
Missouri University of Science and Technology Missouri University of Science and Technology 

Scholars' Mine Scholars' Mine 

Materials Science and Engineering Faculty 
Research & Creative Works Materials Science and Engineering 

01 Jan 2020 

Densification of Ultra-Refractory Transition Metal Diboride Densification of Ultra-Refractory Transition Metal Diboride 

Ceramics Ceramics 

William Fahrenholtz 
Missouri University of Science and Technology, billf@mst.edu 

Greg Hilmas 
Missouri University of Science and Technology, ghilmas@mst.edu 

Ruixing Li 

Follow this and additional works at: https://scholarsmine.mst.edu/matsci_eng_facwork 

 Part of the Ceramic Materials Commons 

Recommended Citation Recommended Citation 
W. Fahrenholtz et al., "Densification of Ultra-Refractory Transition Metal Diboride Ceramics," Science of 
Sintering, vol. 52, no. 1, International Institute for the Science of Sintering (IISS), Jan 2020. 
The definitive version is available at https://doi.org/10.2298/SOS2001001F 

This work is licensed under a Creative Commons Attribution 4.0 License. 

This Article - Journal is brought to you for free and open access by Scholars' Mine. It has been accepted for 
inclusion in Materials Science and Engineering Faculty Research & Creative Works by an authorized administrator 
of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for 
redistribution requires the permission of the copyright holder. For more information, please contact 
scholarsmine@mst.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/328037238?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/matsci_eng_facwork
https://scholarsmine.mst.edu/matsci_eng_facwork
https://scholarsmine.mst.edu/matsci_eng
https://scholarsmine.mst.edu/matsci_eng_facwork?utm_source=scholarsmine.mst.edu%2Fmatsci_eng_facwork%2F2686&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/287?utm_source=scholarsmine.mst.edu%2Fmatsci_eng_facwork%2F2686&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.2298/SOS2001001F
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:scholarsmine@mst.edu


Science of Sintering, 52 (2020) 1-14  
________________________________________________________________________ 
 

_____________________________ 

*)
 Corresponding author: billf@mst.edu 

doi:https://doi.org/10.2298/SOS2001001F 

 

UDK: 546.271; 622.785; 676.056.73 

Densification of Ultra-Refractory Transition Metal Diboride 

Ceramics 
 

W. G. Fahrenholtz
1*)

, G. E. Hilmas
1
, Ruixing Li

2
  

1
Missouri University of Science and Technology, Rolla, MO 

2
Beihang University, Beijing, China 

  

 

   

Abstract: 
 The densification behavior of transition metal diboride compounds was reviewed with 

emphasis on ZrB2 and HfB2. These compounds are considered ultra-high temperature 

ceramics because they have melting temperatures above 3000°C. Densification of transition 
metal diborides is difficult due to their strong covalent bonding, which results in extremely 

high melting temperatures and low self-diffusion coefficients. In addition, oxide impurities 

present on the surface of powder particles promotes coarsening, which further inhibits 
densification. Studies prior to the 1990s predominantly used hot pressing for densification. 

Those reports revealed densification mechanisms and identified that oxygen impurity contents 

below about 0.5 wt% were required for effective densification. Subsequent studies have 

employed advanced sintering methods such as spark plasma sintering and reactive hot 
pressing to produce materials with nearly full density and higher metallic purity. Further 

studies are needed to identify fundamental densification mechanisms and further improve the 

elevated temperature properties of transition metal diborides. 

Keywords: Transition metal diborides; Densification; Sintering; Hot pressing. 

 

 

1. Introduction 

 
 Transition metal diborides (TMB2s) have been researched for many years as 

materials for use in extreme environments.
1-7

 Several TMB2s, including TiB2, ZrB2, HfB2, 

and TaB2, are considered to be ultra-high temperature ceramics (UHTCs) because they have 

melting temperatures in excess of 3000°C. Other TMB2s such as OsB2 and ReB2 have 
received attention as novel superhard materials.

8-10
 The TMB2s possess unusual combinations 

of properties such as metal-like thermal and electrical conductivities with ceramic-like 

hardness and elastic modulus, which result from a complex combination of covalent, metallic, 
and ionic bond characteristics.

11-13
 Because of their properties, TMB2s are proposed for use at 

extreme temperatures, heat fluxes, radiation levels, strain rates, or chemical reactivities that 

exceed the capabilities of existing materials. Some of the potential applications typically 

mentioned for TMB2s include hypersonic aerospace vehicles, rocket motors, scramjet 
engines, lightweight armor, high-speed cutting tools, refractories for molten metal contact 

applications, plasma-facing materials for nuclear fusion reactors, and fuel forms for advanced 

nuclear fission reactors.
5,14-22

 The same characteristics that give TMB2s their remarkably high 
melting temperatures and hardness values also make TMB2s difficult to densify. 

 The densification of ceramic materials can be accomplished by a number of methods. 

Many commercial ceramics are produced by pressureless sintering of parts fabricated by 
powder processing methods.

23-25
 Some ceramics are difficult to densify by pressureless 
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sintering, but this can be overcome by using alternative densification methods that 

simultaneously apply elevated temperatures with pressure and/or an external field in methods 
such as hot pressing, hot isostatic pressing, or spark plasma sintering.

26,27
 The mechanisms for 

sintering involve transport of material through solid, liquid, or vapor phases.
28

 Mechanisms 

that promote densification include grain boundary diffusion, lattice diffusion when the source 

of material is the grain boundaries, or plastic flow.
29

 Other mechanisms such as surface 
diffusion, lattice diffusion when the source of material is particle surfaces, or evaporation-

condensation lead to coarsening without densification. In practice, coarsening and 

densification occur simultaneously.
26

 The six mechanisms listed above are limiting cases 
where either densification or coarsening is predominant, but, in some cases, competition 

between the processes leads to limiting densities. More detailed discussions of sintering 

mechanisms and kinetics can be found in a number of sources and will not be reviewed 
further herein.

23-31
 

 The purpose of this paper is to critically evaluate published studies of the 

densification behavior of nominally pure TMB2 ceramics with the focus on ZrB2 and HfB2. 

Ceramics containing significant additions of SiC, MoSi2, or other second phases are 
intentionally excluded from consideration in this manuscript. 

 

 

2. Historic Reports 

 
 Historic densification studies are considered those ranging from the initial reports of 

TMB2 synthesis into the early 1990s. This era was dominated by initial evaluations of 

TMB2s as part of the space race activities in the U.S.S.R. and the U.S., but included efforts 

that extended through the 1980s and into the early 1990s.  
 Initial synthesis methods for diborides were reported in the late 1800s and early 

1900s.
32-35

 These and other early studies focused on the phases formed and did not discuss 

densification. Starting in the 1960s, Kislyi et al. published a number of studies on the 
behavior of UHTCs, including some of the first reported studies of the densification behavior 

of TMB2 powders. The group emphasized that the directional nature of the strong covalent 

bonds in diborides inhibited diffusion and prevented shrinkage.
36

 That report also noted that 
densification of commercial ZrB2 was activated by impurities, but the materials reported 

therein did not reach full density by pressureless sintering.
36

 The same group investigated 

vacuum sintering of TiB2, which revealed that non-densifying mass transport mechanisms 

such as surface diffusion and evaporation-condensation were active below 1800°C for 
materials with oxygen impurities.

37
 The addition of Mo to ZrB2 enhanced densification and 

allowed for full densification, which was attributed to viscous flow.
38

 In contrast, W additions 

were noted to decrease densification due to a volume increase associated with the dissolution 
of W into the ZrB2 structure.

39
 Taken together, the published papers indicated mixed success 

in the densification of TMB2s. While some insight was gained into densification behavior, 

different results were observed for different TMB2s, which indicated that different extrinsic 
effects (e.g., impurities) controlled the observed behavior. 

 About the same time as the studies by Kislyi et al., researchers at ManLabs in the 

U.S. were studying TMB2s as part of a series of projects sponsored by the U.S. Air Force.
40

 

In one effort, densification behavior of fifteen different ZrB2 and HfB2 compositions were 
evaluated.

41
 Hot pressing was the predominant method used for densification, but other 

techniques including hot isostatic pressing, plasma spraying, arc casting, hot forging, and 

pyrolytic deposition were also examined.
41

 The densification mechanism of ZrB2 was 
analyzed by fitting displacement during hot pressing to various diffusion models. Based on 

the fit to the grain boundary diffusion model shown in Fig and the values of diffusivity, 

Kaufman and Clougherty concluded that densification proceeded by diffusion through a 

liquid film at the grain boundaries.
41

 In contrast, densification of HfB2 with a coarse starting 
particle size was slower and the highest density reached was ~92 %.

42
 A subsequent study 
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found that HfB2 with an initial particle size of less than 5 µm reached nearly full density at the 

relatively modest temperature of 1800°C with a pressure of ~1.5 GPa.
43

 The overall 
conclusions from the ManLabs studies were that none of the TMB2s that had been examined 

were phase pure and that densification of all of the TMB2s was affected by oxide impurities.
41

 

Based on the results of these studies, most subsequent investigations utilized hot pressing with 

addition of sintering aids that would react with and remove oxygen impurities to produce 
dense TMB2 ceramics. 

 
 
Fig. 1. Relative density to the 3/2 power as a function of sintering time divided by grain size 

to the fourth power showing that densification of ZrB2 was consistent with grain boundary 

diffusion. Replotted from data in Ref. 41, which is a public domain source. 

 
 Metallic sintering aids have been widely reported for enhancing the densification of 

TMB2s. For example, Cech et al. reported the addition of up to 3 wt% Fe, Ni, or Co to 

enhance the densification of ZrB2.
44

 A decrease in the lattice parameters of ZrB2 was noted 
indicating dissolution of part of the transition metals into the TMB2 lattice. Similar metal 

additions have been reported to enable pressureless sintering of TiB2 ceramics.
45,46

 The use of 

transition metals was effective in promoting densification due to the formation of a liquid 

phase. However, the presence of transition metals results in the formation of eutectics at 
temperatures below 1500°C, which precludes the use of the resulting ceramics at extreme 

temperatures. To minimize the introduction of low-melting compounds, several historic 

studies also examined the efficacy of non-metallic additions on the densification behavior of 
TMB2s. The ManLabs reports noted improvements in densification for compositions rich in 

either boron or the transition metal compared to nominally stoichiometric TMB2s.
41,42

 In 

addition, improved sintering was also noted for additions of C, SiC or ZrC, though specific 
mechanisms were not discussed.

41
 Subsequent to the initial reports, results from the ManLabs 

studies on the effects of densification conditions and sintering additives on properties were 

compiled and summarized by Fenter.
47

 

 As noted above, several of the historic studies recognized that impurities impacted the 
densification behavior of TMB2s. Kaufman and Clougherty reported attempts to purify 

TMB2s by HF leaching with mixed results.
41

 While impurity levels decreased for ZrB2, the 

same treatments on HfB2 powders resulted in dissolution of most of the starting powder. 
Unfortunately, even purified ZrB2 powders still contained high enough levels of impurities to 

have an adverse effect on densification behavior. Two historic studies stand out for not only 

recognizing the role of oxygen impurities in densification of TMB2s, but isolating and 

controlling their impact. Baumgartner and Steiger synthesized TiB2 with a low oxygen 
content by a gas phase reaction (Reaction 1).

48
 Particles less than 0.5 µm wide with a platelet 
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morphology were produced. The authors reported >99 % relative density for pressureless 

sintering temperatures of 2100°C or higher with a diffusion-controlled mechanism. 
 

       ( )         ( )       ( )       ( )        ( )       (1) 

 

Building on those results, Baik and Becher used a combination of carbon additions and 
comminution to sinter a commercial TiB2 to nearly full density.

49
 They concluded that 

limiting the oxygen content of the TMB2 powders to 0.5 wt% or lower inhibited vapor phase 

coarsening and promoted densification. As shown in Fig. , reducing the oxygen content from 
1.7 to 0.7 wt% resulted in an increase in relative density from ~85 to ~95 % with final grain 

sizes in the range of 30 µm to 70 µm. The addition of carbon to the powder containing 0.7 

wt% oxygen to further react with and remove oxygen impurities enabled nearly full 

densification (>99 %) with a grain size of less than 10 µm. For TiB2, consideration of grain 
size is important because spontaneous microcracking that reduces strength, elastic modulus, 

and hardness occurs for grain sizes above ~15 µm.
50

 Hence, not only did Baik and Becher 

define a method for densifying TiB2, but their method also controlled grain growth to enable 
production of TiB2 ceramics with properties that were consistent with the intrinsic behavior of 

the material. 

 

 
 

Fig. 2. Grain size as a function of relative density for hot pressed TiB2 powders with various 

oxygen contents. Reprinted from Ref. 49. 

 
 These historic studies were remarkable for the volume of research conducted and the 

impact that they had on subsequent research. For example, ZrB2 and HfB2 were identified as 

the most promising candidates for aerospace applications based on initial oxidation studies
42

 
and have been the focus of efforts for use at ultra-high temperatures in oxidizing 

environments since then. Specifically for densification, these historic studies identified the 

critical aspects of chemical purity, composition, particle size, and oxygen content that 

provided the foundation for many of the recent studies of the intrinsic behavior of the TMB2s. 
 

3. Recent Studies 

 
 Research on UHTCs experienced a resurgence of interest in the 1990s, which was 

motivated by the worldwide interest in hypersonic aviation. The extreme environments 
associated with sustained hypersonic flight led to the search for materials that could withstand 
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temperatures of 2000°C or higher, heat fluxes of hundreds of W/cm
2
, and thermal shock, all in 

an oxidizing environment.1,2,51-53
 For nominally pure materials, densification methods can be 

grouped into three main categories: 1) pressure-assisted methods such as hot pressing and 

spark plasma sintering; 2) pressureless sintering methods; and 3) reaction-based densification. 

 
Pressure assisted densification 

 

 Densification of nominally pure TMB2s (i.e., without intentional addition of second 
phases such as SiC or MoSi2) is most commonly accomplished through the use of hot 

pressing.1,4 Hafnium diboride has been studied less than ZrB2, but several studies have 

examined its densification behavior. Opeka et al. produced dense HfB2 by hot pressing at 
2160°C with the addition of HfH2 as a densification aid.

54
 The group from ISTEC used the 

addition of transition metal silicides to promote densification of HfB2 by hot pressing
55,56

 or 

spark plasma sintering,
57-59

 generally achieving nearly full density at temperatures as low as 
1800°C with additives such as MoSi2, but HfB2 only reached about 80% at 2200°C without 

additives. Additional studies have revealed the effects of pressure,
60

 solid solution additives,
61

 

and stoichiometry of boron carbide
62

 on densification. From these studies, full densification of 

HfB2 appears to require temperatures of at least 2100°C in combination with additives that 
promote densification and alter microstructure development. 

 

a) 

 

b) 

 
 

Fig. 3. (a) Change in standard Gibbs’ free energy of reaction for reactions that promote 

oxygen removal from diboride particle surfaces and (b) the effect of furnace pressure on the 
favorability of Reactions 2-5. Reprinted with permission from Reference 81. 

 

 A variety of sintering aids have been used to promote densification of TMB2s by hot 
pressing including transition metals,

63-66
 nitrides,

67-69
 and oxides.

70-72
 However, the presence of 

low melting temperature phases, particularly those that promote liquid phase sintering, 

compromises the elevated temperature mechanical behavior of TMB2 ceramics.
73

 Additives 

that react with and promote removal of oxides are attractive for densification of TMB2s. For 
example, MoSi2 and other silicides have been shown to promote densification by removing 

oxide impurities from the surfaces of grains by a combination of mechanisms.
57,58,74-77

 

Additives such as C, B4C, WC, or their combinations promote densification by reacting with 
surface oxides and removing oxygen in the form of CO gas through thermodynamically-

favorable processes as shown by Reactions 2-5.
78,79

 These reactions are endothermic and 

become favorable at elevated temperatures as shown by the point where change in standard 

state Gibbs’ free energy for the reactions becomes negative. The use of reduced pressures 
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(e.g., mild vacuum) during heating can further enhance densification by making the oxygen-

removal reactions favorable at lower temperatures b) compared to standard state (i.e., partial 
pressure of 1 atm for each gaseous species). Harrington et al.

80
 provided direct evidence of 

carbon reacting with surface oxide impurities by comparing the amount of carbon added to 

batches to the amount of carbon retained in the final ceramics (Figure 4). Below a critical 

content of about 0.5 wt% carbon added, the retained carbon contents in the ceramics were 
below ~0.05 wt% and the ceramics had elevated retained oxygen contents.

80
 For additions in 

this range, all of the carbon that had been added was consumed by reaction with oxygen 

impurities, but not all of the oxygen impurities were removed (i.e., carbon was the limiting 
reactant). Carbon additions that resulted in this behavior were in what was termed the “low 

carbon” regime. Once the critical threshold value of carbon additions was reached, oxygen 

content in the ceramics was minimized (i.e., was below ~0.1 wt%) and any excess carbon 
added to the ceramic was retained in the form of carbon inclusions in the final ceramic.

80
 

Carbon additions that resulted in this behavior were termed the “high carbon” regime, which 

occurred with oxygen as the limiting reactant. Taken as a whole the use of reactive additives 

is an attractive approach for promoting densification of TMB2 ceramics as this approach 
offers the ability to enhance densification while also controlling microstructure development 

by limiting grain growth during densification.
81

 

 

      ( )     ( )    ( )     ( )     ( )                      (2) 

       ( )      ( )        ( )        ( )     ( )         (3) 

      ( )    ( )       ( )       ( )     ( )                      (4) 

       ( )     ( )    ( )        ( )     ( )          (5) 

 

 
Fig. 4. Measured carbon content in ZrB2 content as a function of nominal carbon additions 

showing that the initial carbon additions are consumed by reaction. Replotted with data from 
Ref. 83 with permission. 

 

Pressureless Sintering 

 
 Although TMB2s can be difficult to densify even when external pressure is applied, a 

number of studies have reported pressureless sintering to nearly full density. Pressureless 

sintering provides a number of potential advantages including the ability to densify complex 
shapes made by additive manufacturing,

82-84
 colloidal processing,

85,86
 or other routes

87
 as well 

as densify the internal structure present in foams or other intentionally porous bodies.
88

 As 

with hot pressing, metal additives can be used to promote pressureless sintering,
66,89-92

 but 
result in formation of liquid phases that are deleterious to mechanical integrity above 1500°C. 

Several studies have reported the use of MoSi2 and other silicides as densification aids to 



W. G. Fahrenholtz et al.,/Science of Sintering, 52(2020)1-14 

___________________________________________________________________________ 

7 

 

promote pressureless sintering of TMB2s.
56,93-96

 Additives that react with and remove oxygen 

impurities such as C,
97,98

 B,
99

 B4C,
100-104

 WC,
105,106

 or their combinations
107,108

 have also been 
shown to promote pressureless sintering when the starting particle size of the TMB2 is 

sufficiently small to enable pressureless sintering.
78,107

 Some reports also describe enhanced 

sintering with the addition of metallic species that substitute onto metal sites in the lattice of 

the primary TMB2 (e.g., addition of TiB2 to ZrB2 to form a (Zr,Ti)B2 solid solution),
109-112

 
although the mechanisms are not understood. While starting particle size is an important 

factor in the pressureless sintering of TMB2 ceramics, removal of oxygen impurities from 

particle surfaces is critical. If oxygen content is above the critical threshold value of about 0.5 
wt%,

49,78
 then grains coarsen, which inhibits densification.

51
 Because oxygen is insoluble in 

the TMB2 lattice, oxygen impurities can be removed using additives that react with and 

remove them from the particle surfaces. Carbon is a particularly effective additive when 
added as a thin layer on the outside of TMB2 particles, as can be done using soluble carbon 

precursors such as phenolic resin.
97

 As illustrated in Fig. , carbon can be distributed evenly 

over the particle surface
97

 to minimize the diffusion distance required for reaction of the 

sintering aid with the oxide impurities compared to the addition of isolated particles of the 
sintering aids. Overall, pressureless sintering is a highly attractive densification method for 

TMB2s based on the ability to produce complex shapes and ease of mass production 

compared to pressure-assisted densification methods. 
 

 
 

Fig. 5. Schematic representation of the removal of oxide impurities from ZrB2 particle 

surfaces using carbon coated by deposition from phenolic resin solution. Used by permission 
from Ref. 97. 

 

Reactive Sintering 

 
 Several different reaction-based processes have been used to densify TMB2 
ceramics.

113
 The most common reactive process is direct reaction of the desired TM with 

boron.
114-115 

Other processes including magnesio-thermal reduction of oxides,
116,117

 

borothermal reduction of oxides
118

 or nitrides,
119

 and reactive pressureless sintering,
120

. The 

potential advantages of reactive processes include producing materials with higher purity and 
lowering densification temperatures, both of which can lead to improved properties.

121-124
 For 

direct synthesis from elemental precursors (or TM hydrides), reaction is thought to proceed by 

diffusion of B into the TM through the developing TMB2 reaction layer,
114

 although oxide 
impurities are often found in the resulting ceramics. Further refinement of microstructure and 

minimization of oxide impurities is possible by controlling the ratio of TM to B in the 

reactants and/or adding carbon to react with and remove oxygen during synthesis.
125

 

Observation of exothermic “gas-burst” phenomena led to formation of dense TMB2 ceramics 
with a unique duplex microstructure consisting of ZrB2 platelets in a matrix of equiaxed 

grains, which led to improved strength at room temperature.
126

 Reactive hot pressing has been 

used to study the densification mechanisms of TMB2 ceramics during the intermediate stage 
of sintering and revealed that densification was controlled by grain boundary diffusion below 

2100°C and lattice diffusion at higher temperatures as illustrated in Fig. .
127

 Hence, reaction-



W. G. Fahrenholtz et al.,/Science of Sintering, 52(2020)1-14  

___________________________________________________________________________ 

8 

 

based processes are a versatile and effective way not only to produce dense TMB2s, but also 

offer the ability to study fundamental densification mechanisms and improve sintering. 

 

 
 

Fig. 6. Activation energy plot showing the densification rate of ZrB2 ceramics produced by 

reactive hot pressing in the low temperature (greater than 4.4 K
-1
 inverse temperature x 10

4
) 

and high temperature (less than 4.4 K
-1
 inverse temperature x 10

4
). Used by permission from 

Ref. 127. 
 

4. Summary and Outlook 

 
 Transition metal diboride ceramics can be densified by methods including hot 

pressing, pressureless sintering, and reaction-based processes. While starting particle size 
influences densification, the critical requirement for full densification of TMB2s is 

minimization of oxygen-containing impurities on the particle surfaces, which appear to 

function by minimizing grain coarsening and promoting densifying sintering mechanisms. 
Recent studies have revealed important fundamental aspects of densification of TMB2s 

including the effect of temperature on predominant densification mechanism, pathways for 

removal of oxygen impurities using reactive additives, and methods to control microstructure 

development during hot pressing.  
 Despite the recent progress that has been made, a number of unanswered questions 

remain. Some areas for potential future research include: 

 
1. Sintering and grain growth mechanisms: Both historic and recent studies have 

examined sintering mechanisms. The materials in both studies contained oxygen 

impurities. In the historic study, the oxide formed a nearly-continuous grain boundary 
phase while in the recent study, oxide inclusions were present in the final ceramic. 

The opportunities for future mechanism studies include identifying initial stage 

sintering mechanisms, identifying intermediate stage sintering mechanisms in 

materials with lower oxygen impurity contents, studying final stage sintering 
mechanisms, and elucidating grain growth mechanisms. Evaluation of the effects of 

solid solution additives and second phases is also needed. Knowledge of sintering 

mechanisms will enable better control of microstructure development during 
densification and, therefore, the ability to control properties of the final ceramics. 

2. Oxygen impurity effects: While the presence of oxygen impurities has been 

correlated to inhibited densification and enhanced grain coarsening, more detailed 
studies are needed to identify the mechanisms and kinetics of the processes involved. 

One recent study
128

 has taken a step in this direction by applying high-resolution 
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characterization methods to study the mechanisms of oxygen removal from particle 

surfaces, but additional studies are needed to determine values for surface energies, 
identify reactions, and derive analytical expressions to describe behaviors. 

3. Emerging trends: This review summarized studies of hot pressing, spark plasma 

sintering, pressureless sintering, and reactive processes for densifying TMB2s. Some 

emerging areas for additional research include studying densification mechanisms 
and kinetics for flash sintering of TMB2s,

129,130
 examining densification behavior of 

high entropy TMB2s, and utilizing computational methods including data mining to 

maximize the understanding of the densification behavior of TMB2 ceramics. 
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Сажетак: Изучавана је денсификација боридних једињења са посебним освртом на  

ZrB2 и HfB2. Сматра се да су ова једињења керамике примењиве на ултра-високим 

температурама, јер им је температура топљења преко 3000 °C. Денсификација ових 

једињења је тешка због њихове јаке ковалентне везе, која резултује високим 
температурама топљења и ниским коефицијентом дифузије. Додатно, кисеоничне 

нечистоће које се налазе на површини честица праха чине површину храпавијом, што 

додатно успорава згушњавање. Студије пре 1990. Углавном користе топло пресовање. 
Те студије откривају механизме синтеровања и тврде да су нечистоће испод 0.5 wt% 

потребне за ефектно скупљање. Скорашње студије укључују напредне методе као 

што су синтеровање у плазми и рективно топло пресовање да би добили материјале 
скоро потпуно густе и са високим степеном чистоће. Потребна су даља 

истраживања да би се утврдили фунадаментални механизми згушњавања и да би се 

побољшала својства борида на високим температурама. 

Кључне речи: ди-бориди, згушњавање, синтеровање, топло пресовање. 
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