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Abstract. The paper presents a complete generalized procedure based on the Euler-Lagrange equa-

tions to build the matrix form of dynamic equations, called dynamic model, for robot manipulators.

In addition, a new formulation of the Coriolis/centrifugal matrix is proposed. The link linear and

angular velocities are formulated explicitly. Therefore, the translational and rotational Jacobian ma-

trices can be derived straightforward from definition, which make the calculation of the generalized

inertia matrix more convenient. By using Kronecker product, a new Coriolis/centrifugal matrix for-

mulation is set up directly in matrix-based manner and guarantees the skew symmetry property of

robot dynamic equations. This important property is usually exploited for developing many control

methodologies. The validation of the proposal formulation is confirmed through the symbolic solution

and simulation of a typical robot manipulator.

Keywords. Robot manipulator; Euler-Lagrange equations; Dynamic model; Coriolis/centrifugal

matrix; Kronecker product.

1. INTRODUCTION

Based on the Euler-Lagrange equations, many approaches for deriving the dynamic mo-
del of robot manipulators are published [1, 6, 16, 19, 20, 21]. The important property of
dynamic equations, which is often exploited for developing control algorithms (e.g., sliding
mode control [8, 13], sliding mode control using neural networks [7, 13], neural-network-
based control [5, 14]), is the skew symmetry that depends on the Coriolis/centrifugal matrix
formulation. For satisfying the skew symmetry property, the popular method is to take
advantages of Christoffel symbols of the first kind for constructing the Coriolis/centrifugal
matrix; but this matrix has to be set up by combining all its elements after calculating every
one of them [6, 16, 19, 20, 21].

Several types of the Coriolis/centrifugal matrix developed directly in matrix-based man-
ner are studied to preserve the skew symmetry property; One is derived from the Lie group
based recursive Newton-Euler algorithm by replacing the original Coriolis matrix of the mo-
tion equations for each body level with a modified Coriolis matrix [17]; One is obtained by
dropping the term that does not contribute to the Coriolis/centrifugal force [9]; One is taken
after removing a zero term from the Coriolis/centrifugal vector [3]; One is extended from [3]
for geared manipulators with ideal joints [2]; And another can be simplified, after being split
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into a skew-symmetric matrix and a symmetric matrix, by omitting the skew-symmetric part
in the case that this part is trivial in compared to the other part [18]. Some other studies also
offer a new Coriolis/centrifugal matrix, but it does not satisfy the skew symmetry property
[11, 12, 15].

In our paper, taking advantages of the definitions and theorems for partial derivatives of a
matrix, a product of two matrices with respect to a vector, and the time derivative of a matrix
[11] using Kronecker product [4, 10, 22], we build the matrix form of dynamic equations of
robot manipulators based on the Euler-Lagrange equations. Moreover, a new formulation of
the Coriolis/centrifugal matrix is established directly in matrix-based manner and guarantees
the skew symmetry property. In Section 2, the link velocities are derived. In Section 3, let
us take a brief review about the Euler-Lagrange equations for generating dynamic equations
and the definitions of Jacobian matrices for each link. In Section 4, the whole process of
building the dynamic model for robot manipulators with the new Coriolis/centrifugal matrix
is presented. In Section 5, the proposed formulation is applied to a typical robot manipulator
for simulation and validation. Finally, Section 6 gives some important conclusions.

2. LINEAR AND ANGULAR VELOCITIES OF LINKS

If we can formulate explicitly the link linear and angular velocities then the link Jacobian
matrices, as well as the total kinetic energy can be calculated easily. In this section, we
derive the formulas of the linear and angular velocities. Let us consider an n-link robot
manipulator with the notation that every vector variable expressed in the base frame is
denoted by superscript “0”, and in the corresponding attached frame has no superscript.
Denote ωi and ω0

i ∈ R3 for the angular velocities of link i expressed in frame i and the base
frame, respectively; And their cross-product matrices are denoted by S(ωi), S(ω0

i ) ∈ R3×3

as follows

S(ωi) =

 0 −ωiz ωiy

ωiz 0 −ωix

−ωiy ωix 0

 , ωi =

ωix

ωiy

ωiz

 , (1)

S(ω0
i ) =

 0 −ω0
iz ω0

iy

ω0
iz 0 −ω0

ix

−ω0
iy ω0

ix 0

 , ω0
i =

ω0
ix

ω0
iy

ω0
iz

 . (2)

Consider link i with its center of mass Ci and an arbitrary point Ai on the link (Figure 1).
The base frame (frame 0) and the frame attached on link i (frame i) are denoted by O0x0y0z0
and Oixiyizi, respectively. By means of analysis of geometric vectors, it is straightforward
to show that

~pAi = ~pCi + ~rCiAi = ~pCi + (~rAi − ~rCi), (3)

where geometric vectors are denoted by the notation
−→
(�); ~pAi and ~pCi are the length vectors

between O0 and Ai, Ci, respectively; ~rAi and ~rCi are the length vectors between Oi and Ai,
Ci, respectively; And ~rCiAi is the length vector between Ci and Ai. Based on the motion
theory of a body in space, taking the time derivative of (3) yields

~vAi = ~vCi + ~ωi × (~rAi − ~rCi), (4)
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Figure 1. The linear and rotational motions of link i in space

where ~vAi = d~pAi/dt and ~vCi = d~pCi/dt are the linear velocity vectors of Ai and Ci, respecti-
vely. On the other hand, geometric vectors can be represented by algebraic vectors via their
projection onto Cartesian coordinates. The algebraic vectors of ~p(.) and ~r(.) are denoted by
p(.) and r(.) ∈ R3, respectively. Projecting (3) onto the base frame has (5) and then taking
the time derivatives of (5) gives (6) as

p0
Ai

= p0
Ci

+ (r0Ai
− r0Ci

)

= p0
Ci

+ (R0
i rAi −R0

i rCi)

= p0
Ci

+ R0
i (rAi − rCi), (5)

v0
Ai

= v0
Ci

+ Ṙ0
i (rAi − rCi), (6)

where R0
i ∈ R3×3 is the rotation matrix that expresses the orientation of frame i in the base

frame. Notice that rAi and rCi are constant in frame i. Projecting (4) onto frame i gives

vAi = vCi + ωi × (rAi − rCi)

= vCi + S(ωi)(rAi − rCi). (7)

Pre-multiplying both sides of (7) by R0
i yields

R0
ivAi = R0

ivCi + R0
iS(ωi)(rAi − rCi), (8)

v0
Ai

= v0
Ci

+ R0
iS(ωi)(rAi − rCi). (9)

Equating (6) and (9) one obtains

S(ωi) = (R0
i )

T
Ṙ0

i . (10)

Besides, projecting (4) onto the base frame and using matrix R0
i give

v0
Ai

= v0
Ci

+ ω0
i × (r0Ai

− r0Ci
)

= v0
Ci

+ S(ω0
i )(r

0
Ai
− r0Ci

)

= v0
Ci

+ S(ω0
i )(R

0
i rAi −R0

i rCi)

= v0
Ci

+ S(ω0
i )R

0
i (rAi − rCi). (11)
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Similarly, equating (6) and (11) one obtains

S(ω0
i ) = Ṙ0

i (R
0
i )

T
. (12)

Thus, ωi or ω0
i can be formulated from (1) or (2) after finding S(ωi) or S(ω0

i ) by (10)
or (12). For common use, from now to the end of this paper, the linear velocity expressed
in the base frame is re-denoted by v0

i instead of v0
Ci

which is the time derivative of p0
Ci

v0
i =

dp0
Ci

dt
. (13)

By using homogeneous transformation, the link centroid p0
Ci

can be determined from rCi

which may be given or found out from the physical structure and configuration of link i[
p0
Ci

1

]
= T0

i

[
rCi

1

]
, (14)

where T0
i ∈ R4×4 is the homogeneous transformation that expresses the position and orien-

tation of frame i in the base frame

T0
i = T0

1T
1
2...T

i−1
i =

[
R0

i p0
i

0T 1

]
, (15)

where p0
i ∈ R3 is the origin of frame i with respect to the base frame.

3. A BRIEF REVIEW OF EULER-LAGRANGE EQUATIONS
FOR DYNAMICS OF ROBOT MANIPULATORS

The Euler-Lagrange equations which is deployed for generating the equations of motion
of robot manipulators are given as

d

dt

(
∂L

∂q̇

)T

−
(
∂L

∂q

)T

= τ , (16)

where L = K − P is the Lagrangian function; K and P are the total kinetic and potential
energy, respectively; τ ∈ Rn is the general force/torque vector; q ∈ Rn is the vector of joint
variables, and q̇ is its first time derivative. P and K are obtained by

P = −
n∑

i=1

mi(g
0)Tp0

Ci
, (17)

K =

n∑
i=1

(
1

2
mi(v

0
i )

T
v0
i +

1

2
(ω0

i )
T
I0iω

0
i

)
(18)

with g0 = [0, 0,−g]T is the gravitational acceleration vector, g = 9.807 (m/s2); mi is the
mass of link i; I0i ∈ R3×3 is the link inertia tensor with respect to the base frame. Let us
denote Ii ∈ R3×3 for the link inertia tensor with respect to the frame attached at the link
centroid and parallel to the body frame. The relation between I0i and Ii is given by

I0i = R0
i Ii(R

0
i )

T
. (19)
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Based on the shape, structure, and material of link i, matrix Ii may be approximated at
a sufficient accuracy. Substituting (19) into (18) yields

K =

n∑
i=1

(
1

2
mi(v

0
i )

T
v0
i +

1

2
(ω0

i )
T
R0

i Ii(R
0
i )

T
ω0

i

)
. (20)

The transformation between ωi and ω0
i is given by

ω0
i = R0

iωi. (21)

Substituting (21) into (20) results in a compacted expression as

K =
n∑

i=1

(
1

2
mi(v

0
i )

T
v0
i +

1

2
ωT

i Iiωi

)
. (22)

The rotational and translational Jacobian matrices related to ω0
i and v0

i : J0
Ri
∈ R3×n

and J0
Ti
∈ R3×n, respectively, can be defined by

J0
Ri

=
∂ω0

i

∂q̇
, (23)

J0
Ti

=
∂v0

i

∂q̇
=
∂p0

Ci

∂q
. (24)

Additionally, the rotational Jacobian matrix JRi ∈ R3×n related to ωi can be defined as

JRi =
∂ωi

∂q̇
. (25)

From the definitions of two parts of manipulator Jacobian depicted in (24) and (25), we
have

v0
i = J0

Ti
q̇, ωi = JRi q̇. (26)

Substituting (26) into (22) yields the total kinetic energy as

K =
n∑

i=1

(
1

2
miq̇

T (J0
Ti

)
T
J0
Ti
q̇ +

1

2
q̇TJT

Ri
IiJRi q̇

)

=
1

2
q̇T

[
n∑

i=1

(
mi(J

0
Ti

)
T
J0
Ti

+ JT
Ri
IiJRi

)]
q̇ =

1

2
q̇TMq̇, (27)

where M ∈ Rn×n is called the generalized inertia matrix that is symmetric and positive
definite

M =
n∑

i=1

(
mi(J

0
Ti

)
T
J0
Ti

+ JT
Ri
IiJRi

)
. (28)
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4. DYNAMIC MODEL WITH A NEW FORMULATION
OF CORIOLIS/CENTRIFUGAL MATRIX FOR ROBOT MANIPULATORS

The general dynamic model of robot manipulators is as follows without considering
friction

τ = Mq̈ + Cq̇ + g, (29)

where τ , M, and q are defined in the previous section; C ∈ Rn×n is the Coriolis/centrifugal
matrix; g ∈ Rn is the vector of gravity term. Foremost, we take a review of some definitions
and theorems about Kronecker product; Partial derivatives of a matrix, a product of two
matrices with respect to a vector; And the time derivative of a matrix.

Definition 1. The Kronecker product of two matrices D ∈ Rp×q and H ∈ Rr×s is (D⊗H) ∈
Rpr×qs defined as [4, 10, 22]

D⊗H =


d11H d12H · · · d1qH
d21H d22H · · · d2qH

...
...

. . .
...

dp1H dp2H · · · dpqH

 , (30)

where ⊗ denotes Kronecker product operator.

Definition 2. The partial derivative of any matrix D(x) ∈ Rp×q with respect to vector
x ∈ Rr is defined as a p× qr matrix [11]

∂D

∂x
=



∂d11
∂x

∂d12
∂x

· · · ∂d1q
∂x

∂d21
∂x

∂d22
∂x

· · · ∂d2q
∂x

...
...

. . .
...

∂dp1
∂x

∂dp2
∂x

· · · ∂dpq
∂x


=



∂d11
∂x1

. . .
∂d11
∂xr

∂d12
∂x1

. . .
∂d12
∂xr

· · · ∂d1q
∂x1

. . .
∂d1q
∂xr

∂d21
∂x1

. . .
∂d21
∂xr

∂d22
∂x1

. . .
∂d22
∂xr

· · · ∂d2q
∂x1

. . .
∂d2q
∂xr

...
...

. . .
...

∂dp1
∂x1

. . .
∂dp1
∂xr

∂dp2
∂x1

. . .
∂dp2
∂xr

· · · ∂dpq
∂x1

. . .
∂dpq
∂xr


.

(31)

Theorem 1. The partial derivative of the product of two matrices D(x) ∈ Rp×q and H(x) ∈
Rq×s with respect to vector x ∈ Rr is given by [11]

∂

∂x
(DH) =

∂D

∂x
(H⊗ 1r) + D

∂H

∂x
, (32)

where 1r ∈ Rr×r is the identity matrix.

Theorem 2. The time derivative of matrix D(x) ∈ Rp×q, with x ∈ Rr, is calculated by [11]

Ḋ =
∂D

∂x
(1r ⊗ ẋ) . (33)

The detailed proofs of both theorems are presented clearly in [11]. In the following, the
matrix form (29) can be built based on the Euler-Lagrange equations (16) by using the above



DYNAMIC MODEL WITH A NEW FORMULATION 95

definitions and theorems. Applying (27) to the Lagrangian function, and assigning h = Mq̇
yield

L =
1

2
q̇TMq̇− P =

1

2
q̇Th− P. (34)

Substituting (34) into (16) and using Theorem 1 including both Definition 1 and Defini-
tion 2, the partial derivative inside the first term of (16) can be written as

∂L

∂q̇
=

1

2

∂

∂q̇
(q̇Th) =

1

2

(
∂q̇T

∂q̇
(h⊗ 1n) + q̇T ∂h

∂q̇

)
, (35)

where 1n ∈ Rn×n is the identity matrix. Each term on the right side of (35) can be repre-
sented as

∂q̇T

∂q̇
(h⊗ 1n) =

[
eT1 · · · eTn

] h11n...
hn1n

 =
[
h1e

T
1 1n · · · hne

T
n1n

]
=
[
h1 · · · hn

]
= hT = q̇TM, (36)

q̇T ∂h

∂q̇
= q̇T ∂

∂q̇
(Mq̇) = q̇T

(
∂M

∂q̇
(q̇⊗ 1n) + M

∂q̇

∂q̇

)
= q̇T (0 + M) = q̇TM, (37)

with ei ∈ Rn is the ith column vector of 1n. Substituting (36) and (37) into (35) yields

∂L

∂q̇
= q̇TM. (38)

Transposing and taking the time derivative of (38) give

d

dt

(
∂L

∂q̇

)T

= Mq̈ + Ṁq̇ = Mq̈ +
∂M

∂q
(1n ⊗ q̇) q̇, (39)

where using Theorem 2 takes the time derivative of the generalized inertia matrix as

Ṁ =
∂M

∂q
(1n ⊗ q̇) . (40)

Similarly, for the second term of the Euler-Lagrange equations (16) one obtains

∂L

∂q
=

1

2

∂

∂q
(q̇Th)− ∂P

∂q
. (41)

The first term on the right side of (41) can be rewritten in the form

∂

∂q
(q̇Th) =

(
∂q̇T

∂q
(h⊗ 1n) + q̇T ∂h

∂q

)
=

(
0 + q̇T ∂ (Mq̇)

∂q

)
= q̇T

(
∂M

∂q
(q̇⊗ 1n) + M

∂q̇

∂q

)
= q̇T ∂M

∂q
(q̇⊗ 1n) . (42)



96 LE NGOC TRUC, NGUYEN VAN QUYEN, NGUYEN PHUNG QUANG

Substituting (42) into (41) and transposing both sides of (41) yield(
∂L

∂q

)T

=
1

2

(
∂M

∂q
(q̇⊗ 1n)

)T

q̇−
(
∂P

∂q

)T

. (43)

Eventually, substituting (39) and (43) into the Euler-Lagrange equations (16) generates
the dynamic model of robot manipulators

τ = Mq̈ +
∂M

∂q
(1n ⊗ q̇) q̇− 1

2

(
∂M

∂q
(q̇⊗ 1n)

)T

q̇ +

(
∂P

∂q

)T

= Mq̈ + Cq̇ + g, (44)

where the two vectors of gravity, Coriolis/centrifugal terms are

g =

(
∂P

∂q

)T

, (45)

Cq̇ =
∂M

∂q
(1n ⊗ q̇) q̇− 1

2

(
∂M

∂q
(q̇⊗ 1n)

)T

q̇. (46)

From (46), the requirement is to extract matrix C that satisfies the skew-symmetric
property of matrix Ṁ − 2C. There is a kind of matrix C taken from (46) (presented in
[11, 12]); But it does not assure the mentioned property. To achieve this objective, we give
a lemma as follows.

Lemma 1. Consider a vector x ∈ Rn and the identity matrix 1m ∈ Rm×m. The two products
(1m ⊗ x)x and (x⊗ 1m)x exist if n = m, and the following rule is satisfied

(1m ⊗ x)x = (x⊗ 1m)x. (47)

Proof. We have

(1m ⊗ x)x = (1n ⊗ x)x =

 x · · · 0
...

. . .
...

0 · · · x

x =

 xx1
...

xxn

 =

 x1x
...

xnx

 , (48)

(x⊗ 1m)x = (x⊗ 1n)x =

 x11n
...

xn1n

x =

 x11nx
...

xn1nx

 =

 x1x
...

xnx

 . (49)

Obviously, Lemma 1 is proven because the right sides of (48) and (49) are identical. �

Applying Lemma 1 with vector q̇ ∈ Rn and the identity matrix 1n ∈ Rn×n gives

(1n ⊗ q̇) q̇ = (q̇⊗ 1n) q̇. (50)

Splitting the first term of the right side of (46) into two equal parts, then substituting
(50) into one of them yields

Cq̇ =
1

2

∂M

∂q
(1n ⊗ q̇) q̇ +

1

2

∂M

∂q
(q̇⊗ 1n) q̇− 1

2

(
∂M

∂q
(q̇⊗ 1n)

)T

q̇

=
1

2

[
∂M

∂q
(1n ⊗ q̇) +

∂M

∂q
(q̇⊗ 1n)−

(
∂M

∂q
(q̇⊗ 1n)

)T
]
q̇. (51)
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The proposal formulation of the Coriolis/centrifugal matrix is extracted from (51) as

C =
1

2

[
∂M

∂q
(1n ⊗ q̇) +

∂M

∂q
(q̇⊗ 1n)−

(
∂M

∂q
(q̇⊗ 1n)

)T
]
. (52)

The matrix C in (52) solidly guarantees Ṁ−2C is skew-symmetric. Indeed, let us assign

U =
∂M

∂q
(1n ⊗ q̇) , V =

∂M

∂q
(q̇⊗ 1n) . (53)

Thus,

Ṁ = U, C = (1/2)(U + V −VT ), (54)

and it deduces

Ṁ− 2C = U− (U + V −VT ) = VT −V. (55)

Therefore, Ṁ− 2C is skew-symmetric because VT −V is skew-symmetric with an arbi-
trary square matrix V.

5. APPLICATION EXAMPLE

To illustrate how the new formulation of the Coriolis/centrifugal matrix can be applied to
the dynamic model of robot manipulators as well as to validate the proposal, let us consider a
three-link manipulator described in Figure 2 ([16], page 172). Beyond the set of the previous
notations, the more applied for this example are as follows li−1 is the length of link i; ri−1

is the distance between the center of joint i and the centroid of link i; Iixx, Iiyy, and Iizz are
three principal moments of inertia of link i, (i = 1, 2, 3). All the cross products of inertia of
link i are zero because of the assumption that the mass distribution of link i is symmetric.
The manipulator configuration and the choice of attached frames are shown in Figure 2, and
the D-H parameters are obtained in Table 1.
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Figure 2. A three-link manipulator
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Table 1. D-H parameters of the three-link manipulator

Joint i θi (rad) di (m) ai (m) αi (rad)

1 q1 d1 = l0 a1 = 0 α1 = −π/2
2 q2 d2 = 0 a2 = l1 α2 = 0
3 q3 d3 = 0 a3 = l2 α3 = 0

It is easy to derive all the homogeneous transformation matrices

T0
1 =


c1 0 −s1 0
s1 0 c1 0
0 −1 0 l0
0 0 0 1

 , T0
2 =


c1c2 −c1s2 −s1 l1c1c2
s1c2 −s1s2 c1 l1s1c2
−s2 −c2 0 l0 − l1s2

0 0 0 1

 ,

T0
3 =


c1c23 −c1s23 −s1 c1 (l1c2 + c23l2)
s1c23 −s1s23 c1 s1 (l1c2 + c23l2)
−s23 −c23 0 l0 − l1s2 − l2s23

0 0 0 1

 , (56)

where si, ci, sij , and cij represent sin(qi), cos(qi), sin(qi + qj), and cos(qi + qj), respectively,
(i, j = 1, 2, 3). Thus, three rotation matrices R0

1, R
0
2, and R0

3 are extracted from (56) as

R0
1 =

c1 0 −s1
s1 0 c1
0 −1 0

 , R0
2 =

c1c2 −c1s2 −s1
s1c2 −s1s2 c1
−s2 −c2 0

 , R0
3 =

c1c23 −c1s23 −s1
s1c23 −s1s23 c1
−s23 −c23 0

 . (57)

Substituting (57) into (10) calculates cross-product matrices S(ω1), S(ω2), and S(ω3).
Afterwards, the angular velocities are formulated as

ω1 =

 0
−q̇1

0

 , ω2 =

−s2q̇1−c2q̇1
q̇2

 , ω3 =

−s23q̇1−c23q̇1
q̇2 + q̇3

 . (58)

Applying (58) to (25) we obtain the three rotational Jacobian matrices

JR1 =
∂ω1

∂q̇
=

 0 0 0
−1 0 0
0 0 0

 , JR2 =
∂ω2

∂q̇
=

−s2 0 0
−c2 0 0

0 1 0

 , JR3 =
∂ω3

∂q̇
=

−s23 0 0
−c23 0 0

0 1 1

 .
(59)

According to the description shown in Figure 2, the position vectors of the link centroids
with respect to the corresponding attached frames are

rC1 =

 0
l0 − r0

0

 , rC2 =

r1 − l10
0

 , rC3 =

r2 − l20
0

 . (60)
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Then the position vectors of link centroids with respect to the base frame are computed
by substituting (60) into (14)

p0
C1

=

 0
0
r0

 , p0
C2

=

 r1c1c2
r1s1c2
l0 − r1s2

 , p0
C3

=

(c2l1 + c23r2) c1
(c2l1 + c23r2) s1
l0 − l1s2 − r2s23

 . (61)

Substituting (61) into (24) develops the three translational Jacobian matrices

J0
T1

=
∂p0

C1

∂q
=

0 0 0
0 0 0
0 0 0

 , J0
T2

=
∂p0

C2

∂q
=

−s1c2r1 −c1s2r1 0
c1c2r1 −s1s2r1 0

0 −c2r1 0

 ,
J0
T3

=
∂p0

C3

∂q
=

−s1 (c2l1 + c23r2) −c1 (l1s2 + r2s23) −c1s23r2
c1 (c2l1 + c23r2) −s1 (l1s2 + r2s23) −s1s23r2

0 −c2l1 − c23r2 −c23r2

 . (62)

The generalized inertia matrix is obtained by using (28)

M =
3∑

i=1

(
mi(J

0
Ti

)
T
J0
Ti

+ JT
Ri
IiJRi

)
(63)

with its elements satisfying the symmetric, positive definite properties

M11 = I3yyc
2
23 + I3xxs

2
23 + I2xxs

2
2 + I1yy +

(
m2r

2
1 + I2yy

)
c22 +m3(r2c23 + l1c2)

2,

M22 = 2l1m3r2c3 +
(
l21 + r22

)
m3 +m2r

2
1 + I3zz + I2zz, (64)

M33 = m3r
2
2 + I3zz, M12 = M21 = 0, M13 = M31 = 0,

M23 = M32 = l1m3r2c3 +m3r
2
2 + I3zz. (65)

The Coriolis/centrifugal matrix is obtained by substituting (63) into (52)

C =
1

2

[
∂M

∂q
(13 ⊗ q̇) +

∂M

∂q
(q̇⊗ 13)−

(
∂M

∂q
(q̇⊗ 13)

)T
]
, (66)

with its components as follows:

C11 = −
[
(m3r

2
2 + I3yy − I3xx)(q̇2 + q̇3)s23 +m3r2l1(2q̇2 + q̇3)s2

]
c23

−
(
l21m3 +m2r

2
1 − I2xx + I2yy

)
c2s2q̇2 − l1m3r2s3 (q̇2 + q̇3) ,

C12 = −
{[(

m3r
2
2 + I3yy − I3xx

)
s23 + 2l1s2m3r2

]
c23

+
(
l21m3 +m2r

2
1 − I2xx + I2yy

)
c2s2 + l1m3r2s3

}
q̇1,

C13 = −
{[

(m3r
2
2 + I3yy − I3xx)s23 + l1s2m3r2

]
c23 + l1m3r2s3

}
q̇1,

C21 =
{[(

m3r
2
2 + I3yy − I3xx

)
s23 + 2l1s2m3r2

]
c23

+
(
l21m3 +m2r

2
1 − I2xx + I2yy

)
c2s2 + l1m3r2s3

}
q̇1,

C22 = − l1m3r2s3q̇3,

C23 = − l1m3r2s3 (q̇2 + q̇3) ,

C31 =
{[

(m3r
2
2 + I3yy − I3xx)s23 + l1s2m3r2

]
c23 + l1m3r2s3

}
q̇1,

C32 = l1m3r2s3q̇2,

C33 = 0. (67)
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The total potential energy of the three-link manipulator is computed by substituting (61)
into (17), then the vector of gravity term is yielded by applying (17) to (45)

P = −
3∑

i=1

mi(g
0)Tp0

Ci
= g (l0m2 + l0m3 +m1r0 − (l1m3 +m2r1)s2 −m3r2s23) , (68)

g =

(
∂P

∂q

)T

=

 0
−(l1m3 +m2r1)gc2 −m3r2gc23

−m3r2gc23

 . (69)

And finally, the skew-symmetric property of Ṁ− 2C can be verified obviously by consi-
dering every one of its elements as follows:

Ṁ11 − 2C11 = 0, Ṁ22 − 2C22 = 0, Ṁ33 − 2C33 = 0,

Ṁ12 − 2C12 = −(Ṁ21 − 2C21)

= 2
{[(

m3r
2
2 + I3yy − I3zz

)
s23 + 2l1s2m3r2

]
c23

+
(
l21m3 +m2r

2
1 − I2xx + I2yy

)
c2s2 + l1m3r2s3

}
q̇1,

Ṁ13 − 2C13 = −(Ṁ31 − 2C31)

= 2
{[

(m3r
2
2 + I3yy − I3zz)s23 + l1s2m3r2

]
c23 + l1m3r2s3

}
q̇1,

Ṁ23 − 2C23 = −(Ṁ32 − 2C32)

= l1m3r2s3 (2q̇2 + q̇3) .
(70)

The dynamic simulation of the three-link manipulator is performed by MATLAB Sims-
cape Multibody with the followings properties:

Link 1: l0 = 0.294, r0 = 0.140, m1 = 5.248, rC1 =

 0
0.154

0

 , I1 =

83.5 0 0
0 30.4 0
0 0 83.5

 10−3;

Link 2: l1 = 0.190, r1 = 0.088, m2 = 2.412, rC2 =

−0.102
0
0

 , I2 =

15.9 0 0
0 40.5 0
0 0 40.5

 10−3;

Link 3: l2 = 0.170, r2 = 0.080, m3 = 1.577, rC3 =

−0.090
0
0

 , I3 =

7.9 0 0
0 20.2 0
0 0 20.2

 10−3;

(71)

where the units of mass, length, and inertia tensor are kg, m, and kgm2, respectively. The
Simscape Multibody model of the manipulator is shown in Figure 3.

The proposed Coriolis/centrifugal matrix can be validated through the validation of
dynamic model. One of the ways to validate a dynamic model of a system is to compare
this model with another validated model of the system. Thus, the identified dynamic model
of the three-link manipulator can be validated by comparing with its Simscape Multibody
model that is generated and validated by MATLAB. The two mentioned model are compared
by the match of responses and references under the act of the simple feedforward controller
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Figure 3. Simscape Multibody model of the three-link manipulator

Figure 4. Feedforward control schematic for the three-link manipulator
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Figure 5. Input torques of the three-link manipulator
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Figure 6. (a) References and responses of the three-link manipulator under the act of the feedforward
controller, (b) Trajectory tracking errors

which depends completely on the accuracy of the identified model. The simulation schematic
is shown in Figure 4 and the feedforward control law is given by

τ = M(qr)q̈r + C(qr, q̇r)q̇r + g(qr), (72)

where qr = [q1r, q2r, q3r]
T is the reference joint trajectory. Matrices M, C, and g are

previously obtained. With this control law, q(t) = qr(t) for all t ≥ 0 if the following two
conditions are satisfied. The first, the identified robot dynamic model is perfect. The second,
both qr(0) = q(0) and q̇r(0) = q̇(0). The initial conditions of the Simscape Multibody model
of the manipulator are q(0) = 0 and q̇(0) = 0 by default. Hence, the reference trajectories,
in radian, are chosen as follows for satisfying the second condition qr(0) = q(0) = 0 and
q̇r(0) = q̇(0) = 0.

q1r = 1− cos(2πt), q̇1r = 2π sin(2πt),

q2r = 0.75(1− cos(2πt)), q̇2r = 1.5π sin(2πt),

q3r = 0.5(1− cos(2πt)), q̇3r = π sin(2πt). (73)

The responses and the trajectory tracking errors are shown in Figure 6a and Figure
6b, respectively, under the act of the input torques expressed in Figure 5. From Figure
6a and Figure 6b, it is shown that the responses and the references are closely matched,
for all t ≥ 0, with slight tracking errors (not greater than 10−12) caused by the numerical
method of dynamic simulation used inside Simscape Multibody. Therefore, the first required
condition of the feedforward control law is satisfied. This confirms that the identified model
is accurate and conformable to the Simscape Multibody model. Hence, the dynamic model
of the manipulator, as well as the proposal formulation of the Coriolis/centrifugal matrix, is
validated.
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6. CONCLUSIONS

A complete generalized procedure for building dynamic model of robot manipulators
based on the Euler-Lagrange equations is presented. By using Kronecker product for the
definitions about the partial derivative of matrix functions with respect to a vector varia-
ble, and time derivative of matrix functions, the Coriolis/centrifugal matrix is constructed
directly in matrix-based manner. The new formulation of the Coriolis/centrifugal matrix
assures the skew symmetric property of dynamic equations. It is a valuable property often
used in designing control algorithms for robot manipulators. The proposed formulation is
validated by symbolic solution and dynamic simulation of a typical robot manipulator. The
symbolic calculations can be handled by some technical computing softwares such as Maple,
Mathematica. Henceforth, this result provides a convenient way to establish the dynamic
model of robot manipulators for simulation and control.
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[18] P. Sánchez-Sánchez and M. A. Arteaga-Pérez, “Simplied methodology for obtaining the dynamic
model of robot manipulators,” Int. J. Adv. Robot. Syst., vol. 9, no. 5, pp. 1–12, 2012.

[19] L. Sciavicco and B. Siciliano, Modelling and Control of Robot Manipulators, 2nd ed., ser. Ad-
vanced Textbooks in Control and Signal Processing. London, UK: Springer London, 2000.

[20] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics: Modelling, Planning and Control.
London, UK: Springer London, 2009.

[21] M. W. Spong, S. Hutchinson, and V. M., Robot Modeling and Control, 1st ed. Hoboken, NJ,
USA: John Wiley & Sons, 2006.

[22] F. Zhang, Matrix Theory, 2nd ed., ser. Universitext. NY: Springer New York, 2011.

Received on October 29, 2019
Revised on November 27, 2019


	INTRODUCTION
	LINEAR AND ANGULAR VELOCITIES OF LINKS
	A BRIEF REVIEW OF EULER-LAGRANGE EQUATIONS FOR DYNAMICS OF ROBOT MANIPULATORS
	DYNAMIC MODEL WITH A NEW FORMULATION OF CORIOLIS/CENTRIFUGAL MATRIX FOR ROBOT MANIPULATORS
	APPLICATION EXAMPLE
	CONCLUSIONS

