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Abstract. Recently, asymmetric molecules, such as HeH+
2 , CO, OCS, HCl, have been evolved

much attention since its rich information in the high-order harmonic generation (HHG), whose
ratio of adjacent even and odd harmonics characterizes the asymmetry of molecules. In this pa-
per, we study the dependence of even-to-odd ratio on the asymmetric parameters, in particular, the
nuclear-charge ratio, and the permanent dipole, by exploiting a simple but general model of asym-
metric molecules Z1Z2 subjected to an intense laser pulse. The HHG is simulated by the numerical
method of solving the time-dependent Schrödinger equation. We find out that this even-to-odd ra-
tio strongly depends on the nuclear-charge ratio. In particular, the even-to-odd ratio reaches its
maximum when the nuclear-charge ratio is about from 0.5 to 0.7. Besides, the dependence on
the permanent dipole of the even-to-odd ratio has a non-trivial law. To explain, we calculate the
analytical ratio of the transition dipole according to the emission of even and odd harmonics, and
this ratio is well consistent with the even-to-odd ratio of the HHG.
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I. INTRODUCTION

In the recent decades, high-order harmonic generation (HHG) emitted from atoms, molecules,
or solids interacting with an ultrashort intense laser pulse has been a hot topic since its wide appli-
cations in strong-field physics and attosecond science [1–5]. The HHG can be well understood by
the three-step model, where electron: (i) tunnels through the atomic/molecular potential barrier,
(ii) then propagates in the continuum state, and (iii) recombines to the parent ion and converts its
kinetic energy into the photon energy [1, 2]. The HHG spectra have a typical shape with a flat
plateau ended by a cutoff; after that, the HHG intensity dramatically drops [1, 2].

In the past, many studies have been focused on atoms [2, 6, 7], and then expanded to sym-
metric molecules [3, 4, 8–12], whose HHG spectra contain only odd harmonics due to the time-
spatial symmetry of the laser-atom/molecule system [13, 14]. Recently, much attention has been
paid to asymmetric molecules such as HeH2+, CO, OCS, HCl [15–22]. The HHG spectra of
those molecules possess both odd and even harmonics due to the symmetry breaking of the laser-
molecule systems [14,17,19,22]. The odd-even HHG spectra can be applied for reconstructing the
asymmetric molecular orbital [18], probing electron dynamics [17,23–26], nuclear dynamics [27],
and orientation degree of asymmetric molecules [28, 29]. Notably, in 2017, Hu et al. have first
found the pure-even HHG spectra, i.e., the spectra contain only even harmonics when the laser
electric field is perpendicular to the molecular axis of CO [19]. This finding is discovered the-
oretically by the time-dependent density functional theory. For other orientations, both odd and
even harmonics appear in HHG spectra [19]. We have examined these results by the method of
numerically solving the time-dependent Schrödinger equation (TDSE) [22]. Moreover, we have
also indicated a non-trivial dependence of even-to-odd ratio, i.e., the ratio of intensity between
the adjacent even and odd harmonics, on the molecular orientation [22]. Indeed, with the increas-
ing of the orientation angle to 90◦, the even-to-odd ratio for the parallel HHG decreases to zero,
while this ratio for the perpendicular HHG grows up to infinity. There is a phase transition from
the odd-even state to the pure-odd or pure-even state of HHG spectra when the orientation angle
reaches 90◦. It reflects a transition between the symmetry-breaking state into the symmetry one of
the molecule-laser system.

Clearly, the even-to-odd ratio is strictly dependent on the molecular orientation controlling
the symmetry of the molecule-laser system. However, the dependence of this ratio on the other
asymmetric parameters such as the nuclear-charge ratio, or the permanent dipole is undiscovered.
Therefore, in this paper, we investigate the influence of these asymmetric parameters, specifically,
the nuclear-charge ratio, and the permanent dipole on the even-to-odd ratio of HHG spectra from
the asymmetric molecule. For this purpose, we choose a simple model of an asymmetric molecule
Z1Z2 with one electron to investigate for easier adjustment of the nuclear charges. Despite the
simplicity, this model still ensures the generality of real asymmetric molecules which are usually
modeled as one active electron molecule in the theoretical investigation [18, 20, 22]. The HHG
spectra are simulated by the TDSE method.

The rest of the paper is organized as follows. In Sec. II, we present the main points of the
TDSE method for calculating the harmonic spectra of Z1Z2 molecules and the analytical analysis
of the transition dipoles responsible for the generation of odd and even harmonics. In Sec. III, we
show our main results and discussion of the sensitivity of the even-to-odd ratio on the asymmetric
parameters. A summary is given in Sec. IV.
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II. THEORETICAL BACKGROUND

In this section, first, we present the TDSE method for calculating the time-dependent wave
function [20,22] and, as a consequence, HHG emitted from the molecule in the strong laser pulse.
Then, we present an analytical method to theoretically describe the conversion efficiency of odd
and even harmonics in the HHG spectra from an asymmetric molecule.

II.1. TDSE method for simulating HHG
In this paper, we study the model of asymmetric molecules Z1Z2, which consists of two

nuclei and one electron. The molecule Z1Z2 has diverse nuclear charges and internuclear distances.
This model has been popularly used in many studies, such as Refs. [17,18,21,23,25,28]. Despite
its simplicity, this model is acceptable to mimic the HHG spectra from multielectron molecules.
It is well known that for the interaction with intense laser pulses, a molecule can be described
by the single-active-electron model [30, 31]. According to this model, only the HOMO electron
interacts with the laser and with the effective potential created by the remaining electrons and the
nuclei. Therefore, to control the molecular parameters and investigate their influence on the HHG
spectra, using the two-center molecule Z1Z2 with one active electron as a simplified model is quite
appropriate.

The molecular model is presented in Fig. 1(a). The two nuclear centers are proposed to lie
on the Oz axes. The center-of-charge coordinate system is used. The molecule is subjected to the
laser field E(t) with an orientation angle θ , an angle between the electric vector and the molecular
axis. In this paper, we study the case of θ = 0◦. The magnitude of the electric field has the form
of E(t) = E0 f (t)sin(ω0t), where E0, ω0 respectively are the amplitude and carrier frequency; f (t)
is the envelope function of the laser pulse. In this paper, we use the laser with the intensity of
1.5×1014 W/cm2, and the wavelength of 800 nm. To obtain shaper harmonic peaks, we use a long
trapezoidal pulse of ten optical cycles with two cycles turns on and off, and eight cycles in the flat
part, as shown in Fig. 1(b).

To obtain the HHG spectra, we utilize the TDSE method, i.e., the temporal wave function
is numerically calculated from the time-dependent Schrödinger equation. It can be written in the
atomic units of h̄ = e = me = 1 as following

i
∂

∂ t
ψ(r, t) =

(
− 1

2
∇

2 +V (r)+ r ·E(t)
)

ψ(r, t). (1)

Here, ψ(r, t) is the wave function of the active electron. The Coulomb potential V (r) has the
following form

V (r) =− Z1√
r2−2rz1cosα + z2

1

− Z2√
r2−2rz2cosα + z2

2

, (2)

where Z1 and Z2 are effective charge of the two nuclei; z1 =RZ2/(Z1+Z2) and z2 =RZ1/(Z1+Z2)
respectively are the coordinates of the two nuclei; R is the internuclear distance; and α is the angle
between the electron position vector r and the axis Oz.

The time-dependent Schrödinger equation is solved by the procedure presented in detail in
Refs. [20, 22]. Accordingly, the time-dependent wave function is found by the expansion of the
field-free (time-independent) wave functions. The time-dependent coefficients of the expansion
are then calculated by the evolution from the ground state. Since the crucial role of the ground
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Fig. 1. Asymmetric molecular model Z1Z2 (a) and the laser pulse used in the simulation (b).

state in the harmonics generation [19], we eliminated other excited states in constructing the initial
state. After getting the time-dependent wave function, the induced dipole is calculated by the
formula

d(t) = 〈ψ(r, t)|r|ψ(r, t)〉. (3)
The HHG spectra are proportional to the Fourier transform of the induced dipole acceleration

S(ω) =

∣∣∣∣∫ ê · d̈(t)e−iωtdt
∣∣∣∣2, (4)

where ê is an unit vector. In our study, we are interested in only the parallel HHG, i.e., HHG
with the polarization parallel to the electric field. The other with the perpendicular polarization
is absent for the case of θ = 0◦ [19, 22]. The permanent dipole of the asymmetric molecule is
calculated by

P = 〈ψ(r,0)|r|ψ(r,0)〉. (5)
Here, ψ(r,0) is the ground-state wave function of the molecule in the absence of the laser field,
which are calculated by the B-spline method in this paper. Since at t = 0, the molecule is symmet-
ric about the z–axis, the permanent dipole is aligned on this axis.

For the numerical simulation, we use 50 partial waves, 180 B-spline functions, and a box
with a radius of 150 a.u. with 360 grid points. To avoid the reflection due to a finite box, we
utilize the cos1/8 mask function beyond the radius of 90 a.u. The time step is 0.055 a.u. We limit
the number of basis functions of the time-dependent wave function by truncating the maximum
energy of the system to be about 6 a.u.

II.2. Analytical expression of transition dipole
The HHG of the asymmetric molecule consists of both odd and even harmonics, as shown

in Refs. [15–22]. To interpret the HHG intensity of the odd- and even-harmonic generation, Chen
and Zhang have derived analytical expressions of the corresponding transition dipoles [17]. Here,
we will briefly recall some relevant equations of this work.

According to the three-step model, the harmonic photon is emitted at the last step when
the ionized electron recombines to the parent molecular ion [2]. Therefore, the HHG efficiency
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is proportional to the transition dipole between the continuum and ground states, i.e., S(ω) ∝

|D(ω)|2 [4]. The transition dipole |D(ω)| is defined by the equation

D(ω) = 〈0| ê · r |p(ω)〉 , (6)

where |0〉 is the wave function for the ground state, and the wave function for the continuum
state |p(ω)〉 is assumed to be a plane wave eip(ω)·r. The electron momentum p(ω) and the HHG
frequency ω are related by the dispersion formula |p(ω)|=

√
2ω .

In Refs. [17, 18, 22], it has been shown that, for asymmetric molecules, the electron re-
combination in the gerade part of the ground state leads to the generation of the odd harmonics.
Meanwhile, the recombination into the ungerade part is responsible for the emission of the even
ones. These facts are equivalent to the conclusion that the odd and even harmonics result from
the recombination of the ungerade and gerade parts of the continuum states into the ground state,
respectively [17]. Therefore, the transition dipole separates into two components as

D(ω) = i〈0| ê · r |sin(p(ω) · r)〉+ 〈0| ê · r |cos(p(ω) · r)〉 . (7)

Here, the first component corresponds to the generation of the odd harmonics, while the second
one is responsible for the emission of the even harmonics.

As shown in Ref. [17], the ground-state wave function of a two-atomic molecule can be
assumed as a linear combination of the atomic wave functions

|0〉 ≡ ψ(r,0) ∝ ae−κ|r+êzz1|+be−κ|r+êzz2|, (8)

where a = Z1/
√

Z2
1 +Z2

2 and b = Z2/
√

Z2
1 +Z2

2 are the contribution coefficients; κ =
√

2Ip with
the ionization potential Ip. Substitute the wave function (8) into the Eq. (7), we obtain

D(ω) ∝ (iGo(ω)+Ge(ω))〈e−κr| ê · r |sin(p(ω) · r)〉 , (9)

where 〈e−κr| ê · r |sin(p(ω) · r)〉 is similar to the transition dipole between the continuum and the
ground states of an atom. Go/e(ω) are the molecular interference factors causing odd and even
harmonics [17]

Go(ω) = acos(pz1cosθ)+bcos(pz2cosθ), (10)
Ge(ω) = asin(pz1cosθ)−bsin(pz2cosθ). (11)

III. RESULTS AND DISCUSSION

In this section, we present the HHG spectra emitted from the asymmetric molecule Z1Z2
with different nuclear-charge ratios Z1/Z2. We need the ionization probability and the cutoff not
being changed; thus, we also vary the total charge Z1 +Z2 so that the ionization potential of the
molecule, meaning the absolute value of the ground state energy, is fixed by the value of 0.515 a.u.
This value is chosen similarly to that of the real molecule CO.

III.1. Dependence of even-to-odd ratio on nuclear-charge ratio
The case of internuclear distance R=2 a.u.

First, we consider the case of the asymmetric molecules Z1Z2 with the internuclear distance
of R = 2 a.u. The HHG spectra are exhibited in Fig. 2 for molecules with different nuclear-charge
ratios. It is shown that the correlation between the intensities of odd and even harmonic orders
in HHG spectra is strongly dependent on the Z1/Z2 ratio. Indeed, for the case Z1 : Z2 = 0 : 1,
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when the molecule becomes an atom (symmetric), the HHG spectra contain only odd harmonics,
as indicated in Fig. 2a. With the increase of the nuclear-charge ratio, the intensity of the even
harmonics first gradually enhances (Fig. 2b), then becomes comparable to, and even exceeds the
intensity of the odd ones (Fig. 2c). After that, with the ratio Z1/Z2 continuing to increase, the
intensity of even harmonic orders reduces (Fig. 2d) and is completely depressed at Z1 = Z2 when
the molecule becomes symmetric (Fig. 2e).
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Fig. 2. Odd-even HHG spectra from the molecule Z1Z2 with different ratios Z1/Z2 calcu-
lated by the TDSE method. The molecule is chosen with internuclear distance R = 2 a.u.
and ionization potential Ip = 0.515 a.u. The HHG spectra contain only odd harmonics for
the cases: (a) Z1 : Z2 = 0 : 1 (the molecule becomes an atom) and (e) Z1 : Z2 = 0.5 : 0.5
(the molecule is symmetric). For other ratios Z1/Z2, the HHG spectra possess both odd
and even harmonics.
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Fig. 3. The dependence of the even-to-odd ratio on the
ratio Z1/Z2 for harmonics in the plateau of HHG spec-
tra obtained by the TDSE method. The dashed line
presents the even-to-odd ratio equal to one. The molec-
ular model is the same as used in Fig. 2.
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Fig. 4. The ratio of interference factors of even and
odd harmonics as a function of the ratio Z1/Z2.

The same results are also presented
in Fig. 3 in another way for a clearer il-
lustration. We calculate the ratio between
the intensities of each selected pairs of adja-
cent harmonics (with different parity), i.e.,
of the even and the nearest odd harmonic
neighbors. We call it the even-to-odd ra-
tio and plot it as a function of the ratio
Z1/Z2 in Fig. 3. The figure shows that
there is no sudden phase jump from pure-
odd spectra into the odd-even one. In-
deed, with increasing the ratio Z1/Z2, the
even-to-odd ratio first gradually grows up
from zero; then, after reaching a maximum,
the even-to-odd ratio drops to zero again
when Z1/Z2 = 1. For harmonics in the
middle of the plateau and near cutoff of
HHG spectra, the maximum even-to-odd
ratio is achieved when the Z1/Z2 ratio is
about 0.5÷0.7. Clearly, there is a gradual
transition between the odd-even state to the
pure-odd state of HHG spectra.

From the above discussion, we infer
that the even-to-odd ratio of the HHG in-
tensity as a function of Z1/Z2 reflects the
parity of the molecule-field system. For
the cases Z1/Z2 = 0 or Z1/Z2 = 1, the
atom/molecule-field system is symmetric
with respect to the spatial inversion (r→
−r) combined with the temporal translation
by a half carrier-wave period (t→ t +T/2,
where T = 2π/ω0). As a consequence, the
HHG spectra contain only odd harmonics
[13, 14]. For other ratios Z1/Z2, when the
molecule becomes asymmetric, the sym-
metry mentioned above is broken that re-
sults in the generation of both even and odd
harmonics [14, 17, 22]. Thus, the even-to-
odd ratio strongly relates to the degree of symmetry breaking of the molecule-laser system.

To interpret in-depth the dependence of even-to-odd ratio on the nuclear-charge ratio Z1/Z2,
we consider the analytical expression of interference factors presented in Eqs. (10) and (11), caus-
ing odd and even harmonics [17]. Since the HHG signal is proportional to the transition dipole
as described in Subsec. II.2, we predict that the even-to-odd ratio of the harmonic intensity must
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proportionate to the ratio defined as follows

F =

(
Ge(ω)

Go(ω)

)2

=

(
Y sin X

1+Y − sin XY
1+Y

Y cos X
1+Y + cos XY

1+Y

)2

(12)

with the notations: X = p(ω)R and Y = Z1/Z2. If the even-to-odd ratio indeed relates to the ratio
F , then we can see from Eq. (12) the straightforward dependence of the even-to-odd ratio on the
ratio Z1/Z2 and the factor X . In Fig. 4, we plot the ratio F as a function of the ratio Z1/Z2 for
some harmonics in the plateau. The figure indicates a similar tendency as for the even-to-odd ratio
calculated by the TDSE method, as shown in Fig. 3. Specifically, with increasing the ratio Z1/Z2,
the ratio F sharply increases, then approaches or exceeds one, before dropping dramatically.

It is noticed that for harmonics near the cutoff, the ratio F undergoes a sharp maximum
due to the destructive interference effect and this occurs for odd harmonics and is absent in even
ones [23, 26]. However, these sharp maximums are not seen in Fig. 3 due to the large step of the
ratio Z1/Z2 in our study. The interference effect in HHG spectra from asymmetric molecules is a
complicated issue and will be investigated in our further studies.

Changing the internuclear distance
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Fig. 5. The even-to-odd ratio of harmonics in the plateau of HHG spectra from molecule
Z1Z2 with arbitrary internuclear distance R (a) and the comparison with the case of R =
2 a.u. (b). The values of R are enclosed for each point in the figure.

Now, we move to the case of the asymmetric molecule Z1Z2 with the fixed ionization po-
tential but with the internuclear distance changing, as a parameter, in the range from 1.6 a.u. to
2.5 a.u. Fig. 5 shows the dependence of the even-to-odd ratio on the ratio Z1/Z2. The value of
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R is added for each point in the figure. Surprisingly, this dependence is similar to the one pre-
sented in Fig. 3 for the case of internuclear distance R = 2 a.u. This analogy demonstrates that the
even-to-odd ratio is almost not sensitive to the changing of the internuclear distance.

To explain the above-mentioned result, we examine the ratio F of the interference factors
of even and odd harmonics, see Eq. (12). Clearly, this ratio depends on the internuclear distance
R through the factor X . In Fig. 6, we plot the ratio F as a function of X . It is shown that, after a
sudden growth, the ratio F slowly changes with increasing of X value, except for a sharp maximum
due to the destructive interference of odd HHG spectra [23, 26]. For harmonics in the plateaus of
HHG spectra, and R values as indicated in Fig. 5, the X factor is ranged from about 2.5 a.u. to
5.5 a.u. In this range, F is almost stable, as shown in Fig. 6. Therefore, the even-to-odd ratio of
HHG spectra from Z1Z2 molecule is almost independent on the internuclear distance.
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Fig. 6. The ratio of interference factors of even and odd harmonics as a function of X = p(ω)R
.

III.2. Non-trivial dependence of even-to-odd ratio on molecular permanent dipole
Finally, we consider the dependence of the even-to-odd ratio on the permanent dipole of

the asymmetric molecules. To vary the permanent dipole, we change the initial wave packet by
controlling the Z1/Z2 ratio (see Eq. (5)). The internuclear distance and ionization potential are
R= 2 a.u. and 0.515 a.u., respectively. The even-to-odd ratio as a function of the permanent dipole
calculated by the TDSE method is presented in Fig. 7(a). The results show that the even-to-odd
ratio increases with increasing molecular permanent dipole. The dependence is not one-to-one,
because there is one value of the permanent dipole corresponding to two values of the Z1/Z2 ratio.
Thus, the figure has a hysteresis-like shape where two even-to-odd ratios for the same permanent
dipole can be distinguished.

To explain this anomalous dependence, we examine the analytical expression Eq. (12) for
the ratio F of the interference factors. It clearly shows that the ratio F depends only on the ratio
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Z1/Z2, but not on the molecular dipole moment. We can also get an analytical formula for the
permanent dipole P by substituting the molecular wave function Eq. (8) into Eq. (5) to obtain

P≈−a2z1 +b2z2 = R
Y (1−Y )

(1+Y 2)(1+Y )
. (13)

Here, for simplicity, we assume that the overlap between the atomic orbitals are negligible. It
shows that the permanent dipole is controlled by the ratio Y = Z1/Z2 only. To validate the ana-
lytical expression (13), we also calculate the permanent dipole numerically by solving the Eq. (1)
without the laser field and put the solution into Eq. (5). The results are plotted in Fig. 8 as a func-
tion of the ratio Z1/Z2. For comparison, in Fig. 8, we also plot the analytical permanent dipole,
calculated by Eq.(13). The figure shows that the dependencies of the permanent dipole on the
ratio Z1/Z2 calculated by both methods, numerical and analytical, agree with each other although
the analytical values are a little bit higher than the numerical ones because of the omission of the
wave function overlap. Therefore, the analytical expression Eq. (13) is reliable for us in our further
explanation.
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Fig. 7. The even-to-odd ratio (a) and the ratio of the interference factors (b) as a function
of the molecular permanent dipole for harmonics in the plateau of HHG spectra. The
molecular model is the same as used in Fig. 2.

Using Eqs. (12) and (13), we calculate the dependence of the ratio F on the permanent
dipole and show it in Fig. 7(b). It is indicated that this dependence also forms the hysteresis-like
curve like that of the even-to-odd ratio presented in Fig. 7(a), except for some special peak values
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where the destructive interference effect occurs. Fig. 8 also helps us to understand the hysteresis-
like shape of the even-to-odd ratio on the permanent dipole. Indeed, from Fig. 8 we can see two
values of ratio Z1/Z2 corresponding to one value of the permanent dipole. One value is small
nearby the case of a (symmetric) atom-like molecule, and another one is near 1 for a symmetric
molecule. In summary, we have properly explained the non-trivial dependence of the even-to-odd
ratio on the molecular permanent dipole.
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Fig. 8. The permanent dipole of the Z1Z2 molecule calculated by the analytical formula
Eq. (13) and by the numerical method by solving Eq. (1) in the absence of the laser field.
The molecular model is the same as used in Fig. 2.

IV. CONCLUSIONS

In summary, we have studied the dependence of the even-to-odd ratio of harmonics in the
plateau of HHG spectra emitted from the asymmetric molecule Z1Z2 on the asymmetric parameters
by the TDSE method. Besides, we have utilized the analytical model to interpret the obtained
results.

Firstly, we have shown that the even-to-odd ratio strongly depends on the nuclear-charge
ratio Z1/Z2. Indeed, with increasing of Z1/Z2 ratio, the even-to-odd ratio first gradually increases,
then drops to zero when Z1/Z2 reaches 1. Moreover, we have claimed that the even-to-odd ratio is
almost not sensitive to the changing of the internuclear distance. These results are well consistent
with the analytical ratio of the interference factors of even and odd harmonics according to the
strong-field approximation. In addition, we have indicated the non-trivial dependence of the even-
to-odd ratio on the molecular permanent dipole of the asymmetric molecules and explained it
related to the ratio F of the interference factor of the transition dipole.
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