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Abstract. Fatigue curve presents the relation between stress (mean stress, maximum stress or 

stress amplitude) and the number of stress cycles till a machine element is completely broken. 

This curve is served as the important basis of design as well as lifetime prediction for machine 

elements. In order to create a fatigue curve, the traditional fatigue test method is applied to 

specimens using a cyclic stress with constant amplitude. However, this method has 

disadvantages such as the experimental results could not be used because the specimens break 

before reaching the expected stress amplitude, or the tests may be stopped before the specimens 

break because of limitation of time. To overcome this hurdle of the traditional method, an 

experimental method using cyclic stress with gradually increasing amplitude was proposed to 

build the fatigue curve for steel machine elements. A comparison of the estimated fatigue curve 

and experimental data was performed showing that the fatigue curve of machine elements 

bearing the cyclic stress with constant amplitude can be created by applying the fatigue test 

method with gradually increasing stress amplitude. 
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1. INTRODUCTION 

Fatigue fracture was found around the middle of the 19th century and is considered as a 

norm in design of machines as well as machine elements. It is a material failure that occurs as a 

result of excessive cyclic loading [1, 2]. Under cyclic loading, micro cracks such as defects on 

the element surface induced by producing process grow gradually in each cycle until the critical 

crack length to be reached and the element is broken. Reality shows that 90 % of machine 

elements are broken by fatigue cracks [3], therefore it is necessary to calculate to prevent it or 

predict fatigue lifetime of the machine elements. This task was based on the fatigue curve which 

shows the relation between stress (mean stress, maximum stress or stress amplitude) and number 
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of stress cycles till a machine element has completely broken. The fatigue curve is also named as 

S-N curve where S is usually the stress amplitude and N is the number of cycles to failure. The 

fatigue process determining the lifetime was known to be described by the Paris’ law, where the 

cracks extends from the initial cracks to the critical cracks [4]. The equivalent lengths of the 

cracks were calculated by using the distribution of the initial strength [4,5]. The unknown 

parameters in the Paris’ law are obtained by fitting the equation describing the S-N curve to the 

results of fatigue tests. 

In order to create the S-N curve, fatigue tests are used where cyclic stress with a constant 

stress amplitude is applied to specimens until failure occurs [6]. This traditional experimental 

method is called normal fatigue test [7]. The normal fatigue tests have a disadvantage that in the 

case of the cycle number exceeds an expected time limit presented by Z in Fig. 1(a), the tests 

may have to be stopped before failure. In addition, it is difficult to evaluate fatigue behavior with 

the normal fatigue test when the specimens break before reaching the expected stress amplitude 

as indicated with X or Y. This situation can be seen at high stress amplitude level or when the 

defects on the specimens are inhomogeneous. 

This paper presents an experimental method named as ramping fatigue test [7]. It was first 

used by Huy et. al. to estimate the fatigue lifetime [7] and by Ikeda et.al. to investigate the 

fatigue behavior under inert environment [8] of silicon specimens with the size at micro-scale. It 

is used here to build the fatigue curve of steel machine elements, where cyclic stress with 

gradually increasing amplitude as shown in Fig. 1(b) is applied to specimens. In this method, the 

stress amplitude  linearly increases with the number of cycles N and  is the increment of the 

stress amplitude per cycle. This method avoids the situations in the normal fatigue tests, in 

which the specimens break before reaching the expected stress amplitude, because the stress 

amplitude gradually increases in all the test periods. The small stress amplitude at the beginning 

gives fatigue degradation of strength and the large stress at the final stage makes sure all the 

specimens break within a planned period of time. Therefore, the ramping test method avoids the 

disadvantages of the normal fatigue test. 

  

Figure 1. Imagine of the stress histories in the (a) normal and (b) ramping fatigue tests. 

2. STATISTICAL ANALYSIS OF TRADITIONAL EXPERIMENTAL METHOD  

It is commonly accepted that the strength of materials such as steel is well described by the 

Weibull distribution [9, 10]. In this paper, it is assumed that the initiation of fracture distributes 

on the machined surfaces of machine elements or specimens and cracks open in mode I. 

Therefore, the cumulative fracture probability F of the machined surfaces of a specimen with the 

nonuniform stress distribution is defined in general form as [9] 

Expected maximum stress 



 
 
Effect of A on B 

 

0

a

0 0

1 exp

m

A

dA
F

A





  
     
   
 ,     (1) 

where m denotes the Weibull modulus which represents the data scatter, 0 denotes the scale 

parameter related to the average strength of the infinitesimal volume dV, and a is the applied 

stress. The symbol V0 indicates the volume of the entire machined part of specimens. For the 

case of flat specimens, the stress distribution in the thickness direction is homogeneous, Eq. (1) 

can be rewritten as  
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where the symbol A0 indicates the volume of the entire machined surfaces of specimens. 

If the distribution of the stress a applied to the specimens with arbitrary shape is obtained 

by the tests then  Eqs. (1) and (2) can be used. For the calculation in this study, Eq. (2) is 

rewritten in the discretized form as 
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where Ae is the area and e is the average stress in each surface element as illustrated in Fig. 2. It 

is imagined that a specimen’s machined surface is composed of the small elements,  where the 

stress e in each element is uniform. The stress e is assumed by the linear elastic deformation to 

be correlated to the maximum stress  in the specimen by the ratio ke = e/. The stress 

distribution on the sepcimens and therefore the ratio ke can be estimated by finite element 

method (FEM). Besides, the ratio of the area of the surface element Ae to the area A0 is notated 

as . By replacing the stress e and the area Ae in Eq. (3) with the notations ke and , respectively, 

it obtains a function of a variable  as 
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It was known that both the static strength as well as the fatigue lifetime are correlated to the 

same initial defects, which are engendered by the machined process. The defects were described 

as equivalent cracks on the machined surfaces as depicted in Fig. 2. The cyclic loads applied on 

the specimens in the fatigue tests were sinusoidal, in which the stress amplitude is smaller than 

the static strength. This leads to that the specimens broke after a number of load cycles N which 

is called as the fatigue lifetime of the specimens. In the applying load process, equivalent cracks 

in an element propagate from their initial length a0e to the critical length ac. The extension rate of 

the equivalent crack under cyclic loading, named the crack growth rate da/dN, is formulated by 

Paris’ law [1-3] in the form normalized by fracture toughness KIc as 
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where C, n are the unknown parameters in Paris’ law, which need to be determined from 

experiments, and K is the amplitude of the stress intensity factor. Since e is the stress 

amplitude applied in each element, K for an element under mode I is defined as [2] 

e e
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where ae is the equivalent crack length at the cycle N, β is the dimensionless constant of a 

correction factor reflecting the geometry of both the cracks and the structures. It is expected that  

the stress intensity factor at the tip of the critical crack is equal to the toughness KIc, therefore the 

equivalent length of the critical crack is formulated as 
2
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.      (7) 

By substituting Eq. (6) into Eq. (5)  and then integrating it corresponding a from a0e to ac and N 

from zero to the number of cycles N that the critical crack length is reached, the initial crack 

length a0e is obtained as 
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By using the correlation of stress to crack length  = KIc/β(a)
1/2

, the cumulative probability F in 

Eq. (2) is rewritten in terms of crack length as 
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Figure 2. Schematic of the fatigue extension of equivalent cracks starting from initial defects. 

where σ0
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2
 is a constant. Therefore, the cumulative fracture probability F of the 

entire machined surfaces is formulated as a function of both the maximum stress  in the 

specimen and the number of cycle N as 
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Fatigue behavior of the arbitrarily-shaped specimens can be estimated at arbitrary applied load 

levels by using this equation. It means that the S-N curve showing the relation between  and N 

is formulated by Eq. (10). By fitting Eq. (10) to fatigue test data then the values of C, n are 

obtained, and therefore S-N curve can be drawn. 

3. STATISTICAL ANALYSIS OF RAMPING EXPERIMENTAL METHOD  

As described in Fig. 1(b), the maximum value of applied stress  at the cycle number N in 

the ramping tests was  = N, where  is the ramping increment per cycle.  
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Integrating Eq. (12) with respect to the crack length in the element from the initial crack length 

a0e to the critical length ace = (KIc/βe
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By the same way as mentioned in the traditional method, by combining Eqs. (9) and (13), the 

cumulative fracture probability F in ramping fatigue tests is formulated as the function of the 

increasing maximum stress   as 
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when the ramping increment  comes to infinity, then Eq. (14) becomes identical to Eq. (4) 

showing the static strength distribution. By fitting Eq. (14) to fatigue test data obtained by the 

new experimental method, the values of the parameters C and n could be obtained. Using those 

values of C and n for Eq. (10), S-N curve can be drawn. 

4. DISCUSSION 

In order to see the validation of this theory, the tensile specimens made of carbon steel 

sheet with the thickness of 5 mm as shown in Fig. 3 was used for the tests here. The carbon steel 

sheet has the chemical component as 98.4 % of Ferris, 0.4 % of Carbon, 0.221 % of Silicon, 

0.568 % of Manganese, etc. The specimens were machined by CNC milling machine without 

any annealing. The specimen shape was designed to avoid stress concentration on the testing 

part with the length of 50 mm and the width of 5 mm, where the flare parts are designed by a set 

of arcs with different radii. Stress distribution on the specimens was estimated by FEM on 

ANSYS Workbench software as shown in Fig. 4, where quadrangular mesh with the size of 1 

mm was used.  

The specimens are tested on the machine designed and producted by ourself as shown in 

Fig. 5, where the load was measured by the loadcell PST-KELI (capacity: 1.2 ton, output: 2.0 ±  

0.003 mV/V, accuracy class: OIML R60 C3). The diagram of this machine is presented in Fig. 6 

in order to explain the working principle. All the elements are set on the static frame (5) made of 

shaped steel bars by welding. At the start position, the specimen-holder table (15) is at the left 

limit (presented as the position A), both the motors (3,12) are on the stop state. By pressing the 

start button in the software on the computer (2), the computer sends a command to the control 

box (1) to control the operation of the two motors (3,12). The stepper motor (15) makes the 

movement of the specimen-holder table (15) to the intended position on the right side along the 
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screw shaft (13), which helps increasing the deformation of the specimen and therefore increases 

the applied stress on the specimen. When the AC motor (12) rotates, the crank-and-rocker 

mechanism consisting of the AC motor (12), the eccentric (11), the connecting rod (10) and the 

shaking rod (7) creates the shake of the shaking rod (7), which pulls the vertical rod and the 

loadcell (8) moving up and down cyclically. Therefore, the specimens will be excited by a 

tensile or bending cyclic load depending on the setup of the experiment as shown in Fig. 6(a) for 

tensile test and Fig. 6(b) for bending test. The loadcell will measure the load applied to the 

specimen and send it to the computer. All the details of this machine will be published in another paper.  

 

Figure 3. Specimen design. 

 

Figure 4. Stress distribution on specimen. 

 

Figure 5. Fatigue test machine. 
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1. Control Box 2. Personal computer 3. Stepper motor 4. Spur gears 

5. Static frame 6. Bearings (rotation joint) 7. Shaking rod  8. Vertical rod + Loadcell  

9. Bearings (rotation joint) 10. Connecting rod 11. Eccentric 12. AC motor 
13. Ball screw 14. Specimen 15. Specimen-holder table 

Figure 6. Machine diagram. 

By using tensile test with monotonically increasing load at the rate of 42 N/s, static strength 

of the speimen was evaluated as 0.452 GPa (evaluated by FEM as shown in Fig. 4) 

corresponding to the applied load of 2802 N. Fig. 7 shows the specimen before and after static 

test, where the broken region was tighten showing plastic deformation. However, the plastic 

deformation was not seen in the specimens tested with normal and ramping fatigue tests as 

shown in Figs. 8 and 9, i.e., fatigue cracks extend in the region of elastic deformation. It means 

that Paris’ law could be used to describe fatigue crack extension for the cracks on these fatigue 

specimens, and therefore the above equations can be used to create S-N curve for the steel 

specimens.  

Up to this point, only one specimen was tested with the normal fatigue test and one 

specimen was tested with the ramping fatigue test as shown in Figs. 8 and 9, respectively. These 

experimental data are used to confirm the agreement of the theory. The normal fatigue test was 

performed with the load amplitude of 2100 N correspoding to the stress amplitude of 0.339 GPa, 

then the specimen was broken after approximately 10
4.57

 cycles. The ramping fatigue test was 

performed with the ramping increment  = 2525 Pa/cycle, and the specimen was broken after 

10
5.15

 cycles, i.e., at the stress amplitude  = 0.355 GPa.  

 

Figure 7. Specimen after static test. 



 
 

Nguyen Dinh Dung, Vu Le Huy, Hoang Van Bao 
 

 

362 

 

Figure 8. Specimen after normal fatigue test. 

 

Figure 9. Specimen after ramping fatigue test. 

 

For creation of the S-N curve of the specimens in this study, because of the limitation of the 

number of specimens, some parameters are referred from the other studies for carbon steel  as              

m = 56.027 [10], β = 1.12 [2], KIc = 60.10
6
 Pa m  [11], n = 4 [11]. From the static test, the 

average strength 0 is 0.452 GPa. By fitting Eq. (14) to the ramping test datum as shown in Fig. 

10, the value of C was obtained as 1.58  10
-7

 m/cycle. 

 

 

Figure 10. Ramping fatigue test result. 
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Figure 11. Estimated S-N curve in comparison with normal fatigue test datum. 

Using the above values of the parameters for Eq. (10), the S-N curve is plotted at level of 

the cumulative probability F as 50 % as shown in Fig. 11. The cumulative probability F was 

selected to be 50 % since the probability density is the highest. When the values of the 

parameters F, m, 0, β, KIc, C, n were known, Eq. (10) becomes an explicit equation of N and  

and therefore the S-N curve is plotted easily. In this study, the fatigue limit is ignored because its 

level depends on many factors such as surface conditions, corrosion, temperature, residual 

stresses, etc. The normal fatigue test datum shown by the lozenge symbol in Fig. 11 mostly lies 

in the estimated S-N curve, where the difference in logarithmic scale is 2.79 %. This first result 

showed the posibility of using the new fatigue test method with gradually increasing stress 

amplitude to create the S-N curve for steel machine elements. 

5. CONCLUSION 

This paper presented the ramping fatigue test, which is an improved fatigue test method 

with gradually increasing stress amplitude for steel machine elements in order to circumvent the 

problems of the traditional fatigue test with constant stress amplitude. The ramping test method 

helps to obtain experimental data in an intended time limit. This method was formulated with 

Paris’ law to draw the fatigue behavior in connection with the static strength distribution. Values 

of the parameters in Paris’ law obtained from the ramping test were used to plot the stress-

lifetime curve, which is traditionally established by using the fatigue tests with constant stress 

amplitude.  The estimated stress-lifetime curve was compared to the experimental data obtained 

from the carbon steel specimens. Though the number of specimens is only one for each kind of 

tests, but the fatigue test data mostly lie in the estimated curve. It is necessary to increase the 

number of experimental data in order to consolidate the conclusion as well as estimate the time 

saved by the ramping fatigue test method. However, the obtained result showed the possibility 

that the fatigue lifetime of machine elements under constant stress amplitude can be predicted by 

applying the ramping fatigue test method. 
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