform attack models and security objectives.

3. SIMULATION AND RESULTS

In this section, we present the simulation results of our proposed risk assessment

framework applied to the use case scenario for a hotel management web application as

depicted in Figure 2. The primary input to our framework will be the state transition

diagram of our use case scenario which is obtained as explained in Section 2.1.2 and shown

in Figure 5. According to algorithm 3, we generate misuse patterns for our simulations

(Figure 4) which results in the set of the attacks as shown in Table 5.

The listed attacks having the superscript 1 originates in the application due to cloud

misuse pattern - malicious virtual machine instance. Whereas, attacks with superscript 2

is as a result of the misuse pattern - resource monitoring by adversary of collocated virtual

machines on the cloud platform. Remaining attacks can occur in the application due its
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Table 5. Attack Set for Simulation

Attack CAPEC
ID

Attack CAPEC
ID

Targeted Malware Attack1 542 Footprinting1 169
Directed Internal
Reconnaissance1

529 Man in the Middle2 94

XSS through log files2 106 DoS - Excessive resource
allocation2

130

Embedding scripts in non-
script element

18 Embedding scripts in http
headers

86

Command injection OS
command injection

88 Command injection LDAP
injection

136

Command injection SQL
injection

66 Http DoS (outside cloud
boundaries)

469

Simple Script Injection 63 MitM (outside cloud
boundaries)

94

nature of being a web application, irrespective of being hosted privately or on the cloud

platform. We aggregate the severity, likelihood and CIA impact values of these attacks from

CAPEC and obtain their quantitative estimates according to our rating scales (Table 2).

While applying the risk assessment methodologies to Figure 5, we assume the start

node (application API) is susceptible to the attack set (AK) (Table 5). As such, initially

the start node is assumed to be in the exploited state. Even though our framework will

help clients evaluate the impact of their incorporated security measures (µ j in eq. 6), its

primary focus is the prioritized identification of critical application elements which needs

to be protected in the event of different attack executions. The feasibility of this evaluation

relies on assuming the start node to be in the exploited state for all the attacks in AK .

The remaining transition probabilities (P(s)i j) is computed according to eq. 6, which for

transition of an attack k ∈ AK between nodes, vi → v j , considers the likelihood of the attack

(P(l)k), state of attack in vi, ωi ∈ {S, E p, E x} (eq. 7), and the security control µ j present

for attack k on node v j .



177

Table 6. Asset Type and ωi Ranges for Attacks

High Medium Low ωi
0→ 0.1 0→ 0.3 0→ 0.7 S

P(s)i j 0.1→ 0.3 0.3→ 0.7 0.7→ 0.9 Ep
0.3→ 1 0.7→ 1 0.9→ 1 Ex

For the sake of simplicity in our simulations, we have randomly selected the value

of µ j for the attacks from a continuous probability distribution of 0→ 1, where a value of 0

will indicate that the security measure is able to suppress the attack completely and a value

of 1 means that the security measure has no impact on the attack. For practical scenarios,

one can estimate µ j more accurately according the concepts of security measure evaluation

as given in [2]. Based on the estimates of the transition probabilities for the attacks and the

asset level of the node v j , we will shortlist the set of attacks that can exploit v j , expose it,

or reside in the safe threshold. This shortlist is created according to eq. 7 and we present

the ranges for high, medium, and low assets used for our simulations in Table 6.

In our simulation, the estimations of the assumed asset levels for our nodes in

Figure 5 is given in Table 7 along with the reasoning of our selections given the threat

model discussed in Section 2.1.1. All the remaining estimation parameters involved in our

risk assessment simulation along with their quantitative boundary values are summarized

in Table 8.

Let us consider the assessment of the following attacks from Table 5 - Embedding

scripts XSS in http headers, Footprinting, and XSS through log files. The likelihood (P(l)k)

for these attacks are 0.7, 0.7, and 0.5 respectively. The estimated µ j values for these attacks

on a simulation run are 0.02, 0.75, and 0.27 respectively. This indicates amount of security

on log in node for the considered attacks. Assuming an ωi value of 1 (estimated state of

attacks on start node), the transition probability from start node to Log in node for say XSS

in http headers attacks will be computed according to eq. 6 as shown in eq. 11. Similarly,

transition probabilities for Footprinting and XSS through log files attacks are - 0.525 and
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Table 7. Assumed Asset Levels for Use Case Scenario

Node Asset
Level

Notes

Log in High Coupled with user credentials; source node
Create Reservation High If spoofed can occupy empty room slots,

denying service to legitimate users
Confirm Reserva-
tion

Medium Not of same value as create; but unwarranted
confirmations can still lead to unwanted con-
sequences

Cancel Reservation Low Reduces negative outcome even for spoofed
reservations. Not much value to adversary

Fulfill Reservation High Involves user financial transactions; destina-
tion node

Close Reservation Low Since it comes after fulfill, at this point there
is nothing to exploit

0.135. Once transition probabilities values are obtained, our framework estimates the state

of the attacks on the node they transitioned to. This is based on the specified asset level of

the nodes (Table 7) and ranges to determine the state (Table 6).

ωi ×
(
P(l)k ∗ µ j

)
= 1.0 ∗ 0.7 ∗ 0.02

= 0.014
(11)

Table 8. Simulation Attributes

Attribute Notation Values
Attack likelihood (Continuous) P(l)k 0→ 1
Security bias (Continuous) µ j 0→ 1
Balancing weight (Discrete) ωi {0,0.5,1}
Transition probability (Continuous) P(s)i j 0→ 1
Exploitation level (Continuous) (xt

v)net 0→ 5
Asset level (Discrete) AssetLevel {0.7,0.5,0.3}
CIA impact (Discrete) C, I, Av {0.7,0.5,0.3}
Cloud security domain impact (Discrete) CSDI {1,2,3,4,5}
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For our use case scenario, Log in node’s asset level is high. Hence, XSS in http

headers will fall into the safe state and thus, will not be considered for further transitions.

Footprinting and XSS through log files will fall in exploited and exposed categories, and

will be considered as the new attack set from which attacks can transition to the next

nodes. Further, in order to compute the net exploitation of a node ((xt
v)net) in state transition

diagram (eq. 8, 9, and 10), we consider only the attacks that are present in exploited state for

a given node. As such exploitation due to Footprinting attack will be computed as shown

in eq. 12. These computations will involve normalizations if multiple attacks are present

in the exploited attack set. Further, if the attacks in the exploited state are initiated due to

the misuse cases of the cloud platform then we update the level of exploitation computed

above.

This is done by including the cloud security domain impact factor (eq. 10), for

e.g. Footprinting attack is invoked as a result of malicious virtual instances. This misuse

pattern can impact the identity and accessmanagement domain by injectingmalware causing

identity theft in the application or leading to misconfiguration of the application’s virtual

machines.

xt
v =Sevvj ×

(
AssetLevel ×

(
Cak + Iak + Avak

3

))
=0.1 ∗

(
0.7 ∗

(
(0.5 + 0.3 + 0.3)

3

))
=0.0252

(12)

Thus, we recompute the level of exploitation by using the ranks of these cloud security

domains (Table 4) as follows:

(xt
v)net =

(CSDI × xt
v)

TotalDomains
= ((5 + 4) ∗ 0.0252)/2

=0.1134
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Table 9. Simulation Results

Node Severity
(xt

v)
Cloud Domains
(CSDI)

Net Exploitation
((xt

v)net)
Log in 0.30 5,4 1.33
Create reservation 0.33 5,4 1.47
Confirm reserva-
tion

0.32 4 1.26

Cancel reservation 0 NA 0
Fulfill reservation 0.39 4 1.53
Close reservation 0 NA 0

These processes are repeated until no more attacks remain in the attack set to transition onto

the next node or all the nodes in the state transition diagram have been traversed. For cases

where a node may have multiple child nodes, like create reservation can be transitioned to

from log in as well as start node (Figure 5), our framework will consider the maximum of

the ωi values of an attack from the multiple transitions. To elaborate this, consider an attack

which transitions from start node to log in node and gets categorized as safe or exposed

state. If categorized as safe, this attack will not be considered for transition from log in

node to create reservation node. For exposed, the ωi value will be taken as 0.5, reducing

the transition capabilities of the attack. But if the create reservation node can be directly

reached from the start node, the adversary can bypass the security measures present in the

log in node. Further, absence of adequate security measures create reservation node, may

result in exploit state. In doing so, if this attack was in safe state from log in to create

reservation it will be added to the attack set (maximum of ωi ∈ {0, 1}) or category will be

updated to exploited (by taking maximum of ωi ∈ {0.5, 1}).

Once we have computed xt
v, we update it by adding the cloud domain impact by

identifying the attacks in the attack set belonging the exploited category originating as a

result of the cloud misuse patterns. Accordingly, the final obtained results of (xt
v)net value

for our use case scenario nodes are given in Table 9. The net exploitation column in Table 9

translates to the amount of threat an application element is susceptible to in the event of
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attacks executed from the set of attacks AK . Sorting net exploitation in descending order

will yield a prioritized list of critical application elements which needs to be secured in the

event of security exploits on the application.

With regards to our use case scenario, the risk assessment framework gives notable

relevance in securing fulfill reservation. This is followed by create, log in, and confirm

reservation. Finally, no emphasis is given to cancel and close reservation elements. We

reckon that this behavior is based on the nature of our use case application wherein the fulfill

reservation element is responsible for handling financial transactions. Create reservation is

given the second highest relevance for two foreseeable reasons. First, it is the crux of the

entire room reservation process making sure that service availability is present for legitimate

users. Secondly, it can be directly accessed by employees of the hotel as well as by external

users through the log in process. Given the possibilities of outsider and insider attacks on

one node in contrast to just outsider attacks on log in node, create reservation in our opinion

gets rated higher than log in node. The third node emphasized in the output is log in, for

being the entry point of all outsider attacks and also hosting user’s authentication facilities.

This makes it prone to attacks that would steal user credentials. Confirm reservation is the

last on the list which is given some security emphasis. Attacks on this node will aggravate

the denial of service situation which can start from the create reservations node. But we

reckon that the reason it gets a lower relevance compared to the other nodes is because

higher capabilities are required by an attacker to exploit this node as they will need to

commit some form of identity to confirm a reservation. Finally, no emphasis is given to

cancel and close reservation which could be because an attacker does not stand to gain

anything by exploiting these nodes with regards to our assumed threat model.

With respect to our use case scenario, such output validates the security objectives

specified in the security requirements phase but it also provides some additional insights

into the scenario. First, our framework provides deeper granularity of security emphasis

to a set of application elements belonging to the same asset level category. To elaborate
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this, let us consider the traditional approach to allocate security resources. It is done based

on the asset level (high, medium, or low) of different application elements specified during

the security requirements phase. But then the question is - for all elements belonging

to a particular asset level should we allocate equal amounts of security resource? One

can answer this question by performing a bunch of what-if analysis or using other similar

methods. Although, our assessment framework semi-automates this approach. Considering

our use case scenario, all three nodes - log in, create reservation, and fulfill reservation are

categorized as high asset level. After the output of our framework, we are presented with a

more prioritized output - fulfill reservation ((xt
v)net = 1.53) > create reservation ((xt

v)net =

1.47) > log in ((xt
v)net = 1.33) . In terms of decision making of security resource allocation

and further assessments, this will provide more clarity to clients.

Secondly, the output also factors in the threats arising due to the cloud platform. The

severity column in Table 9 shows the security relevance given to the application elements

while considering it solely as a web application. In this direction, the impact on confirm

reservation (xt
v = 0.315) is higher than that of log in (xt

v = 0.296) which in a way is

contradictory to the asset level specification of these elements in our use case scenario -

confirm reservation: medium and log in: high. However, once we include the effect of the

attacks originating from the cloud platform which can exploit the application in the form

of cloud security domain impact (Table 4, eq. 10), we see that log in ((xt
v)net = 1.33) gets

a higher priority than confirm reservation ((xt
v)net = 1.26). Hence, aligning the obtained

output with the specified security objectives.

4. DISCUSSIONS

In contrast to traditional approaches of hosting an application on a private network,

it is more cost efficient for clients to migrate their application to a cloud platform. However,

this move also entails security concerns on the client’s part regarding their application.
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Taking such challenges into consideration, our proposed framework has the added inclusion

of cloud security domains in terms of performing risk assessment for their application

during the design phase of the software development lifecycle process.

Clients can use our proposed framework to comprehensively assess the security

threats it might be exposed to as result of being a web application which might be hosted on

a cloud platform in the future. Such kinds of assessment performed during the design phase

makes the development process economical for the clients and also helps them prepare

against the security uncertainties of hosting their application on a cloud platform. The

relevance of our proposed framework can be expressed in two salient features.

First, to help clients estimate the impact of preventative security measures they plan

to incorporate in their application. Secondly, to identify critical assets in the application

that needs to be protected in the event of successful attack exploitations. The latter being

the primary focus of our framework, clients are presented with a list of application elements

prioritized according to their level of exploitation by taking into account a feasible set of

attacks. Such output list will help in the decision making process of allocating security

resources which may be constrained by a client’s budget.

Furthermore, ifmultiple application elements are declared as high asset levels during

the security requirements phase, it is imperative for clients to decide whether to allocate

them with equal amounts of security resources. One way to address this is to use traditional

mechanisms like annualized loss expectancy (ALE) [40]. But coupling these mechanisms

such as ALE with the output of our framework can be used to gain a deeper understanding

of the security impacts on the application elements belonging to the same asset level and

how much of that impact is contributed by threats from the cloud platform. These outputs

can be further used in conjunction with the functionality of the application elements in

question, which will help in making more informed decisions related to security measures

allocation.
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Additionally, clients can also estimate how much security impact the cloud will

have on their application elements. It will help them analyze scenarios like - will the risk

of an application element solely increase because of being on the cloud. Knowing what

elements could be vulnerable on the cloud at an earlier stage of software development will

make clients much more prepared once they migrate their application to the cloud platform.

This is beneficial in contrast to patching or rewriting their application elements or having

to solely rely on the security provided by cloud vendors.

5. RELATEDWORK

In this section, we will briefly discuss the literature review related to our proposed

risk assessment framework. In doing so, we have categorized them into two domains -

(1) risk assessment of applications in different stages of the software development lifecycle

process, and (2) risk assessment of cloud computing platforms.

As presented in [40] [41], risk analysis has become an integral part in the various

stages of the software development process. Building in security from the design to the

testing phase of a software results in more secure software and makes the overall process

cost-efficient. One of the most notable risk assessment works in this regard is [5] leading to

the maturation ofMicrosoft’s STRIDE process which is now one of the widely accepted risk

assessment standards in the community. Several works followed thereafter to improve the

risk assessment process like [38], [25], [6], [42]. Further, authors in [14] have addressed the

automation of the risk assessment models during the software design phases. Along these

lines, works like [27] have also presented techniques for inclusion of security mechanisms

in the various stages of the agile software development process which is now one of

popular models in the software development process. In addition to inclusion of security

mechanisms in the software design and development stages, several works like [29], [12], [7]

have addressed the security aspects in the software testing stages. Their primary focus in

this domain being the automated generation of security aware software test cases.



185

Numerousworks are present in the literature that addresses risk assessmentsmethod-

ologies related to the cloud computing domain as surveyed in [20]. Some of the earlier

works in this domains discusses the security impacts uniquely arising due to the cloud

infrastructure like in [19], which investigates the threats occurring due to the setup and

distribution of cloud services, outlining the threats in terms confidentiality, integrity, and

availability of cloud infrastructure. Whereas, other risk assessment works discusses security

concerns related to very specific domains such as network based attacks [24], and security

concerns related to the data residing on the cloud platform [33]. The authors in [39] have

also explored into the possibilities of providing risk assessment as a service to the clients

contemplating hosting their application on the cloud platform.

Other works like [16], introduces security metrics to service level agreement (SLA)

documents such that clients can not only assess the quality of service related to a cloud

service they want to rent but also the security risks associated to it. Further with respect

to assessing the security of cloud platforms a challenging aspect is to keep up with the

dynamic environment of the cloud platform as well as the evolving needs of the clients. In

this regard, authors in [13] have proposed a tool for dynamic andflexible service provisioning

of cloud services to clients which can account for estimations of parameters such as trust,

associated risks, and cost. Such tools will help clients in predicting and adapting efficiently

to unanticipated changes in resource requirements on the cloud platform.

In more recent trends, authors in [10] propose a risk assessment framework for cloud

computing platforms by assessing the SLA as presented by clients and assessing from the

cloud vendor’s perspective to check the number of SLA violations that might take place

in accordance to the demands presented by the clients in their SLA. Other recent works in

risk assessment of cloud service provider as presented in [9], utilizes information gathered

from clients and cloud vendors to assess different risk scenarios. They do so by proposing a

machine learning framework which leverages the security evaluation documents of various
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cloud vendors publicly available on Cloud Security Alliance Security, Trust and Assurance

Registry or STAR to present a quantitative rating output to describe the risk associated with

different cloud services.

Nevertheless, performing risk assessment requires an actionable output which users

can utilize. In this regard, quantitative estimates have leverage over qualitative analysis.

Therefore, works can be found across the literature both in terms quantitative risk assessment

for software applications [43] and for cloud security [34], [15]. Finally, a pre-requisite to

performing risk assessment is to understand and estimate the types of security threat an

application (or platform) might be exposed to. In this regards, security attack patterns

coupled with misuse cases is a good way to elicit the mechanisms in which an application

might be attacked. Security attack patterns for software application have been studied

vehemently by the community [26] and its coupling with application abuse [22], [44] and

misuse cases [37], [11], [32] have well-found acceptance and feasibility. But in contrast to

the well-studied attack and misuse patterns of software applications, cloud misuse patterns

[18] are still in its dormant stages and requires further analysis to create a comprehensive

knowledge base which can be used in a modular fashion to analyze the risks associated to

software applications which will be migrated to the cloud platform.

In comparison to the aforementioned works, our proposed framework attempts to

bridge the gap between performing risk assessment for software applications and the cloud

platform. In doing so, we integrated cloud security domains to the risk assessment procedure

of a software application during its design phase. Our framework not only helps clients to

assess the security measures they plan to incorporate in their application but also to identify

application elements which needs to be protected in the event of a successful attack. Such

estimations will also help to single out the impact of the cloud platform thereby boosting

the client’s confidence in terms of the security of their application on a cloud platform.
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6. CONCLUSION AND FUTUREWORK

In this paper, we have presented a risk assessment framework for applications during

its design phase by introducing cloud security domains as an assessment metric. This has

been done with the objective of benefiting clients who might consider migrating their

application to the cloud platform in the future. In doing so, clients will not only understand

the threats that their application might be exposed to, but also how much of that threat is

due to hosting of their application on a cloud platform. This will help clients design and

develop applications with much more preparedness towards the security uncertainties of the

cloud platform.

The presented risk assessment framework will give the clients a list of application

elements that needs to be secured in the event of different attack exploits. Using this output

clients will be able to allocate security resources appropriately in case they are limited by

budgetary constraints. To our knowledge, there is no prior work addressing the design phase

risk analysis of applications to be hosted on cloud platforms.

As a part of our future work, we would like to develop a much more comprehen-

sive cloud misuse pattern database and extend our risk assessment framework to develop

and suggest efficient security measures addressing the economics involved in the security

spending process. We also intend to develop the design phase risk assessment tool in future.
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ABSTRACT

The Internet of Things (IoT) environment is characterized by heterogeneous devices

which collaborates to facilitate various sensing services to users in different domains. Cur-

rently, these services are provisioned to users by having them specify their functional and

quality of service (QoS) preferences, similar to traditional QoS-driven web services selec-

tionmethods. However, adopting conceptually similar web services selection framework for

IoT environments is not sufficient because they do not allow users to specify their security

preferences. Similar to QoS preferences, a user’s security preferences may vary and change

over time. Hence, there is a need for a framework that will allow users to explicitly specify

their varying security preferences for IoT services. In this paper, we propose a user-centric

framework for secure service provisioning in IoT environments by allowing users to express

their variable security preferences and QoS requirements from the network that will support

their applications. Additionally, we present a multilayer perceptron to validate the users’

satisfaction feedback from the provisioned services.
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This is done by utilizing deep learning techniques and quality of experience (QoE)

information captured from the physiological sources like wearable body sensors. In this

regard, we simulate our framework on a case scenario, discuss its applicability and chal-

lenges.

Keywords: Internet of Things; User-centric modeling; Security Preferences; Variable

Security Compositions;

1. INTRODUCTION

The Internet of Things (IoT) paradigm is becoming a norm across many different

user-centric applications. It facilitates services to users by encapsulating their way of life

with the Big data sensed by surrounding wireless devices. Service provisioning for IoT-

based applications involve developing frameworks which will identify a subset of wireless

devices, tasked to serve different users. Generally, such frameworks consist of two primary

layers - perception layer, comprising of IoT sensory devices, and management layer like the

Cloud or Edge platforms to process the sensed data.

Existing IoT-based frameworks extend these two layers according to their applica-

tion’s need, in different domains like industry [20], health care [10]. Therein, they address

specific issues either arising due to resource constrained IoT devices or interoperability

challenges as a result of device heterogeneity [1], or discuss about making the management

layer more efficient [16]. Although novel in their own regards, these frameworks lack the

inclusion of user-centric behavior to dispense IoT-based services accounting for a user’s

Quality of Service (QoS) and security preferences. The aspect of addressing user QoS dur-

ing service discovery and selection has been presented in [21]. The primary focus there is to

outline the process of dynamic identification of IoT devices for service selection. However,

they do not consider the satisfaction or variability of a user’s QoS/seurity preferences.
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In addition to QoS, users’ security requirements from the participating devices in

various IoT based application scenarios plays an important role. However, addressing

security in this domain is a challenging task. This is because IoT devices are resource

constrained (mainly in terms of memory, energy, and bandwidth) and thus, cannot support

the well established resource intensive security protocols. Rullo et al. [17] address this

challenge by leveraging concepts of optimization and game theory. However, the allocation

of security resources is done from the infrastructure’s perspective and do not include users

in the loop. For the task of service provisioning in IoT environments, the aspect of security

cannot be treated as a constant parameter. This is because security attacks on a network (e.g

denial of service) has an impact on the QoS parameters (e.g. response time). Therefore,

similar to network QoS, a user may have variable security preferences which must be taken

into consideration, in addition to their QoS and functional preferences (e.g. region of

interest, service duration) during service provisioning.

To elaborate this scenario, let us consider an instantiation of an IoT service for

disastermanagement integratedwith a Cloud platform. It can consist of an IoT infrastructure

layer enumerated by devices like cellphones, sensor nodes, wearable body sensors, gathering

and relaying data such as temperature, CO2, user heart rate, images and video feeds. The

management layer can be the traditional Cloud platform or Sensor Cloud [14], a variant of

the Cloud platform to provide sensing-as-a-service. In a typical scenario, normal users may

query for k nearest safe zones or evacuation routes. In contrast, rescue workers and first

responders can analyze and query incoming sensory data (or image/video feeds) to gauge the

disaster affected regions. Service provisioning parameters (functional, QoS and security)

for both regular and first responder category users may not be the same. Furthermore, it is

typical for users, even within the same user category, to have different needs. For example,

one user may give more emphasis to privacy and authentication of data whereas another

may give more priority to availability and latency.
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In such a scenario, a frameworkmodeled in a secure user-centric fashionwill allow its

users to specify their functional, and variable QoS and security preferences. This paradigm

will include users in the service provisioning loop instead of solely relying on the innate

networking and security capabilities of the IoT infrastructure. In turn, this will alleviate

some of users’ apprehension about the security provided by their subscribed services,

thereby improving the overall user experience; something that existing IoT frameworks do

not address.

The output of a user-centric service provisioning framework is an IoT network

provisioned to a user based on their functional and variable QoS and security preferences.

The effectiveness of this output is evaluated based on the satisfaction of subscribed users

with respect to using the provisioned services. In traditional web services selection domain,

this is measured based on a subjective satisfaction feedback provided by the user [8]

[4]. Although, such a feedback maybe either prone to bias, or inaccurate due to users’

lack of service familiarity leading to sub-optimal results [22]. To address this challenge

during service provisioning in IoT environments, a novel way is to incorporate quantitative

evaluation of users’ quality of experience (QoE) information [7]. This can be obtained from

users’ physiological data like Electrocardiogram (ECG), Galvanic skin response (GSR), or

skin temperature, which can help elucidate different user emotions [18] and validate the

subjective satisfaction feedback provided by the users.

Our objective in this work is to address the aforementioned challenges by proposing

a user-centric service provisioning framework for IoT environments, designed to achieve

variable security, QoS preferences and users’ satisfaction. Our contributions in this regard

are as follows:

• Enable users to specify their personalized security preferences during service provi-

sioning, therebymodeling network security as a variable parameter similar to network

QoS;
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• Introduce the concept of variable security composition paradigm to capture a user’s

variable preferences on their desired security protocols;

• Model service provisioning by integrating concepts of multi-objective optimization

and user elastic preference specification; and

• Design a multilayer perceptron to accurately validate users subjective satisfaction

feedback by incorporating physiological sensor data and deep learning emotion clas-

sification methodologies.

The rest of the paper is outlined as follows. In Section 2 we discuss some of

the notable and significant works in the literature. We present our application scenario

and proposed method in Section 3 and follow it up with our evaluations and analysis in

Section 4. Finally, we conclude our paper and discuss some of the challenges which we will

address as a part of our future work in Section 5.

2. RELATEDWORK

The task of service provisioning in IoT domain is of importance due to the presence

of numerous heterogeneous energy and resource-constrained IoT devices, collaborating

to provide various services to users. This task becomes especially challenging when the

services have to abide by some quality of service (QoS) and security requirements. This is

because of the dynamic and uncertain nature of the IoT environment in which the services

may span across multiple platforms.

Along these directions, [12] has proposed a probabilistic approach to evaluate the

dependability and cost of service composition in IoT environments. They propose a finite

state machine (FSM) to model the functional preferences and extend their FSM to use

Markov decision processes to model the costs of the IoT services.
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[3] has also proposed a method that utilizes social network paradigm to manage

IoT devices and dispense services in a distributed fashion. They make use of RESTful

web services to abstract the device specifications, thereby providing a transparent layer to

invoke their services. Other works like [15] and [11] discuss the topics of conservation

of energy of IoT devices while service provisioning. In this regard, [15] has outlined an

evolutionary game approach which aims at avoiding the congestion of different services

on the same set of IoT devices thereby increasing application hosting lifetime. In [11], in

addition to energy consumption, it also addresses the optimal management of QoS. To do

so, it proposed an energy-centered QoS-aware service selection algorithm (EQSA) which

identifies IOT services based on QoS preferences requested by a user They subsequently

evaluate the preferences based on Pareto optimality of their energy consumption and user’s

QoS preferences. In a similar direction, [21] has proposed an event-aware framework for

dynamic services discovery and selection in IoT domain. Their primary focus in this regard

is the dynamic discovery of the available services in an unpredictable IoT environment

along with accounting for the user’s QoS requirements.

These proposed models and approaches are not comprehensively user-centric as

they do not address the satisfaction and variability of the considered users’ QoS. Further,

users’ security preferences, similar to their QoS requirements may vary, and needs to be

considered while developing a user-centric framework for service provisioning. Addition-

ally, optimization techniques and game theory approaches may yield optimal results, but

it leaves users with the task of identifying the best plan from the Pareto optimal services.

We address this challenge by introducing ranking of optimized service plans by allowing

users to specify their trade-off on optimization objectives like security, QoS, and cost. This

notion is adopted from web services selection which has been heavily based on ranking

services according to their QoS factors as shown in [8]. Since, combining multiple QoS

factors makes QoS-based service selection a difficult task, as users struggle to find the right

service with an optimal QoS factors combination [8].
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Recently, the utilization of users’ physiological data to create personalized contents

by evaluating their emotional levels has seen a rising trend in different domains. [9] has

proposed a model that relies on users’ physiological data to analyze their experience related

to video games and created user-tailored contents to increase their levels of engagement. [5]

also proposed a model for self-adaptive software systems which collects several user data

like electrodermal activity, physical activity, and skin temperature. In addition, [2] has

proposed a method to use physiological sensor data to make decisions in the health care

domain. However, these works tend to use an emotion classification index which is binary

in nature i.e. presence or absence of emotions like joy, stress, anxiety, etc. This was

addressed in [18], where a model using pscyho-physiological user data simulated for a

mobile gaming environment using a naive Bayes approach to classify a user’s frustration on

multiple levels has been proposed. Our proposed multilayer perceptron to validate user’s

satisfaction feedback in this work is inspired by the techniques presented in [18]. We classify

multiple levels of user satisfaction using deep learning techniques and supplement users’

physiological data with their functional, QoS, and security preferences used for service

provisioning in IoT environments.

3. PROPOSED FRAMEWORK

Our proposed user-centric service provisioning framework in IoT environments, for

providing on-demand variable security and QoS comprises of two main stages: (1) IoT

service provisioning, and (2) user satisfaction feedback validation.

In the first stage, service provisioning output for a given user will be a Pareto optimal

set of IoT networks, composed of different combination of IoT devices, formulated based on

three primary user inputs: (1) functional preferences (2) QoS preferences and (3) security

protocol preferences. The service provisioning stage is first modeled as a multi-objective

optimization problem, employing existing genetic algorithms like NSGA-II [6], with the

goal of minimizing cost incurred by users subscribing to the IoT services (Section 3.1),



199

 

IoT 

Service Provisioning 

Satisfaction Feedback 

Validation 

MLP Classifier 

Optimizer 

Engine 

User Linguistic 

Trade-off Engine 

IoT 

DB 

IoT Devices 

Metadata 

User 

Functional 

 QoS 

Security 

Preferences 

QoE  & Sat.Feedback 

Selected Network 

User-centric IoT Service Provisioning 

Framework   

Figure 1. User-centric IoT Service Provisioning Framework Summary

and maximizing the satisfaction of users’ QoS (Section 3.2.1) and security preferences

(Section 3.2.2). However, optimization approaches minimize the individual objectives

without any regard of the relationship that exists between them.

For instance, security preferences (e.g. a heavyweight encryption scheme) and QoS

(e.g. response time) are conflicting and therefore, both might not be satisfied at the same

time. In such scenarios, users should be able to explicitly trade-off amongst the optimization

objectives, making their overall preferences known to IoT service providers. To do this, we

have adopted the method outlined by authors in [8].

In the second stage, users will subscribe to, and use one of the IoT networks from the

service provisioning stage. While doing so, their physiological data like electro cardiograph

(ECG), galvanic skin response (GSR), and skin temperaturewill be collected and propagated

to our framework. After the service duration ends, userswill provide a subjective satisfaction

feedback on a scale of very high, high, medium, low, very low. This feedback will be used

as ground truth and the collected physiological data along with the input parameters of

stage 1 will be passed through our multilayer perceptron (MLP) (Section 3.4), to accurately

validate the users’ satisfaction feedback. A summary of our proposed framework is shown

in Figure 1.
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The service provisioning stage is aided by the optimizer engine and the user pref-

erence trade-off engine (Figure 1), which will help to output a ranked list of optimal IoT

networks, conforming to a user’s explicit trade-off strategy with respect to cost, QoS, and

security preferences. The user satisfaction feedback validation stage is supported by our

proposed MLP classifier that helps to validate a user’s satisfaction feedback by using their

quality of experience (QoE) information. Further, our framework also utilizes an IoT device

metadata database which is detailed in Section 4.

In the following sections, we outline the utility models for cost, QoS, and security

preferences that is used at the IoT service provisioning stage, in conjunction with the

optimization engine (see Figure 1), to generate optimal networks that meets the request of

a particular user.

3.1. Functional Preferences and Cost Model. The IoT service provisioning stage

of our proposed framework first takes a user’s functional preferences input, and matches it

against the IoT metadata database, to identify a candidate set of existing IoT devices, which

can facilitate service for the user. In this regard, a user’s functional preference input consists

of a string containing:

1. The desired sensing attributes, networking, and data protocols;

2. Four coordinates representing their desired region of interest;

3. Sensing frequency and service duration;

4. Cost, QoS, and security satisfaction thresholds; and

5. User preference trade-off strategy on the optimization utilities.

Our framework first performs a functional preference match to filter a set of relevant IoT

devices that are present in the IoT database. Thereafter, from this set, devices which can

provide sensing service in the user’s desired region of interest, are selected as the candidate

set. This candidate set will be passed onto the optimizer engine. In this engine, the utilities
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of QoS, Security preferences (Section 3.2.1 and 3.2.2), and costs (Section 3.1.1) will be

evaluated against the threshold values specified by the user, as his/her functional preference

(trade-off analysis discussed in Section 3.3).

3.1.1. Cost model. In our framework, we compute the cost (C) to users for sub-

scribing to the services of the provisioned IoT networks based on the volume of data traffic

(ν) that will generated and transmitted to the user. This will be directly proportional to the

sensing frequency ( f ), service duration (τ), and number of devices (η), constituting the IoT

network serving a particular user, as shown below:

C ∝( f , τ, η)

ν = f × τ × η

C =K × ν

(1)

where K is a constant, representing the subjective service provider specific cost value per

byte of data transmitted. This will be one of the optimization utilities that our framework’s

optimization engine will attempt to minimize. A notable thing in this regard is that, since

the cost C is directly proportional to the number of participating devices in the network (η),

attempts to minimize C will be directly affected by minimizing η, as the other two factors

are user specific constants. Further, if CT is the cost threshold that a user is willing to pay

for a service, we define the cost satisfaction degree iCd as follows:

iCd = (CT − C)/CT | (iCd < 1)&(CT,C) > 0 (2)

As iCd approaches 1, better is the cost satisfaction degree. A negative value for iCd indicates

that the cost of provisioned network is greater than what the user is willing to pay (CT ).

Finally, iCd cannot be 1, since this will mean that there is no service cost involved with the

provisioned network. The objective of our optimization framework will be to maximize the

utility of cost satisfaction degree. In addition to the cost utilities, for each of the networks
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formulated using the IoT devices in the candidate set, our framework computes the utilities

of their QoS and security preferences satisfaction degrees. These computations are done

based on a user’s non-functional preference input and our QoS and security preference

models. We outline the same in the following section.

3.2. Non-functional Preferences and QoS-Security Models. The input to our

QoS and security preference satisfaction models is a user’s non-functional preference. This

input will be a string containing: (1) user’s preference trade-off strategy on QoS attributes;

(2) desired upper and lower bound values indicating the user’s variable QoS preferences;

and (3) list of variable security protocols and their preference weights. The first two inputs

will be used to compute the QoS satisfaction degree, whereas the third input will be used

to compute the security preference satisfaction degree of a provisioned network. We detail

these computations in the following subsections.

3.2.1. User preference on QoS factors. As mentioned in Section 3.1, functional

attributes in the domain of IoT can be captured through parameters like region of interest,

sensing frequency, and service duration. On the other hand, non-functional attributes like

QoS preferences, are typically captured based on a combination of factors like availability,

reliability, throughput, and response time. However, with the availability of several devices

in a given region of interest with similar functionality, users may end up with multiple

networks that can facilitate a requested service. Therefore, the challenge is to select

the service, via an IoT network, that best satisfies a user’s requirements. To address

this challenge, users can personalize their preferences on QoS factors, which provides a

distinction among competing IoT networks. Although, this personalization comes with

additional challenges such as having to deal with conflicting QoS attributes and being

unable to explicitly specify their trade-offs among QoS factors to make their preferences

known to service providers.
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To ensure that users’ personalized preferences on QoS factors are fully captured,

we employ a method based on fuzzy logic [8]. The method allows users to represent their

variable QoS requirements and associated importance using linguistic terms to specify their

personalized trade-off strategies. Users’ personalized QoS attribute requirements are first

captured through linguistic terms, then by users’ membership function, and finally users’

importance on QoS factor(s). For instance, a user may specify response time QoS factor as

follows: The response time for my IoT network must be HIGH, which is a linguistic term

in fuzzy logic whose membership function specifies a user’s preference on the response

time QoS factor. Formally, let S = {s1, s2, s3, ..., sn} denote a set of services representing

IoT networks formulated using a combination of IoT devices in the identified candidate set,

U = {u1, u2, u3, ..., um} be a set of users, and Q = {q1, q2, q3, ..., qk} a set of QoS factors

describing each provisioned IoT network. The personalized QoS preference PQ j

Ui
for a user

Ui on their QoS factor Q j is a membership function δ and a weighting factor $ given as:

PQ j

Ui
= δ(Ui,Q j) ×$(Ui,Q j) (3)

Generally, there are severalQoS factors that describe a service. Therefore, the overall

personalized service requirement, RUi , can be specified using individual personalized QoS

preference, PQ j

Ui
, and an aggregation operator,

⊔
as shown in eq. 4. Here,

⊔
is any of the

fuzzy connective operators ∧, ∨ or ⊗. Given a user Ui, their preferences on QoS factors

Q1 and Q2, PQ1
Ui

and PQ2
Ui

the fuzzy connective operators are computed as shown in eq. 5.

In our proposed framework, the following QoS factors are considered - Response time

(RT), Availability (A), Throughput (T), and Reliability (RE). Therefore, for a user Ui, an

instantiation of eq. (4) using his/her personalized QoS preferences PQ j

Ui
is shown in eq. 6.

Given S, Q, and R, the service provisioning process in the IoT environment can be modeled

as a ranking in terms of the satisfaction of requirement R.
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Therefore, for any two services Si and Sj composed of a combination of IoT devices,

the concept in eq. 7 should hold true.

RUi =

k⊔
j=1

PQ j

Ui
(4)

⊔
=



∧, min(PQ1
Ui
, PQ2

Ui
)

∨, max(PQ1
Ui
, PQ2

Ui
)

⊗, mean(PQ1
Ui
, PQ2

Ui
)

(5)

RUi = PRT
Ui
∧ PA

Ui
∨ PT

Ui
⊗ PRE

Ui

RUi = min(PRT
Ui
, PA

Ui
) ∨ mean(PT

Ui
, PRE

Ui
)

RUi = max(min(PRT
Ui
, PA

Ui
),mean(PT

Ui
, PRE

Ui
))

(6)

Si � Sj ⇐⇒ SatR(Si) ≥ SatR(Sj) (7)

Where SatR(Si) (eq. 6 and 7) represents the QoS satisfaction degree of service Si with

respect to some user requirement R. Hence, using eq. (3) and (4) our framework will

compute the QoS satisfaction utility (SatR) which will be maximized by the optimization

engine of our framework during service provisioning. Nevertheless, QoS preferences do

not completely model the secure user-centric paradigm of our proposed framework. In

addition to QoS preferences, an essential component is to account for the user’s variable

security preferences which we discuss in the next section.

3.2.2. Variable security preferences. The different layers of a typical IoT frame-

work may have different security requirements for different application domain (e.g. health

care, smart cities, etc). The different security requirements stems from the presence of

diverse range of participating devices and protocols, which makes the incorporation of
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end-to-end security a challenging task. Furthermore, with respect to developing an IoT

framework to account for users security preferences, it is challenging to rely on a univer-

sally defined security policy. This is because a user’s security requirements may vary with

time. For example, they may initially have a higher preference on confidentiality of data,

but at a later stage may have more emphasis on network availability. These circumstances

necessitate the presence of variable security composition (VSC) paradigm, that will be

flexible according to users’ varying security preferences and device capabilities to support

them.

In our proposed framework, VSC will be characterized using two parameters: (1)

users’ security protocol preferences (SPP), and (2) IoT network’s security protocols used.

The first parameter will be influenced by the nature of the IoT application (e.g. health care

vs. military), type of user (e.g. normal users vs. first responders), service requests (e.g. real-

time vs. off-line data requests). Additionally, our framework will impose minimum security

requirements (incorporated by the second parameter) which could be in the directions of

having accurate data, available with some level of confidentiality and integrity. The effect

of a user’s preferences on security will play a role in scenarios such as real-time data access,

where users may give a higher priority to aspects such as data stream rate. As a result,

users may prefer a lightweight encryption scheme with alternate data packet authentication.

Although, if users are more concerned about their privacy, they will give higher preferences

to heavyweight encryption schemes and authenticating every data packet.

At any given instant of time, a single IoT device can be a part of multiple IoT

networks providing services to different users simultaneously. As such, there is a possibility

that an IoT device might be hosting a composition of security measures and inter-operating

between them. These compositions of security measures hosted by an IoT device will be

self contained within a capsule and the emphasis of a capsule will be determined by the
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needs and capabilities of the service provisioning networks it is a part of. The number of

capsules in a device will not exceed host device’s processing power and available resources.

We formalize our proposition for this scenario as follows:

Definition 3.1. Variable Security Compositions: Variable security compositions is denoted

by a set {Ψ1,Ψ2, · · · ,ΨL}. Where L is the number of layers present in the IoT framework,

and Ψi is a security composition hosted by a device belonging to a layer i, which can

be represented by a set {ϑ1, ϑ2, · · · , ϑm}. Where ϑ is a security capsule composed of

a specific composition of security measures either addressing confidentiality (AES, PES,

Hummingbird2.0), integrity (SHA-2, MD5), availability (channel hopping, message source

authentication, solving challenges), or authentication (digital signatures) (CIAvAu) of a

network.

Here, m is the number of users hosted by the IoT framework. At any given instance, a

security capsule ϑi will address the minimum security requirements (in terms of CIAvAu)

of the network(s). Further, if maximum resource utility threshold of a device hosting Ψi is

ΛT , then the additive utilization of resources from all ϑi ∈ Ψi is less than or equal to ΛT as

follows:
m∑

i=1
(Λϑi + ΛSi ) ≤ ΛT (8)

where ΛSi is the resource utilization as a result of service provisioning Si for a user Ui.

To practically interpret this notion, let ΛT = 1.0, and ΛSi=80% and sum of Λϑi be

20% of ΛT ; then each ϑi will have the resource utility between 0 ≤ Λϑi ≤ 1 (1 here is 20%

resource utilization of ΛT ). Thus, we can say that a Ψi is composed of 66% of ϑ1 and 34%

of ϑ2 where ϑ1, ϑ2 are any two security capsules. The emphasis given to a ϑi in Ψi (the

percentage of Λ in a particular ϑ), can be determined by evaluating the parameters of VSC

as mentioned above.
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Our proposed framework requires users to first specify a set of preferences on their

variable security protocols, on which their requested service will be provisioned. We denote

this set as SPP, which is a personalized weighted input for different security protocols, that

can be used to enforce the security categories of confidentiality (C), integrity (I), availability

(Av), and authentication (Au). The set, SPPi, for a user Ui can either be null (no security

preferences) or a list of z number of security protocols (p1, p2, ..., pz), with their preferences

as shown in eq. 9. In this equation, user preferences (ω) is a five-scale subjective quantitative

rating between one and five. An example instantiation of SPP for two users U1 and U2 is

shown in eq 10.

SPPi =


φ

{ω.p1, ω.p2, ..., ω.pz} | ω ∈ 1, · · · , 5
(9)

SPPU1 ={5.AES − 128, 3.AES − 256,

5.De f f ie − Hellman, 2.SH A − 2, 5.T LS}

SPPU2 ={3.AES − 256, 1.ECC − 128, 4.ElGamal

2.Schnorr, 2.IPSec}

(10)

For user U1, the maximum security preference weight is 5 for the security protocols AES-

128 bit encryption, Deffie-Hellman (key exchange method for AES encryption), and TLS

(communication security protocol). The remaining preference weights are 3 (AES-256) and

2 (SHA-2 scheme). One can interpret this as U1 having more preference on an encryption

scheme with lower key size, which can be substituted with a stronger encryption if not

available, thereby relaxing the strength of integrity scheme. Further, U1 also gives more

emphasis to communication channel security (in contrast to U2). On the other hand, U2

overall has higher preferences on stronger encryption and lower integrity and communication

security. Note that the security preferences have impact on the QoS.
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Therefore, it is to be also noted that users are capable of changing their security pref-

erences during the course of service usage, in which case our framework will re-compute

the networks to be used for service provisioning. Once the user’s security preferences are

specified, it be will be cross-validated against the devices present in the network(s) (repre-

sented by Si) selected for service provisioning, in order to evaluate a utility IoT Reputability

(iRepSi
Ui
), which will be maximized by the optimization engine of our framework, as shown

in eq. 11. The equation states that if devices in a selected network for service provisioning

constitutes of a ϑi which is able to satisfy the highest user preferences in SPPUi , its iRep

score is 1 (case 1, eq (11)).

Whereas, if it does not match any of the preferences ({ωp1, ωp2, ..., ωpz}) specified

by the user, an iRep score of 0 is assigned. Finally, if some of the security preferences aremet

but not the highest preference ones, then a iRep score between 0 to 1 is computed. In case

the user does not specify any security preference (SPPUi = φ), the provisioned network’s

default security protocols will be used and it will not impact the iRep computations.

∀SPPUi , φ,

iRepSi
Ui
=



1 |∃ϑi ⇐⇒ ωi .pi & ωi = max(ωi)

0 |@ϑi ⇐⇒ ωi .pi

(0, 1) |∃ϑi ⇐⇒ ωi .pi & ωi , max(ωi)

(11)

3.3. Tradeoff in Security, QoS, & Cost Objectives. In the development of IoT

frameworks for any application scenario, it is imperative to perform a trade-off analysis

considering parameters like network security, QoS, and cost, owing to the heterogeneous and

resource constrained nature of IoT devices. This will help to achieve optimal performance

and security standardswithin the budgetary constraints of the users. In order to address these

considerations and develop a holistic trade-off analysis and optimization method, we model
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our IoT service provisioning by formulating networks as a multi-objective optimization

problem. This will help in developing networks composed of IoT devices which will

optimize the security, QoS, and cost objectives conforming to its respective constraints.

In our framework, optimization approaches like evolutionary algorithms may result

in networks with optimal objectives. However, as mentioned in Section 3, these objectives

are optimized in isolation without regard of the relationship that exist between them. For

instance, QoS and Security are conflicting in nature and therefore, satisfaction for both may

not be satisfied if the constraints are too strict. In such a case, users need the capability

to explicitly specify their trade-off amongst the optimization objectives such that selection

from the optimized result set are customized according to the personalized preferences of

individual users. In this regard, we introduce the method outline in [8] and shown in eq. (6)

on top of our optimization modeling. The final output will be a personalized ranked set of

optimized IoT networks capable of provisioning services to a user.

3.3.1. Optimization problem formulation. Our envisioned multi-objective prob-

lem formulation is as follows: Generate a network Si using N number of IoT devices which

satisfies a user’s functional preferences in the given user’s region of interest, hostingmultiple

VSC such that it minimizes the objectives shown in eq. 12.

minimize: iC
′

d Sat
′

R(Si) iRep
′

(12)

The specified objectives are the inverse of cost satisfaction degree (iCd , eq. 2), QoS satis-

faction degree (SatR(Si), eq. 6), and security preference satisfaction degree (iRep, eq. 11).

These objectives will be subject to the constraints as outlined in eq. 13. Where, the total cost

(Cnetwork) involved in service provisioning for a user should be less than or equal to their

budgetary constraints (CT ). QoSnetwork ≥ QoST states that the provisioned network’s QoS

satisfaction degree should be greater than or equal to the user’s specified QoS satisfaction

threshold and similarly for security preferences satisfaction degree.
∑N

i=1(Λϑi + ΛSi ) ≤ ΛT
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depicts the resource utilization (Λ) of the device, supporting a variable security composition

(Ψ), composed of numerous capsules (ϑi) and running the services (performing sensing and

transmitting data etc.) should not exceed the threshold resource utilization capacity (ΛT ).

Constraints:

Cnetwork ≤ CT

QoSnetwork ≥ QoST

Securitynetwork ≥ SecurityT

N∑
i=1
(Λϑi + ΛSi ) ≤ ΛT

(13)

3.4. Validation ofUserSatisfactionFeedback. In developing a user-centric frame-

work, the optimality of the selected output is evaluated by a user’s satisfaction from engaging

with the provisioned service. This will give insights about the performance of a user-centric

framework which can be used to assist future users to specify their input preferences for

QoS and security.

In traditional service selection approaches, the degree of satisfaction is typically

evaluated as shown in Figure 2 where the y-axis represents the estimated satisfaction degree

of a user (0 → 1) vs. the user’s preference on a given QoS parameter (e.g., response

time). It is assumed in these traditional approaches that as a QoS parameter degrades, the

satisfaction degree of a user will also linearly degrade. However, practically, this need not

be completely accurate in the IoT environment. This is because satisfaction degree may

be influenced by the service that is being used and need not be directly proportional to the

individual QoS parameters. Further, the service itself is a culmination of various QoS and

security preferences, and all of these parameters will not equally contribute towards the

degradation or improvement of a user’s satisfaction.
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Therefore, to better validate the evaluation of users’ satisfaction feedback, in our

framework we have proposed the incorporation of QoE data through analysis of user’s

physiological sensor data using deep learning framework’s multilayer perceptron (MLP)

classification.

Users’ physiological sensor data can be characterized with attributes such as elec-

trocardiograph (ECG), blood volume pulse (BVP), heart rate (HR), electrodermal activity

(EDA/GSR), and so forth. Traditionally, their usage has been researched in fields like

health care and in more recent endeavors to develop software which can adapt to assure a

basic level of QoS and positive user experience [5]. These physiological data are used to

analyze different human feelings like stress, anxiety, excitement, and can be collected in an

non-intrusive fashion by wearable devices like the E4 wristbands [5]. The aggregation of

these physiological data for user QoE (Quality of experience) measurement will be done in

a continuous fashion during their service usage.

However, an important challenge to note in this regard is that the collected data

needs to correlate to the service usage and not be influenced by external environmental

factors or other psychological aspects which is not related to the service. This is beyond the

scope of our current work and is something we will address in the future.

The collected physiological datawill be processed by extracting its statistical features

like mean, maximum, minimum, standard deviations, etc. Then, it will be used along

with the user’s specified QoS and security preferences to create an input vector which

will be passed into our multi-layer perceptron (MLP) for multi-class classification. The

classification will be for user’s satisfaction feedback based on a qualitative five-scale rating

- very low, low, medium, high, very high. Users will also provide this qualitative rating for

their satisfaction as an input after the service usage which will be used as a baseline to train

and test our designed MLP.
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Table 1. IoT Device Profile for Simulations

Field Attribute
Device GeoLocation (38.627,-74.005) to (40.712,-90.199)
Device Type 1:Normal Sensor,2:Media Sensor,3:Base Station
Communication Range (20,70) meters
Sensing Range (10,50) meters
Device Energy (1E04,5E04) Joules
Sensing Attributes Temperature, Humidity, Light Intensity, Image
Network Protocols 6LoWPAN, IPv4/IPv6, RPL
Data Protocols MQTT, CoAP, AMQP
Radio type WiFi, Bluetooth, ZigBee
Security Protocols AES-128,AES-256,ECC-128,ECC-256,SHA-2,MD-

5,ElGamal,Schnorr,PGP,TLS,IPSec,Deffie-Hellman

4. EVALUATION AND ANALYSIS

In the following sections we present the outlines of our synthetic dataset and results

of simulating our proposed approach.

4.1. Dataset Generation. All our simulations have been performed on a Windows

7, 3.10Ghz core i5 machine with 8GB RAM. The dataset has been generated synthetically

for 150 users, comprising of their functional, QoS, and security preferences, physiological

sensing values, and satisfaction feedback label. We randomly deployed following a uni-

form distribution, 200 IoT devices between maximum and minimum latitude of 40.712775

and 38.627003 respectively, and maximum and minimum longitude of -90.199404 and -

74.005973 respectively. Each deployed IoT device consisted of a set of attributes (randomly

selected) as displayed in Table 1 and stored in our IoT DB (Figure 1). The QoS values for

users of our framework has been generated following a random uniform distribution whose

lower and upper bounds is summarized in Table 2.

The remaining user preferences like functional and security preferences (region of

interest, sensing attributes, network protocols, security preferences, etc.) has been generated

by keeping the values within the bounds specified in Table 1.
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Table 2. QoS Value Data Bounds

QoS Type Bounds (Lower, Upper)
response time (0.0, 15.0)
availability (85,100)
throughput (0,24)
reliability (3,18)

With respect to physiological values, ECG has been simulated using the concept of

Daubechies wavelet [13], which is a rough approximation to a real, single, heart beat signal.

For each signal, we have considered the beats per minute rate (which is 60 while resting and

180 during exercise, usually for a healthy athletic person), and also added a gap after the

signal to simulate when the heart is resting. Finally, we concatenated the number of heart

beats needed and added a random Gaussian distributed noise to obtain our simulated ECG

data. Whereas, we simulated our GSR data by using Poisson distribution. We did this by

calculating the first few moments of the distribution and then added a gap. We concatenated

an arbitrary number of peaks needed to obtain our simulated GSR data.

4.2. Service ProvisioningResults. The goal of our service provisioning simulation

experiment is to generate a set of optimal IoT networks, ranked according to a user’s lin-

guistic trade-off strategy on optimization objectives. Our optimization approach is modeled

using the NSGA-II package in MOEA framework7 version 2.10. The algorithmic parame-

ters used to execute NSGA-II, identified through empirical estimations are summarized in

Table 3.

Table 3. NSGA-II Algorithm Parameters

NSGA-II Parameter Value NSGA-II Parameter Value
Max. Evaluations 2000 Population Size 500
Crossover rate 0.6 Crossover distribution index 15.00
Mutation rate 0.1 Mutation distribution index 10.00

7moeaframework.org
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We present the service provisioning results for 2 random users, consisting of their

unranked and ranked optimal IoT networks as shown in Figure 3 and 4. The unranked output

(Figure 3 and 4, Left) consists of an optimal list of IoT networks and their satisfaction degrees

for security preference (eq. 11), QoS (eq. 6), and cost (eq. 2). It is to be noted from the

figures that a higher cost utility (iCd) indicates a lower service cost (C). All IoT networks in

each figure are optimal with respect to the constraints specified in our proposed framework

(eq. 13), and aligns with each user’s functional and nonfunctional preferences. The title

of the plots in Figure 3 and 4 outlines the respective user’s linguistic trade-off on the

optimization objectives along with their specified threshold values.

Figure 3 left and right, shows the unranked and ranked IoT output networks for user

1’s request respectively. It consists of eleven optimal IoT networks, unranked (Figure 3,

Left), as returned by the optimization engine of our framework. The vertical axis of the

figure denotes the satisfaction degree of each optimization objectivewhile the horizontal axis

represents the list of networks. The output of Figure 3, right side, uses the user preferences

trade-off engine of our framework and shows optimally ranked IoT networks (horizontal

axis) based on user 1’s trade-off strategy (title of Figure 3, Right). The trade-off strategy

of user 1 gives more emphasis to security preferences (dotted pattern) and compromises

between cost (vertical lines pattern) and QoS (horizontal lines) of the optimally provisioned

networks which is reflected in our framework’s output. By allowing user 1 to explicitly

specify his/her overall trade-off strategy on the optimal objectives, our framework outputs a

ranked list of IoT networks, a process which would have otherwise beenmanually performed

by user 1 to determine which of the eleven optimal services would be suitable for his/her

needs. Along this direction, the IoT network provisioned at rank 5 (Ntwk5, Figure 3,

Right) would seem as the best choice because the satisfaction degree on cost objective is

the highest. However, given the overall trade-off strategy of the user 1, explicitly giving

more emphasis to security preference, overall output of our framework suggests it as the

fifth plan that should be selected by the user.
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Figure 2. Traditional User Satisfaction Feedback Evaluation [8]
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Figure 3. User1 Optimal Services:Unranked (Left), Ranked (Right)
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Figure 4. User 2 Optimal Services:Unranked (Left), Ranked (Right)
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Whereas based on user 2’s trade-off strategy (title of Figure 4), our framework

first selects all services with higher QoS; a 1.0 QoS satisfaction degree is computed for

rank 1 and rank 2 (Ntwk2 and Ntwk8) which is the highest satisfaction amongst all three

objectives. Thereafter, from rank 6 (Ntwk6) onwards, the highest satisfactions amongst the

three objectives is for security preferences. As a result of such a trade off strategy, there

is no increasing or decreasing trend within the cost satisfaction degree of the ranked IoT

network services.

4.3. Satisfaction Feedback Evaluations. Our multilayer perceptron (MLP) has

been designed using Keras8 framework running on top of TensorFlow9 backend. It com-

prises of a sequential deep learning model with input vector comprising of 18 dimensions

consisting of 6 statistical features (Section 3.4), each for ECG and GSR values; one value for

skin temperature, four QoS preferences (Section 3.2.1), and security preferences satisfaction

degree.

Further, the sequentialmodel has 3 hidden layers, each comprising of fully connected

128 neurons connected to an output layer with 5 states. The rest of parameters used for

training and testing our MLP is summarized in Table 4. During the training phase, we

stripped the user input of the satisfaction feedback labels.

Figure 5. t-SNE Plot for Train Dataset

8keras.io
9tensorflow.org
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Table 4. Simulation Parameters for Multilayer Perceptron

Attribute Value
train_test split 80,20
hidden layer activation relu
output layer activation softmax
categorical data transformation one-hot encoding
Dropout 0.2
Loss categorical crossentropy
optimizer rmsprop
metrics accuracy
epochs 200
batch size 32
validation KFold Cross validation

Figure 6. Training Dataset Accuracy Variation

We then analyzed the dataset to identify representational user records from each of

the five satisfaction feedback categories (very low → very high). Thereafter, using these

5 user records as centroids, we applied KMeans clustering (python sklearn package) and

predicted the labels of the remaining user records. The t-SNE plot [19] for the same is

shown in Figure 5. t-SNE plots are typically used to convert high dimensional data and

visualize them in two dimensional space. In Figure 5, each individual color represents

one of five user satisfaction labels to be used by our MLP model during its training. This

training dataset was then used to compile our MLP model. The net accuracy was estimated

to be approximately 90%, with a loss of approximately 0.30. The variations of accuracy

and loss through the training epochs are shown in Figure 6 and 7.
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Figure 7. Training Dataset Loss Variation

5. CONCLUSION AND FUTUREWORK

In this paper, we have presented the outlines of a user-centric framework for secure

service provisioning in IoT environments. In doing so, our framework accounts for the opti-

mal satisfaction of a user’s variable quality of service (QoS) preferences through linguistic

fuzzification, and security preferences by introducing the concept of variable security com-

position paradigm. Finally, our framework further assists the users to efficiently select from

the optimally provisioned services by allowing them to specify their linguistic trade-off on

the optimization objectives. Additionally, we have also presented the design of a multilayer

perceptron which will be able to validate the user’s satisfaction feedback from using the

provisioned service by utilizing the quality of experience collected from physiological body

sensors and deep learning techniques.

As a part of our futurework, wewould develop a test-bed implementing our synthetic

simulation environment and collecting physiological data from real users and thereafter,

applying our proposed framework to a real-world scenario. This will enable the accurate

modeling of the dynamic and uncertain nature of the IoT environment and carry out dynamic

service provisioning. Further, we will carry out extensive sensitivity analysis with respect to

our framework’s optimization approach, compare and contrast NSGA-II with other available

evolutionary algorithm techniques.
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SECTION

3. SUMMARY AND CONCLUSIONS

This dissertation presents three frameworks to carry out security risk assessments

for key assets related to the Sensor Cloud computing domain, namely - infrastructure,

application, and users. The proposed techniques are informal in nature which extends and

improves upon existing approaches outlined by notable organizations like National Institute

of Standards and Technology (NIST), European Union Agency for Network and Information

Security (ENISA), and Cloud Security Alliance (CSA).

The infrastructure of a Sensor Cloud computing domain typically consists of several

heterogeneous wireless sensor networks (WSNs). The research outlined for carrying out

security risk assessment with respect to such infrastructure introduces the usage of attack

graphs to model the net threat levels to network security parameters (confidentiality, in-

tegrity, and availability) for WSNs in Sensor Cloud. The notable feature of the approach

lies in its utilization of feasible set of known attacks on WSNs to model the attack graphs

instead of the number of sensor nodes in the WSN. This aids in bypassing combinatorial

explosion problem which is persistent in the traditional attack graph approaches. The out-

lined framework further models the attack graphs using quantitative approaches of Bayesian

networks in order to estimate time frames which can be utilized by security administrators

to schedule maintenance and repair activities. This is beneficial since the infrastructure of

these kind of environments are generally deployed in an ad-hoc fashion which is largely

unattended in nature.

Further, a client’s application can be migrated and hosted on a Sensor Cloud service

provider’s platform. This scenario is similar to hosting applications on traditional cloud

computing platforms like Amazon AWS or Microsoft Azure.
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The security risk assessment framework proposed in this dissertation for client’s

application which may be migrated to a cloud service provider’s (CSP) platform assess

the security provided by a CSP with respect to the security risks present in the client’s

application. This is carried out in two notable phases, namely - application risk assessment

using cloud security domains, and CSP’s security assessment. The first phase introduces the

cloud security domains while performing risk assessment for a client’s application during

its design phase. This makes the outlined techniques economical in nature, allows client’s

to test and try out different application architecture, and reduces their apprehensions of

application security when they migrate to a CSP’s cloud platform. The seconds phase

aggregates and analyses the security provided by different CSPs in the market by perusing

their publicly available security documents in registries like CSA’s Security, Trust, and

Assurance Registry (STAR). The proposed framework can further aid clients in developing

optimal cloud migration minimizing cost and security risks by accounting for the outputs

from phase one and two.

Finally, clients/users are supposed to be present in the center of any service pro-

visioning. Therefore, infrastructure and application security cannot be treated as constant

parameter based on their architecture and security policies. They need to account for the

variable security preferences of clients and accordingly adapt to the specified preferences.

This paves the foundation to customizing security measures and risk assessment techniques,

and it is the premise of the research presented in this dissertation for addressing security

assessment related to the users. The proposed framework introduces the variable security

composition paradigm enabling users to specify their security preferences and optimally

provision networks composed of feasible devices from the infrastructure. The framework

also introduces a multilayer perceptron utilizing deep learning emotion classification tech-

niques and user’s quality of experience information gathered from their physiological data

to accurately validate the satisfaction feedback from using the provisioned services.
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