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ABSTRACT 

Composites materials are increasingly being used in aerospace applications over 

the past few years. The unique properties like high strength to weight ratio, thermal 

stability, fatigue and corrosion resistance set them apart from the conventional materials. 

Composite materials are well suited for the applications where weight is the primary 

concern in the design. Composites structures are vulnerable to mechanical as well as 

thermal loadings. Transverse micro-cracking and delamination are the most common type 

of failures in composite materials. The thickness of the ply being used play a key role 

dictating the properties of the resultant composite structure. As the ply gets thinner the 

properties get better. Thick laminates are more susceptible to micro-cracking than thin 

laminates. Thereby, to manufacture laminates resistant to micro-cracking and 

delamination it is advised to use thinner plies. In this work, a BMI hardened prepreg 

system was used to prepare the laminated composites. Thin and thick ply laminates were 

used to make the composite panels .Mechanical testing was performed on the panels to 

evaluate the performance of thin-ply and thick-ply laminate system 
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1. INTRODUCTION 

 

Composites are defined as structures made from two or more components to form 

a new material system with enhanced properties. The current work focuses on fiber 

reinforced polymer composite. The fibers are made of carbon while the matrix material 

comprises of thermoset polymers such as epoxy or Bismaleimide (Figure 1.1). High 

temperature systems such as BMI based composites are widely used in high temperature 

aerospace applications due to their superior properties compared to epoxy resins. They 

also offer better mechanical properties like tension, bending, superior chemical and 

corrosion resistance [1]. 

 

 

 

(a) Composite lamina (b) Cross-ply composite laminate 

Figure 1.1. Composite lamina 

 

Composite structures have been widely utilized in diverse applications ranging 

from housing, automobile to aerospace industries due to their high strength-to-weight 

ratio and design flexibility. A composite laminate consists of a stack of multiple layers or 
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“lamina”. Figure 1.1 (b) shows a cross-ply composite laminate where subsequent layers 

have fibers oriented perpendicular to each other. The orientation of the plies can be 

tailored to obtain a specific combination of properties, according to design requirements. 

1.1. PREPREG LAMINATES  

The raw material that is used to manufacture a composite laminate is called a 

“prepreg”, or pre-impregnated fibers. The prepregs maybe unidirectional or woven 

infused with uncured resin. The prepreg tapes are cut into required dimensions and are 

sequentially laid to result in the desired properties. Similar layup schemes like 

unidirectional, cross-ply, angular orientations are used to tailor the required properties in 

the resulting composite. In this study unidirectional prepreg tapes with two different 

aerial weights 30-40 gsm and 150 gsm were manufactured using Toray T300 3k and 12k 

carbon fibers and toughened BMI resin system. 

1.2. QUASI-ISOTROPIC LAYUP-SCHEME  

“Isotropic” means having same properties in all the directions. “Quasi-isotropic” 

means having same properties in-plane direction. This can be achieved by randomly 

orienting fibers in all the directions or having fibers oriented in equal ratios in all the 

directions. Simple quasi-isotropic layups are achieved by 45o, -45o, 0o, 90o orientations 

whereas 0o, 60o and 120o can also be used to generate the layups. In this study [45o/-

45o/0o/90o]6s was used to manufacture both thin and thick-ply laminated composites.  
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1.3. CURING  

As the laminates are toughened with a resin system these resins have to be cured 

to cross-link and result in the superior properties. Every resin system has a unique “cure 

cycle”. Cure cycle is defined as the control of time-temperature-pressure of a 

thermosetting resin system to change its state from liquid to solid [2]. 

1.4. MANUFACTURING  

Aerospace composite materials are generally manufactured in an autoclave under 

high temperature and high pressure. The combination of high temperature and pressure 

ensures low void content and good part consolidation. The other manufacturing process 

used is Out-of Autoclave (OOA) process which is relatively new and low-cost 

replacement to autoclave process [3,4]. The OOA process requires less investment and 

also enables us with design flexibility in manufacturing the components. The size of the 

autoclave no longer dictates the part size [5]. During OOA processing, sandwich 

components can be co-cured, a process where adhesive and the prepreg is cured 

simultaneously, resulting in further time and cost reduction. Manufacturing co-cured 

sandwich panels, out-of-autoclave, eliminates core crushing which can occur at autoclave 

pressures [6] and enables the use of lighter cores. 

The pressure inside the autoclaves are so high that the voids are suppressed. But 

in the OOA as the pressures are relatively low the manufactured parts may be prone to 

higher void content. The vacuum-sealing in the OOA process should be done with utmost 

care to avoid entrapment of gases. The areas of porosity may vary from plies, tows or 

individual fibers. During the course of curing, as the melting point is reaches the resin 
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fills the gaps in this pores resulting in a void-free structure [7]. Studies have been 

performed to establish a relationship between the porosity and mechanical properties of 

the manufactured part. [8]. In OOA process venting of the entrapped air is the key to 

manufacture void-free parts. Therefore, the processing parameters for OOA processing of 

composite laminates and sandwich structures should be carefully established, in order to 

reap the benefits of low manufacturing costs. Therefore, the current work involves 

evaluation of OOA cured composite laminates and sandwich structures and optimization 

of process parameters to reduce void contents. 
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PAPER 

I. PERFORMANCE EVALUATION OF BMI RESIN SYSTEM FOR THIN-PLY 
COMPOSITES 

 

Manoj Rangapuram, Siva Dasari, Robert Meinders and K. Chandrashekhara 

Deparment of Mechanical and Aerospace Engineering, Missouri University of Science 
and Technology, Rolla, MO 65409 

ABSTRACT 

Thin ply composites are gaining a lot of attention in composite industry because 

of the vast design flexibilities they offer. Thin-ply composites reduce the weight of the 

component and also offer superior mechanical properties. Ply thickness plays a prominent 

role in controlling the mechanical properties of composites.  The thinner the ply the better 

the properties. The properties are improved because the thinner ply results in lower 

residual stresses after curing at elevated temperatures due to coefficient of thermal 

expansion of composites. Thicker laminates are more vulnerable to micro-cracking than 

thin laminates. High temperature systems such as bismaleimide based composites are 

being used in the industry due to their better characteristics compared to conventional 

epoxy systems.  BMIs also exhibit good tack and drape, and an epoxy-like addition cure 

mechanism.  In addition, they possess desirable properties such as high tensile strength as 

well as corrosion and chemical resistance. In this study, a novel high temperature out-of-

autoclave BMI resin (BMI-1OOA) was used to prepare the thin prepregs. The resin 

system was evaluated to obtain the neat resin properties and apply it to the prepreg 
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system. Mechanical testing of the resin system was performed using tension test 

following ASTM standards. Differential scanning calorimetry and thermo gravimetric 

analysis were also performed to evaluate the glass transition temperature and thermal 

properties of the resin system. Toray T300 3k and 12k carbon fibers with 30-40 gsm and 

150 gsm aerial weight respectively were used to produce thin prepregs. The mechanical 

properties of the thin prepregs were evaluated by testing composites in Impact. The thin-

ply composites performed better than thick-ply composites under impact loading. 

 

1. INTRODUCTION 

 

Thin-ply laminate systems are gaining the interest of the industry in the recent 

years. A significant amount of progress has been made in the development of thin-ply 

composites. The main aim of this technology is not only to produce thinner and lighter 

laminate structures but also provide improved strength and damage resistance due to 

innovation in laminate design space and positive size effects [1]. The striking advantage 

of employing thinner plies in a given structure at a constant predetermined thickness is 

the ability to use an increased number of ply orientations to achieve the optimal solution 

within the existing design space. This fact is particularly important for the existing thin 

laminates for which only two or three orientations can be selected to meet the classical 

design constraints like prepreg thickness, laminate symmetry and fraction of fibers at 90o 

orientation. Replacing a 300 gsm standard prepreg with a thinner prepreg such as a 30 

gsm will allow the designer to propose more optimal lamination schemes such as 

[0o/45o/90o/-45o] or even more complex schemes instead of a basic [0o/60o/-60o] layup. 
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The other prime benefits of using thin plies instead of thick plies is suppression of sub 

critical damage such as micro cracking and delamination as well as an extraordinary 

improvement to the fatigue life and increased damage tolerance [2-6]. For the 

development of novel materials (thin-ply), a thorough understanding of the advantages 

and drawbacks of the system from material properties, processing, manufacturing, design, 

and cost-effectiveness is quite necessary. Ply thinning technologies have been developed 

in recent times to fabricate thin plies. One such technology is spread tow thin-ply 

technology in which the tows are continuously opened and spread to produce flat and 

straight plies with thickness as low as 20 µm.  

Traditionally, the two main components that make the composites are fibers and 

reinforcement. The fibers are usually made from strong and stiff material providing 

strength and stiffness to the composite structure. Moreover, fibers alone cannot provide 

the above-mentioned properties owing to their size. Reinforcements or matrix materials 

generally have low normal strength (tensile and compression) but they provide with the 

following functionalities: aligning of fibers, transfer of loads between fibers and adjacent 

layers of plies, and also protecting the fibers from environmental effects [7].  Matrix 

material used in this research is a novel Bismaleimide (BMI) resin system for OOA 

process. BMIs are a comparatively newer class of the thermosetting polymers. They are 

gaining importance because of their distinct features like the retention of physical 

properties at elevated temperatures and damp environments as well as sustained electric 

properties over a broad temperature range. The steady optimization of thermal, 

mechanical, and electrical properties make them a viable source in electronics and 

composites. They possess high strength and excellent long-term creep resistance. They 
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are notably used in high performance fiber reinforced polymers as matrix material. 

Typically, they require curing temperatures of 150 °C or more and higher post cure for 

high temperature applications such as racecars and military grade airplanes.  

The first studies on evaluating the mechanical characterization of thin-ply 

composites was done by Tsai et al. [2]. In their work, they tested quasi-isotropic 

composite panels made from carbon-epoxy. Tsai tested both thin and thick plies using 

unnotched tensile tests in static and fatigue loading, open hole tensile test on the quasi-

isotopic panels, and compression after impact.  In the unnotched tests, the thin-ply 

laminate exhibited higher ultimate strength than the thicker laminates. A significant 

amount of damage was visible on the thicker laminate before failure while the thinner 

laminate exhibited linearly elastic behavior until failure. Fatigue life of the thin plies was 

also quite impressive. After 50,000 fatigue cycles there was no change in the strength of 

the thinner ply whereas there was significant drop in the strength of the thicker laminate. 

Open-hole compression test followed a similar trend. There was limited damage around 

the hole in the thinner ply while progressive delamination and transverse micro-cracking 

was observed in the thick ply laminate. Impact studies on the quasi-isotropic panel 

suggested there was reduced delamination area in thin-ply compared to the thicker ply. 

Several other studies also proved that the thin ply laminated composites improve the 

mechanical properties by delaying delamination and transverse micro-cracking [8-10]. 

Multiple studies conducted on thin-ply laminated composites proved that they can delay 

and even suppress transverse micro-cracking and edge delamination in various loading 

conditions such as static, fatigue, and impact [11-13]. The composite manufacturing 

process has several factors affecting it such as fiber alignment, waviness, residual strains, 
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porosity, and resin rich zones which introduces another factor related to the size effect 

that controls the performance of the composite. 

From the existing literature on size effects and delamination the thin ply 

composites perform better than any traditional composite material. But there is very 

limited experimental data and models that support the statement. Most of the research to 

date has dealt with unidirectional thin ply prepreg laminate system [2,3,10,14]. From this 

discussion it is quite evident that further analysis and testing of thin-ply laminated 

composites is necessary. 

The present work is divided into two parts. The first part deals with the BMI neat 

resin characterization and properties evaluation. Neat resin cure kinetics will be studied 

using thermogravimetric analysis (TGA) and digital scanning calorimetry (DSC). Neat 

resin mechanical properties will be evaluated using tension. The latter part deals with the 

manufacturing of Carbon/BMI composite panels and experimental evaluation. 

 

2. EXPERIMENTATION 

2.1. MATERIALS 

In the present work, unidirectional prepreg tapes with two different aerial weights 

30-40 gsm and 150 gsm were manufactured using Toray T300 3k and 12k carbon fibers 

and toughened BMI resin system. The resin accounts for 35% by weight in the prepreg 

system. The advantage of this resin system is it has low tack and drape compared to 

conventional epoxy system and has a shelf life of about two weeks. Raw materials like 

vacuum bag, breather, release film, bagging tape, and edge bleeders are used in a 



 

 

10 

conventional out of autoclave (OOA) process. The cure cycle followed is shown in 

Figure 1 below. The temperature is first raised to 143 °C (290 o F) at a rate of 4 °C/min 

and held for one hour before the base cure of 190 °C (375 °F) for two hours to mobilize 

the reactive groups. 

 

 

Figure 1. Cure cycle of BMI-OOA resin 

 

The resin system used in impregnation of the prepregs is a novel high temperature 

BMI resin (BMI-1OOA) manufactured by Stratton Composites. The neat resin samples 

were fabricated to evaluate the mechanical properties.  

2.2. METHODOLOGIES 

2.2.1. Neat Resin Panels Fabrication. Neat resin panels were fabricated using 

BMI resin system. The neat resin was poured into molds and then degassed to remove 

absorbed air during the handling and finally cured. Neat resin tension coupons were 

fabricated following standard ASTM coupon dimensions.  
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2.2.2. Composite Laminate Manufacturing using OOA Process. The 

composite laminates were manufactured using OOA prepreg process. To study the 

difference between thin and thick laminates a quasi-isotropic layup scheme [45o/-

45o/0o/90o]6s was used to fabricate composite panels. 

Initially, the aluminum baseplate was cleaned and coated with Ethylene 

Tetraflouroethylene (ETFE) release film. The unidirectional prepreg tapes were cut to 

required size and placed according to the specified lamination scheme. A teflon coated 

edge bleeder was used to provide a passage for the entrapped air during the process. The 

entire setup was sealed using vacuum bag. The vacuum pressure was 28 in. Hg. 

Debulking was done for every four layers for 5 minutes to remove the entrapped air from 

the laminate stack. The bagging scheme followed in the process is shown in the Figure 2. 

The laminate layup was then sealed using double bagging and cured in an oven. The 

prescribed base cure was 190 °C (375 °F) for two hours and post cure of 210 oC (410 °F) 

for 4-6 hours. 

 

 

Figure 2. Layup scheme used in OOA process [15] 
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2.3. MATERIAL CHARACTERIZATION 

2.3.1. Cure Kinetics of Neat Resin. 

2.3.1.1. Thermogravimetric Analysis (TGA). TGA is a thermal analysis that 

determines the thermal degradation of a material. In this paper, thermal degradation of 

the cured and uncured neat resin was performed on TA Instruments Q50 

Thermogravimetric Analyzer. Sample sizes of 5-10 mg were taken in a platinum pan and 

analyzed. In TGA, the weight change of the resin was measured as a function of 

temperature to understand the thermal degradation of the resin. Samples were heated 

from room temperature to 800 o C at 10o C/min standard heating rate in air and the 

degradation pattern was recorded. 

2.3.1.2. Differential Scanning Calorimetry (DSC). DSC is a thermo-chemical 

analysis used extensively to study the thermal properties of a resin. DSC is generally used 

to study the cure kinetics of the thermosetting resins. In this work a TA Instruments 

Q2000 DSC was used to analyze both cured and uncured neat BMI-1OOA resin to 

understand the cure behavior of the resin. Samples ranging from 5-10 mg were 

encapsulated in aluminum pans and inserted into the machine. Dynamic heating rate of 3 

°C/min with amplitude of 1 ºC was used to determine the glass transition temperature. 

2.3.2. Neat Resin Tension Test. Tension test of neat resin was performed on 

Instron-5985 test frame according to ASTM-D638. BMI-1OOA neat resin samples were 

fabricated at Missouri S&T. Neat resin samples were fabricated using standard aluminum 

mold following the prescribed cure cycle. Neat resin coupons are shown in Figure 3. Neat 

resin tensile test was performed to evaluate the modulus and the ultimate tensile strength 

of the resin system. 
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Figure 3. Neat resin tension speicmens 

 

2.3.3. Laminate Impact Test. A quasi-isotropic [45o/-45o/0o/90o]6s layup scheme 

was used to manufacture composite panels through OOA process. Impact test was 

performed on thick and thin panels to evaluate the difference between the damage 

evolution and delamination between the panels. Impact test was performed using a 

Dynatup Instron Model 9250 impact testing machine to conduct the low-velocity impact 

tests. In this test, the effects of two energy levels 10 J and 15 J were evaluated on the 

deflection, energy and overall damage. 
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(a) Thin-ply composite at 10J and 15J (b) Thick ply composite at 10J and 15J 

Figure 4. The impacted composite panels 

 

3. RESULTS AND DISCUSSION 

3.1. CURE KINETICS STUDY 

Thermogravimetric Analysis (TGA) was performed on uncured resin used for 

preparing the neat resin samples. The sample was heated at 8 °C/min in air. Minor weight 

changes were observed above 160 °C and final degradation occurred with an onset point 

of 410 °C. The complete burn-off of resin occurred around 640 °C. The insight of this 

change in mass of the resin with change in temperature was necessary to perform Digital 

Scanning calorimetry (DSC). This test basically provides us with the information of the 

temperature range through which our resin can be used without any mass loss and 

without any emissions. It gives us the insight in which particular temperature range DSC 

can be performed. Both these tests are done as a part of cure kitenics study of any 

thermosetting resin. 

 

15J 10J 15J 10J 
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Figure 5.TGA curve of uncured BMI resin in air 

 

Modulated Differential Scanning Calorimetry (MDSC) was performed on samples 

of neat resin. Specimens were subjected to MDSC from 30 °C to 380 °C at 3 °C/min with 

amplitude of 1 °C. From the MDSC there appear to be two distinct Tg at 235 °C and 310 

°C for the BMI specimen. This seems to indicate an incomplete heat treatment or post 

cure of the resin. The DSC results suggested additional post-cure was required for the 

DSC samples that were manufactured. 

 

 

Figure 6. MDSC plot of heat flow through BMI resin sample 
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3.2. NEAT RESIN TENSION TEST 

Five specimens were tested using an Instron-5985 test frame. All the samples 

showed brittle behavior and there was no plastic region in the stress-strain curve (Figure 

7). As it can be seen from the graph that there is no yielding region and material fails 

dramatically. Thus, ultimate strength is calculated based upon the maximum stress the 

material withstood before failure. Calculated tensile modulus and ultimate tensile 

strength are shown in Table 1. All the samples failed within the gauge section. 

 

 

Figure 7. Stress-strain curve from neat resin tensile testing 

  

Proper validation methodologies were followed for the specimens according to 

the respective ASTM standards. All the results were analyzed and plotted using 

Microsoft Excel. Only straight regions of the stress-strain curve were considered for 
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Table 1. Results from neat resin tensile testing 

 

3.3. IMPACT TEST 

The results of the low velocity impact tests on thin and thick panels are presented 

in Table 2. Figure 9 refers to the energy variation with time during the test. The initial 

spike indicates the transfer of energy from the impactor to the panel. The latter part of the 

curve indicates the reaction force exerted by the plate on the impactor. Figure 10 depicts 

the load vs time at two different energy levels 10 J and 15 J. The peak load was shifting 

to the left with an increase in the impact energy in both thin and thick laminate panels. 

Figure 11 shows the velocity vs time graph during the impact test. Figure 12 indicates the 

load vs deflection. The ascending portion indicates the bending history of the specimen 

under impact loading and the descending portion indicates the rebounding of the impactor 

and softening of the composite. The load-deflection curve will be closed as long as the 

long as the impactor does not penetrate through composite. The area under the curve 

Specimen Ultimate strength (MPa) Young’s modulus (MPa) 

1 46.06 5023.92 

2 50.85 5494.46 

3 42.47 5090.98 

4 44.24 4956.37 

5 44.65 5054.18 

Average 45.65 5123.98 

Standard deviation 3.17 212.90 
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gives the absorbed energy. As it can be seen, the effect of load on deflection is increased 

with increasing energy. The impact damaged region of 15 J is greater than 10 J in 

general. But the impact regions on thick and thin panels at same energy levels were 

compared to evaluate the nature of the ply. 

 

Table 2. Results from impact test 

Type Energy level 
Peak load 

(kN) 

Deflection at 

peak load 

(mm) 

Energy to 

max load (J) 

Impact 

velocity 

(m/s) 

Thin 10J 11.8495 0.9263 5.8648 1.8028 

Thin 15J 12.3106 1.2865 5.4724 2.2049 

Thick 10J 11.6075 1.081 5.4727 1.8039 

Thick 15J 13.2858 0.9565 6.1469 2.2078 

 

 

Figure 8. Energy vs time in low-velocity impact tests at 10J and 15J 
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Figure 9. Load vs time in low-velocity impact tests at 10J and 15J 

 

 

Figure 10. Velocity vs time in low-velocity impact tests at 10J and 15J 

 

 

Figure 11. Load vs deflection in low-velocity impact tests at 10J and 15J 
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The comparison plots of thin-ply and thick-ply laminated composites (Figures 9-

12) show almost similar information with minor differences. This indicates the 

performance of thin-ply system is almost equal to the thick-ply laminated system. The 

failure patterns are further observed using NDI technique and further understanding of 

the characteristics is done in the following section. Infrared-Thermography is a 

nondestructive investigation (NDI) technique generally employed to analyze a part or a 

component based on the heating and cooling patterns. Infrared (IR) thermography was 

performed on the impacted specimens to evaluate the impact damage on both thin and 

thick composite panels. Figure 13 show the IR bitmap image of the impacted specimens. 

 

 

(a) Thin-ply composite panel at 10J and 15J (b) Thick-ply composite at 10J and 15J 

Figure 12. IR-bitmap images of impacted specimens 

 

The IR-bitmap images were analyzed in an image processing software called 

Image J and the impact area was measured. The measured impacted area for thin and 

thick panels at two energy levels 10 J and 15 J is tabulated and shown in the table below. 

 

(a) (b) 
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Table 3. Quantified impacted areas in Image J software 

Energy level 
Area (mm2) 

Thin-ply Thick-ply 

10 30.213 34.455 

15 45.594 48.249 

 

From the observed IR-bitmap images and the quantified areas of the impacted 

region it is evident that the thin-ply composite panel had less damage at both 10 J and 15 

J energy levels compared to the thick-ply composite. 

 

4. CONCLUSIONS 

 

The novel BMI resin system (BMI-1OOA) was successfully cast into tension 

molds and mechanically characterized. Cure kinetics evaluation of the resin system was 

performed using TGA and MDSC studies. Unidirectional prepreg tapes with two 

different aerial weights 30-40 gsm and 150 gsm were manufactured using Toray T300 3k 

and 12k carbon fibers. A quasi-isotropic [45o/-45o/0o/90o]6s layup scheme was followed to 

manufacture both thin-ply and thick-ply laminate composite panels. The manufactured 

panels were subjected to low-velocity impact testing at 10 J and 15 J energy levels. 

Thermography studies performed on the impacted panels suggested that the impact 

damage was comparatively less on the thin-ply laminated composite than thick-ply at 

same energy level. This was further quantified by image processing the thermal bitmaps 
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of the impacted specimens indicating the impact areas were smaller on the thin-ply 

laminate composite than the thick-ply laminate composite. 

 

ACKNOWLEDGEMENT 

 

This work is funded by Technical Data Analysis Inc.,(TDA), Falls Church, VA 

22042. 

 

REFERENCES 

 

[1]  R. Amacher, J. Cugnoni, J. Botsis, L. Sorensen, W. Smith and C. Dransfeld, "Thin 
ply composites: Experimental characterization and modeling of size effects," 
Composites Science and Technology,Vol 101, pp. 121-132, 2014.  

[2]  S. Sihn, R. Kim, K. Kawabe and S. Tsai, "Experimental studies of thin ply 
laminated composites," Composites Science and Technology, Vol 67, pp. 996-1008, 
2007.  

[3]  T. Yokozeki, Y. Aoki and T. Ogasawara, "Experimental characterization of strength 
and damage resistance properties of thin-ply carbon fiber/toughened epoxy 
laminates," Composite Structures, Vol 82, pp. 382-389, 2008.  

[4]  H. Saito, H. Takeuchi and I. Kimpara, "Experimental evaluation of the damage 
growth restraining in 90o layer of thin-ply cfrp cross-ply laminates," Advanced 
Composite Materials , Vol 21, pp. 57-66, 2012.  

[5]  A. Arteiro, G. Catalanotti, J. Xavier and P. Camanho, "Notched response of non-
crimp fabric thin-ply laminates: analysis methods," Composites Science and 
Technology, Vol 88,  pp. 165-171, 2013.  

[6]  A. Arteiro, G. Catalanotti, J. Xavier and P. Camanho, "Large damage capability of 
non-crimp fabric thin-ply laminates," Composites Part A: Applied Science and 
Manufacturing, Vol 63, pp. 110-122, 2014.  



 

 

23 

[7]  S. Hoa, Principles of the Manufacturing of Composite Materials, DEStech 
Publications, 2009.  

[8]  A. Parvizi, K. Garrett and J. Bailey, "Constrained cracking in glass fibre-reinforced 
epoxy cross-ply laminates," Journal of Material Science, Vol 13, pp. 195-201, 
1978.  

[9]  M. Wisnom, B. Kahn and S. Hallet, "Size effects in unnotched tensile strength of 
unidirectional and quasi-isotropic carbon/epoxy composites," Composite Structures, 
Vol 84, pp. 21-28, 2008.  

[10]  J. Moon, M. Kim, C. Kim and S. Bhowmik, "Improvement of tensile properties of 
CFRP composites under LEO space environment by applying MWNTs and thin-
ply,," Composites Part A: Applied Science and Manufacturing,  Vol 42, pp. 694-
701, 2011.  

[11]  R. Amacher , W. Smith, C. Dransfeld, J. Botsis and J. Cugnoni, "Thin ply: from 
size-effect characterization to real life design," Proceedings of the Composites and 
Advanced Materials Expo (CAMX) Conference, Orlando, FL, October 13 - 16, 
2014. 

[12]  G. Guillamet, A. Turon, J. Costa, J. Renart, P. Linde and J. Mayugo, "Damage 
occurrence at edges of non-crimp-fabric thin-ply laminates under off-axis uniaxial 
loading," Composites Science and Technology, Vol 98, pp. 44-50, 2014.  

[13]  T. Sebaey, J. Costa, P. Maimi, Y. Batista, N. Blanco and J. Mayugo, "Measurement 
of the in situ transverse tensile strength of composite plies by means of the real time 
monitoring of microcracking," Composites Part B: Engineering, Vol 65,  pp. 40-46, 
2014.  

[14]  T. Yokozeiki, A, Kuroda, A. Yoshimura, T. Ogasawara and T. Aoki, "Damage 
characterization in thin-ply composite laminates under out-of-plane transverse 
loadings," Composite structures, Vol 93,  pp. 49-57, 2010.  

[15]  S. Anandan, G. Dhaliwal, V. Samaranayake, K. Chandrashekhara, T. Berkel and D. 
Pfitzinger, "Influence of cure conditions on out‐of‐autoclave bismaleimide 
composite laminates," Journal of Applied Polyer Science, vol. 133, pp. 43984 - 
43991, 2016.  

 

  



 

 

24 

SECTION 

2. CONCLUSIONS AND RECOMMENDATIONS 

 

2.1. CONCLUSIONS  

The paper used in this thesis primarily deals with the neat resin characterization. 

The neat resin properties are obtained to understand the performance of the resin used in 

the prepreg material. Essentially, the main concentrated factor being the differentiation 

between the performance of thin-ply and thick-ply laminate system. Different ply 

thickness have been used in manufacturing of both thin and thick-ply system. The 

performance of the laminates were tested under low-velocity impact tests. Both 

delamination and fiber fracture were observed in thin and thick-ply laminate system. But, 

the impacted area of delamination was comparatively less in thin-ply laminated 

composite compared to then of thick-ply laminated composite at same energy of impact. 

IR-thermography was performed to further validate the results. 

2.2. RECOMMENDATIONS 

The research presented here can be extended in many ways. The experimental 

work in this paper deal with manufacturing of composite panels with quasi-isotropic 

layup scheme for impact characterization. A different layup scheme can be used and the 

comparative study on the performance of the manufactured composite can be done. 

Different tests like tension, compression, open-hole compression and compression after 

impact can be done differentiate the properties of thin-ply and thick-ply laminate system.  
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Samples at various stages of failure can be obtained during mechanical testing and 

studied using Scanning Electron Microscopy (SEM) to study micro-cracking and 

delamination in thin-ply composites. 

  



 

 

26 

BIBLIOGRAPHY 

 

1. H. Stenzenberger, M. Herzog, P. Koenig, W. Roemer and W. Breitigam, 
"Bismaleimide Resins: Past, Present, Future," Proccedings of the International SAMPE 
Symposium and Exhibition, pp. 1877-1888, Reno, NV, May 8-11, 1989. 

 
2. Source: ISO 14692-1:2017, Petroleum and natural gas industries — Glass-reinforced 

plastics (GRP) piping — Part 1: Vocabulary, symbols, applications and materials, 
Second Edition, August 2017 

 
3. T. Vo, K. Vora and B. Minaie, "Effects of Postcure Temperature Variation on 

Hygrothermal-Mechanical Properties of an Out-ofAutoclave Polymer Composite," 
Journal of Applied Polymer Science, vol. 130, pp. 3090-3097, 2013. 

 
4. C. Ridgard, "Next Generation Out-of-Autoclave Systems," Proceedings of the 

International SAMPE Symposium and Exhibition, pp. 1-18, Seattle, WA, May 17-20, 
2010. 

 
5. T. Centea, L. Gunenfelder and S. Nutt, "A Review of Out-of-Autoclave Prepregs – 

Material Properties, Process Phenomena, and Manufacturing Considerations," 
Composites Part A: Applied Science and Manufacturing, vol. 70, pp. 132-154, 2015. 

 
6. H. Hsiao, S. Lee and R. Buyby, "Core Crush Problem in Manufacturing of Composite 

Sandwich Structures: Mechanisms and Solutions," AIAA Journal, vol. 44, no. 4, pp. 
901-907, 2006. 

 
7. T. Centea and P. Hubert, "Measuring the Impregnation of an Out-of-Autoclave Prepreg 

by Micro-CT," Composites Science and Technology, vol. 71, pp. 593-599, 2011. 

 
8. M. L. Costa, S. F. Almeida and M. C. Rezende, "The Influence of Porosity on the 

Interlaminar Shear Strength of Carbon/ Epoxy and Carbon/Bismaleimide Fabric 
Laminates," Composites Science and Technology, vol. 61, pp. 2101-2108, 2001. 

  



 

 

27 

VITA 

 

Manoj Kumar Reddy Rangapuram was born in Mahabubnagar, Telangana, India. 

He received his Bachelor of Technology degree in Mechanical Engineering in 2017 from 

Jawaharlal Nehru Technological University, Hyderabad, India. He immediately joined 

master’s degree program in Mechanical Engineering at Missouri Univeristy of Science 

and Technology, Rolla, Missouri, USA in August 2017. He held the Graduate Research 

Assistant position from January, 2018 through end of his master’s degree. He received 

his master’s degree in Mechanical Engineering from Missouri University of Science and 

Technology in July 2019. 

 


	Performance evaluation of BMI resin system for thin-ply composites
	Recommended Citation

	1. INTRODUCTION
	1.1. PREPREG LAMINATES
	1.2. QUASI-ISOTROPIC LAYUP-SCHEME
	1.3. CURING
	1.4. MANUFACTURING

	1. INTRODUCTION
	2. EXPERIMENTATION
	2.1. MATERIALS
	2.2. METHODOLOGIES
	2.2.1. Neat Resin Panels Fabrication.
	2.2.2. Composite Laminate Manufacturing using OOA Process.

	2.3. MATERIAL CHARACTERIZATION
	2.3.1. Cure Kinetics of Neat Resin.
	2.3.1.1. Thermogravimetric Analysis (TGA).
	2.3.1.2. Differential Scanning Calorimetry (DSC).

	2.3.2. Neat Resin Tension Test.
	2.3.3. Laminate Impact Test.


	3. RESULTS AND DISCUSSION
	3.1. CURE KINETICS STUDY
	3.2. NEAT RESIN TENSION TEST
	3.3. IMPACT TEST

	4. CONCLUSIONS
	ACKNOWLEDGEMENT
	2. CONCLUSIONS AND RECOMMENDATIONS
	2.1. CONCLUSIONS
	2.2. RECOMMENDATIONS


